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A hypergraph H = IE1,E2, ... ,En J isa set of sets; the setsEj are called the edges, and the elements 
of V (H )=u7 ~ I E j the vertices of H (if each edge contains only two vertices, we have an ordinary 
graph). Hypergraphs and cumulants over hypergraphs occur in various statistical mechanical 
problems. A cumulant over H involves a sum over partitions of the set H, whence the motivation 

k-(vl 

for studying partitions of hyper graphs and related notions. Writing E j - - - - Ej if there exist at 
k-(vl 

least kEN vertex-disjoint paths between the edges E j and Ej , we show that - - - - is an equivalence 

A ~0 

relation onH, and denote by PkH the partition ofHintoits (- - - -) equivalence classes. His said to 
k-(v) 

be k-(v) connected if every pair of edges is in the relation - - - -; we show that there exists a coarsest 

partition of H into k-(v) connected blocks, and denote it by P ~H. Given a partition 
P(H) = IH1,H2, •.• ,Hp J of H, weAdenote, for any real number K, UK [P(H)]=l:j'~ I (I VlJ!j) I - K), 
0'; [P(H)] l:j'~1 (W(Hj)I-KIP1Hjl),where W(Hj)1 is the number of vertices and IP1Hjl the 
number of connected components of H j • We introduce "subcumulants" over H, which involve 
only partitions of H for which 0'; has the same value. The subcumulants corresponding to 
minimum values of 0';, KER, are of practical interest (especially the cases K = 0 and 1). We 
accordingly study the set 1T;O(H) of partitions which minimize 0';; this is simply related to the set 
1T~(H) of partitions which minimize UK' We show that P(H)<:;P "H <:;PkH for all P(H)E1T~(H) 
(where <:; signifies "isa subpartition of'), thatP<:;P' for every PE'TT~(H)andP 'E1T~_ «H), E > 0, and 
that 1f!. (H) is a sublattice of the (<:;) lattice of all partitions of H. The sets 1T~ (H) and 1T;O(H ), and the 
corresponding minimal values of UK and 0';, are explicitly determined, for any hypergraph if K<:; I, 
and for some special types of hyper graphs if K > 1. We introduce a new notion of connectedness for 
hypergraphs, the 0' connectivity ~ (H )=Max I K, I H J E1T~ (H) J, and relate it to the vertex 
connectivity kv (H )=Max I k, His k-(v)connected J ; we have, in particular, ~ (H )<:;kv (H) (~ = k" if 
kv = 0 or I). 

PACS numbers: 02.1O.Cz, 02.50. + s, 05.20. - Y 

1. INTRODUCTION 

Graph theoretic methods were initially introduced by 
Mayer! in statistical physics, to classify and handle in an 
efficient manner integrals of products of the form 

of efficiency, rather to use notions and terminology from the 
theory of hypergraph~: A hypergraph 

(1.1) 
i.j 

where the/;j are quantities pertaining to pairs (i,}) of part i
cles, and the product is over a subset (graph) of the set of all 
such pairs. The study and evaluation of integrals of such 
products over graphs is a subject of continued interest. 2 

When the Mayer method is extended to the case of par
ticles interacting via non pairwise forces, there occur pro
ducts of the more elaborate form 

(1.2) 

wherein each x E, is a quantity depending on a subset E j of the 
N particles constituting the gas. The extension of the theory 
to such cases was done by StelV who introduced the notion 
of simplexes to represent products like (1.2). In a recent work 
on the quantum virial expansion,4 we preferred, for reasons 

(1.3) 

is a set ofsubsetsEj of! 1,2, ... ,N J; theEj are called the edges, 
and the elements ofu7 ~ I E j the vertices. Thus, to the product 
(1.2) is associated the hypergraph (1.3). 

Another widely used tool in statistical physics is the 
notion of cumulant 6,7: Given a set I x j ' iEl J of stochastic 
variables, and denoting by < ) the statistical average, the 
cumulant 

(U Xj)c ~ (- )IPI-I(IP 1- 1)'J:l (n X), (1.4) 

where the sum is over all partitions P of the set 1. Cumulants 
are mostly used in time-dependent problems. 8 But they have 
also been applied in equilibrium statistical mechanics9

: 

Broueo and Kub06 combined cumulant with graph theoreti
cal methods to rederive in a concise manner the Mayer ex
pressions I for the classical vi rial coefficients; Broue I also 
obtained, in the quantum fluid case, special kinds ofpertur-
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bation expansions by using such graph-cumulant methods. 
More recently, by combining hypergraph and cumu

lant methods, and extending the methods of Broueo and 
Kubo,6 we obtained new expressions for the quantum virial 
coefficients,4 of a form much more closely related to the 
Mayer classical expressions 1 than are the usual Ursell
Kahn-Uhlenbeck expressions. 12 We had previously used 
similar methods for dealing with pressure broadening by 
dense gases. 13 In the above works, there appear cumulants of 
products over hypergraphs; and since a cumulant involves a 
sum over partitions of its argument set, we were led to con
sider partitions 

( 1.5) 

of a hypergraph H, together with the associated quantity 

p '" 

O"~[P(H)l = L (W(Hj)I-KIP1Hjl), (1.6) 
j~1 

where K is a real number, Iy (Hj ) I is the number of vertices of 
the hypergraph Hj , and IPIHj I is the number of connected 
components of~ .. In the problems referred to above,4,13 the 
stochastic variables x E , are such that in the thermodynamic 
limit (number of particles N--+ 00, volume 'r'--+ 00, with N / 
'Y remaining finite), only the partitions of H which minimize 
O"~ contribute a finite amount to the cumulants involved, the 
value of K depending on the specific problem (K is 0 or 1 in 
Refs. 13 and 4). Thus the necessity of identifying the set 
1T~O(H) of partitions of H which minimize O"~, as well as deter
mining the corresponding minimal value O"~O(H) of O"~. 

This was done in Refs. 4 and 13 for the individual cases 
K = 0 and 1 required there. However, it is more satisfying to 
produce these two isolated results as special cases of a more 
embracing theory covering all values of K, which can even
tually prove to also be of practical utility. This is the purpose 
of the present paper. 

To determine the set 1T~O(H) and value O";O(H ),it is sim
plest to first find the set 1T~ (H) of partitions of H which mini
mize 

P 

O"K [P(H)l- L (I V(Hj)1 - K) 
j~1 

and the corresponding minimal value O"~ (H), the above 
primed and unprimed objects being related in a simple man
ner. 

Thus, the main theme of this paper is the study of 
1T~ (H). We interrelate the sets 1T~ (H) corresponding to dif
ferent values of K, and relate them to partitions associated 
with notions of vertex-disjoint linkage and connectedness. 
We explicitly determine 1T~ (H) and O"~ (H), whence also 
1T~O(H) and O"~O(H), for any hypergraph H in the cases K< 1, 
and for some special kinds of hypergraphs in the cases K > 1. 
The range K< 1 covers the two important values K = 0 and 1 
occurring in the problems alluded to above. 

In Sec. 2, we give the basic definitions and concepts we 
shall be using. A perhaps unusual construction that we intro
duce is an enlarged lattice l4 of partitions, 5b which consists of 
not only the partitions of a given set H, but also of partitions 
of subsets of H. 

In Sec. 3, we consider partitions associated with notions 
of vertex-disjoint linkage and connectedness. 
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In Sec. 4, we study the partitions which minimize O"K or 
O"~. We introduce a notion of connectedness for hypergraphs 
which is parametrized by the real number K, rather than by 
an integer as is the case with most such notions. 

In Sec. 5, cumulants over hypergraphs are considered. 
We terminate with a brief discussion in Sec. 6. An ap

pendix deals with the extensions of Menger's theorem 15 to 
hypergraphs. 

1.1 Notation 

Given a set S, we denote by IS I the number of elements 
in S, and by 9 [S] the set of all subsets of S (the power set of 
S). Given two sets Sand T, we denote by S - T the set of 
elements of S not included in T. For notational convenience, 
we often put the elements of a given set in one-to-one corre
spondence with the elements of some indexing set, e.g., 
S = ls" iEl]. 

Given an element sES, we denote by Is] the subset of S 
consisting of the single element s. One must be careful to 
distinguish betweens and Is]; e.g., if lSi, iEl] is a set of sets, 
then the unions U iE1 Si and 

U lSi] = lSi' iEl] 
iEJ 

are quite different objects. 

The union of pairwise disjoint sets is also indicated with 
a summation sign, i.e., 

U Si-LSi if i#j~SinSj = 0 for all i,jEl. 
icl iEI 

A set of pairwise disjoint nonempty sets is called a parti
tion. 1/ P = lSi' iEl J is a partition and ~iEl Si = S, we write 
P = P (S) and say that P is a partition of the set S. The ele
ments of a partition are also called its parts or cells. 

Given two sets Sand T, a function! S--+ T defines an/
equivalence relation - on S: S - s' iff/(s) = /(s'), s, s' ES. The 

f f 
partition of S into its/-equivalence classes is called the/-
partition of S and is denoted Pf(S). 

We denote N = 10,1,2,. .. ] and R the set of real 
numbers. 

2. BASIC DEFINITIONS 

2.1 Generalized graphs 

A system,5b or generalized graph, or Graph (with a ca
pital G) is a triple 

G = (~l/",f, JV ) 

where 'r and A~ are mutually disjoint sets, and/is a func
tion fromJVinto the set 9['Y] of subsets of 'Y. An alterna
tive representation is 

G = ('Y,in where It' = I (v,f(v)), vE./f/ J. 
The elements of 'r' are called vertices. Each element 
E = (v,f(V))EIt' is called anedge;f(v)~ 'Y is the value of that 
edge, v is its name. We denote by v(E ) and V (E) the name and 
value, respectively, of the edge E. Several different edges 
may have identical values (multiple edges), but no two edges 
can have identical names (since ff is a set). 16 To simplify 
notation, and provided there is no risk of confusion, we 
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sometimes refer to an edge by its value alone, or by its name 
alone. 

Let G = (r,lf)andG' = (r',If') be two Graphs. G' is 
asubGraph of G, denoted G ' ~ G, if r' ~ r and If' ~ If. The 
union and intersection are defined in the obvious manner: 

GuG' = (rur', Ifulf'), GnG' = (rnr', Ifnlf'). 

There is one restriction however: since our convention is that 
the edges of a Graph must all have different names, one can 
take the union of two Graphs only if they are (union) compa
tible in the following sense: if two edges EE If and E 'E If' have 
identical names, then they must also have identical values. 
Whenever, in the sequel, we take the union of two or more 
Graphs, it shall be understood that they are compatible in 
the above sence; this may be conveniently achieved by sup
posing that the Graphs considered are all subGraphs of some 
"large" Graph G = (V,lE). 

We represent a Graph G = (r,lf) by a diagram where
in each vertex VEr is drawn as a small circle labeled v, and 
each edge EEIf as a dot labeled v(E), with lines joining it to 
each vertex it contains [Fig. I(a)]. The more standard5 repre
sentation ofa Graph is as shown in Fig. I(b), each edge being 
drawn as a closed curve encircling the vertices it contains, 
except for edges containing just two vertices, which are 
usually drawn as a line joining the two vertices. Another 
possible representation is in terms of simplexes. 3 However, 
the circle-dot representation of Fig. I(a) is easier to visualize. 
Also, it makes manifest the symmetry existing between 
edges and vertices. This symmetry often allows one to dua
lize definitions and theorems by simply interchanging edges 
and vertices. 

A Graph whose edges all contain two or fewer vertices 
is called a graph (with a small g). A graph is m-partite if its 
vertex set can be partitioned into m subsets such that edges 
exist only between vertices belonging to different subsets. 
The circle-dot diagram representing a Graph G may also be 
viewed as a bipartite graph, whose vertices are the dots and 
circles, and edges the lines joining them; we call B [G] that 
bipartite graph. 

Given a Graph G = (r,lf) we let 

G=rulf = [h 1,h2 , ... ,hm ), (2.1) 

so that each hi stands for either an edge or a vertex. We write 
hi-hj if hi is a vertex and hj an edge containing it, or vice 
versa; hi and hj are then said to be incident on each other. 

b 

(a) (b) 
FIG. I. (a) Circle-dot representation of the Graph G = pV,3'), where 
r = {1,2,3,4,5,6j and 3' = {(a,{2 j), (b,{ 3,4,5 j), (c,{ 5,6j), (d,0), (e,{ 5,6j)j. 
(b) Standard representation of the same Graph. 
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The degree Ih; 1 is the number of elements ofGincident on hi; 
hi is isolated if Ihi 1 = 0, dangling if Ihi 1 = I. Two edges (ver
tices) are adjacent ifthere is a vertex (edge) incident on both. 

Apath oflength k, kEN, is an ordered sequence of k 
distinct elements h J-h2-· .. -hk , each incident on the pre
ceding. A cycle is a closed path'hl-h2-.. ·-h~. We write 

hi - - - hj if there exists a path in G between hi and hj ; this is 
G 

an equivalence relation, whose equivalence classes define the 
connected components of G. G is connected if it has a single 

connected component. (We write G in hi - - - hj to distin-
G 

guish from hi - - - hj , where G' may be any other Graph also 
G' 

containing hi and hj .) 

We shall speak of removing a vertex or an edge; this 
means that in the diagram of G, we remove the correspond
ing circle or dot, and the lines emanating from it. An element 
hiEG is an articulation of order m, 2<mEN, if upon its remo
val, the number of connected components of G increases by 
m - I; hi is apure articulation if m = Ih i I. 

A Graph is called a tree if it is connected and contains 
no cycles. A Graph is a/orest if all its connected components 
are trees (equivalently if it contains no cycles, or if all its 
edges and vertices are either pure articulations, dangling, or 
isolated) (Fig. 2). 

2.2 HypergraphsS,18 

A hyper graph H = (r, If) is a Graph which has no iso
lated edges or vertices [EE If=> V(E )~0, r = UEE~ V(E)]. 
Since every vertex is contained in an edge, a hypergraph is 
completely characterized by its edge set, and we shall identi
fy 

(2.2) 
The Graph notionsH~H', HuH', HnH', then have their 
usual set meanings. We denote by 

V(H)= u VIE) 
EEli 

(2.3) 

the vertex set of H. Often, in order that the hypergraphs we 
consider be (union) compatible, they shall be assumed to be 
subhypergraphs of some "large" hypergraph IHI. 

A hypergraph is ordered ifits elements are in one-to-one 
correspondence with the elements of an ordered set, e.g., 

H= [EJ,E2, .. ·,En J. 
We say that H is properly ordered if 

Hi}1 {E1,E2, ... ,Ej j, l<j<n 

is connected for eachj = I, ... ,n (thus if His drawn by succes-

o 

(a) 
(b) 

FIG. 2. Examples of a tree (a) and of a forest (b). 
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sive addition of each edge in proper order, there are no dis
connected intermediate subhypergraphs). Proper order can 
obviously be achieved (not uniquely)iff H is connected (i.e., 
choose EI arbitrarily; among the remaining edges, at least 
one is adjacent toEI or else Hwould not be connected; call it 
E 2; etc.). 

Lemma 2.1: Let the connected hypergraph 
H = ! E I,E2, ••• ,En J be in proper order. Then H is a tree iff 
Hill = ! E I,E2, ••• ,Ej J and Ej + I have exactly one common 
vertex, i.e., 

I V(Ej+ I )nV(Hlll)1 = 1 (2.4) 

for eachj = 1,2, ... ,n - 1. 
Proof (if) Suppose H is not a tree, i.e., it contains a cycle 

C ='v -E -Vb-Eb-"'-V -E ' Each edge E EC a a z z· x 

shares at least two vertices with the union of the other edges 
in C. Thus, in the properly ordered sequence! E I,E2,···,En J, 
the right-most member of C shares at least two vertices with 
the union of the edges on its left, i.e., (2.4) does not hold for all 
j = 1, ... ,n - 1. 

(only if) Suppose E j + I and Hill share two vertices Va 
and Vb for somejEl1,2, ... n - 1 J. Since H(jl is connected (H 
being in proper order), there exists a path Va - - - -Vb in HUI ; 
then'Ej+ I-Va - - - -v~ isacycle, andHisnota tree. Q.E.D. 

Lemma 2.2: For any hypergraph H, we have 

(i) I IEI>IHI-IPIHI = !V(H)I + IHI-IP1HI, 
EEH 

(ii) I Ivl>IHI-IPIHI, 
""'VIH) 

the equalities holding iff H is a forest. [IE I = !V(E)I is the 
number of vertices incident on edge E, Ivl the number of 
edges incident on vertex v; I V (!i) I is the number of vertices, 
IH I the number of edges, and IPIH I the number of connected 
components of H. H = Hu V (H ), so that 
IHI = !V(H)I + IHI]. 

Proof Let us first assume that H = ! E 1,E2,···,En J is 
connected and in proper order. Denote 
HU) = lEI,E2 , ••• ,Ej J,j<n. We have IH(I)I = IEII + 1, and 
IHu+ II 1<IHllll + IEj+ I I, the equality h~lding iff 
I V(H{Jl )nV(Ej+ 1)1 = 1. ~hence(i)(with IPIH 1= l)in view 
of Lemma (2.1). The case IPIH I> 1 follows immediately: for 
let H I,H2, ••• H c be the connected components of H; then 

l:EEHIEI =l:~=1 l:EEH,IEI>l:~=1 (IHil- 1)= IHI-c. 
(ii) follows from (i) by the vertex-edge duality. Q.E.D. 

2.3 Partitions of hypergraphs 

A partition of a hypergraph H is a partition of the (edge) 
setH: 

P(H) = !Hi> iEl J, H;=I=0, 

i#pHinHj =0, IHi =H, 
lEI 

i.e., a set of pairwise edge-disjoint subhypergraphs of H 
whose union is H. A partition is illustrated as in Fig. 3(b), 
with dashed lines delineating the different parts. 

We denote by 1T(H ) the set of all partitions of H, and put 

ntH) = I 1T(H') 
H'CH 
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<I. 

3~ 
.~ '(' 4 

1 

(a) 

(c) 

FIG, 3, (a) Hypergraph H = 1 (a,ll,2)), (b,12,3,4 J), (c, I 3,4}), (d, 13,4}), 
(e,1 5ll), (b) Partition P(H) = IHa ,HI,}' where Ha = la,d,e} and 
HB = Ib,c}. (c) HypergraphF[P(H)] = I (Ha,V(Ha))' 
(HB,V(HBJl) = IfHa,ll,2,3,4,5j), (HB,I2,3,4}ll· 

the set of all partitions of all sUbhypergraphs of H. We de
note by P dis (H) the discrete partition of H, i.e., if H = lEi' 
iEIJ, then 

P dis (H) = II Ed, iEl J . 

The partition I H J is called the trivial partition of H. We call 

1T'(H )=1T(H) - I H J = ! P, PE1T(H), IP 1>2 J 

the set of all nontrivial partitions of H. 

2.3,1 Graphs associated with partitions 

A partition P (H ) of a hypergraph H naturally defines a 
new hypergraph 

F[P(H)) = !(Hi , V(Hi)),HiEP(H)J. 

The diagram of F [P (H)] is obtained from that of H by coa
lescing together the dots representing the edges of Hi for 
each HiEP(H) [Fig. 3(c)]. 

Given a partition P of a set H, and a partition P' of a set 
H', we define their intersection graph as the bipartite graph 
[[P,P'] = ('1/[. 'g [) where 

'g[ = I (Ha nH(3, IHa ,H(3j)IHa ,H(3EPvP',Ha #H(3, 

Ha nH(3 #0J. 
Clearly, in every edge value I Ha ,H(3J, one element belongs 
to P and the other to P' (Fig. 4), 

Remark: in F [P (H)] and [[P,P I], the edge names are 
sets, 17 To simplify notation, we shall usually omit the names, 
e.g., write F[P] = I V(H,), Hi EP J. 

AO 

Bo- -0 [ 

(a) ( b) 

FIG. 4. (al The closed curves (rectangles, ellipses, and truncated ellipses) 
represent sets. (bl The intersection graph J[p,r] for P= IA,B,C,D I and 
r = lA,E,F,G I. 
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2.3.2 Partial ordering of partitions 

LetP (H )beapartitionofH,andP '(H ')apartitionofH'. 
IfeachHj EP (H ) is contained in someH ; EP '(H 'I, thenP (H lis 
called aSubpartition (with a capital S) of P '(H 'I, and conver
sely, P '(H') is called a Super partition of P (H); this is abbrevi
ated 

P(H),P'(H')<;:?!V HjEP(H), 3 H;EP'(H')3Hj ~H;J. 

If,moreover,P (H) i=P '(H 'I, thenP (H ) is called aproperSub
partition of P , (H 'I, abbreviated P (H) ¥ P '(H 'I. If P (H ) and 
P '(H ')arepartitionsofthesamesetH = H', we use the words 
subpartition and superpartition with a small s. 

Remark: If P(H),P'(H'), then, for all HjEP(H) and 
H;EP'(H'), 

HjnHji=~Hj ~H;. 

The relation, is reflexive (P,P), transitive (P,P' and 
P' ,P "-::::::;,p,P "), and antisymmetric l8 (! P,P' and 
P' ,p<;:?p = P 'I, and is thus a partial ordering. Thus the set of 
partitions II (lHI) is a ( ,) poset. 19 

2.3.3 Lattice structure of Jl(H.) 

Given two partitions,P (H) = (HoiElj ofthesetH~H, 
and P '(H') = (H; ,jEJ j of H' ~ lHI, let us denote 

P(H)!\P'(H') 
= (HjnH;,(i,j)El XJ,HjnH;i=0jeTT(HnH'), (2.5) 

P(H)VP'(H') = { u H",mEM} E1T(HuH') 
H"EV(Cml 

where C m' mEM, are the connected components of the inter
section graph I [P (H ),P '(H 'I]. 

Example: In Fig. 4, P!\ P' = (A, BnE, DnF, DnG I and 
PV P' = (A, RuE, C, fu.FlJG j. 

Lemma2.3:P(H) !\P'(H') [resp.P(H)V P'(H')] is the 
coarsest Subpartition (resp. finest Superpartition) of both 
P(H) and P'(H'), i.e.: 

(i) P!\P',P, P!\P',P' and (P",Pand 
P",P'j<;:?P",P!\P', 

(ii) PV P'>P, PV P'>P' and (P">Pand 
P">P'j<;:?P">PV P' 

for any partition P "(H "). In other words, P !\ P' and P V P , 
are the meetandjoin, respectively, ofPandP', so thatll (H) is 
a (,) lattice. 14 

Proof The first two relations of (i) and (ii) are obvious. 
To show the third, let P "(H ") = (H Z, kEK j : 

(i): (P" ,PandP" ,P'j-::::::;,( foreachkEK,HZ~Hj, and 
H;: r; H)' for some i k El andJ'k EJ j-::::::;,H kIt C H. nH ~ 

k - lk 1k 

-::::::;,P",P!\P'. 

(ii):SupposeP ">PandP ">P', and letHa beanelement 
of P (H); let Hx be in the same connected component of 
I [P,P'] as H a , i.e., there is a sequence H a , H ~, H b , 

H ~, ... ,Hx' withH ~EP '(H'),HbEP(H ),etc., whereineachele
ment intersects its predecessor. Since P ">P, there exists H;; 
EP "(H ")such thatH ;;-;JHa. Now:H;; -;JHa-::::::;,H;;nH ~ i=0 
(since Ha nH ~ i=0)-::::::;,H;; -;JH ~ (since 
P" >P ')-::::::;,···-::::::;,H;; -;JHx. By repeating the same reasoning for 
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each element of either P (H) or P '(H') lying in the same con
nected component of I [P,P'] as Ha , Co say, we obtain 

H;;-;J u H"'. Whence P ">PV P'. Q.E.D. 
H$EV(Cal 

Remark: The set 1T(H) of partitions of H is a sublattice of 
II (H ). In the literature, it is usually just 1T(H ) which is consid
ered. 

P 

A Partition P (H ) induces an equivalence relation = on 
H, and vice versa: 

P 

Eo = Eb<;:?(Eo andEb belong to the same cell ofP (H)j 
foranytwoedgesEa andEb ofH. LetP (H)andP'(H')betwo 

P 

partitions, with the associated equivalence relations = on H 
P' P po 

and = on H'. We denote by ( )!\ (=) on HnH', and 
P P' 

(=) V (-) on HuH', the equivalence relations associated 

with P!\ P' and P V P', respectively20: 
P po P po 

Eo(==)!\(=)Eb<;:?(Eo Eb and Eo Ebj; (2.6) 

P P' 

Ea(=) V (=)Eb<;:?( there exists in HuH' a sequence 

Eo,EI,···,En, with Eo = Eo, En = Eb, 
P 

such that E j E j _ I and/or 
P' 

E j Ej_l,foreachi= l, ... ,nj. (2.7) 

2.3.4 Operators t'J: partitions ......... partitions 

We now consider operators t'J: partitions ......... partitions. 
For any partition PEdomain (&), we denote by &-Ip the 
preimage of Pin &, i.e., the set of partitions P' such that 
& P' = P. Given sets of partitions S = (Pj , iElj ~ do
main(&), andS' = !Pj,jEJ}, we denote 

&S==! &Po iElj, &-IS'=U t'J-lp'. 
jE.I ) 

We have 

&-I&S-;JS, & &-IS' = S'nRange(t'J). (2.8) 

An operator & is linear if &(P +P') = (&P)u(&P') for 
all pairs P (H), P '(H') with HnH' = 0. Given two operators 

& I and & 2' we define & I & 2 and & I * & 2' where * may stand 
for u, n, !\ or V, by 

(& 1& 2)P = & 1(&2P ), (&1*& 2)P= (& IP )*(&2P ), 

2.3.5 RaiSing and lowering operators 

We call a raising (resp. lowering) operator an operator 
&: partitions-partitions, such that & P> P (resp. & P,P) for 
all PEdomain(&). 

With a partition P (H ) is naturally associated a raising 
operator P (H ) T and a lowering operator P (H)I , defined by 

P(H)! P'(H')==P(H) V P'(H'), 

P(H)I P'(H')=P(H)!\P'(H') 
(2.9) 

for any partitionP '(H 'I. The operator P (H)I is easily shown 
to be linear. With a hypergraph H, we associate 
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or more explicitly, letting P '(H') = [H j, jEJ) and 
J' = UljEJ, HnHjol0) (see Fig.S), 

(2.10) 

HI P'(H') = {HU(~, Hj )}UIHj,jEJ -J')E1T(HuH'), 

(2.11a) 

HI P'(H') = IHnHj,jEJ')E1T(HnH'). 
(2.11b) 

Lemma 2.4: (i) P(H)1 = ITH,€P(H)H;, (ii) 

P(H)I = ~H,EP(H)H i (the ordering in the product is imma
terial). 

Proof (i) follows from the associativity and commutati
vity of V , '4 and the fact that 

IHd V IH2 ) V .. · V [Hn) = IH"H2, ... ,Hn ) if the Hi> 
i = 1, ... ,n, are pairwise disjoint. (ii) is obvious from compar
ing with (2.5). Q.E.D. 

Remark 2.1: If H c;;,H', then H c;;, ujEJ' H j, so that 
Hu(ujEJ' H j) = ujEJ' H j in (2.11a). 

Let tJ I be a lowering operator, P (H) a partition of a 
finite hypergraph H: IH I < 00. Consider (tJ I )n P (H), nEN. 
For some n<lll(H)I, we will have tJI (tJ I )n-
P(H) = (tJI)n P(H) [indeed, each application of tJI, if it 
changes something, creates a proper Subpartition of its oper
and; but the poset II (H) is finite]. We define (tJ I ) 00 by 

(tJI)OO P(H) = (tJ I )In(H)1 P(H) for any partitionP (H), 

IH 1< 00. (2.12) 

2.3.6 Partition operators 

We call partition operator an operator P: hypergraphs 
-+partitions, such that for any HEdomain(P), PH < I H ) is a 
partition of H or of a sUbhypergraph of H. We shall identify 
such operators with a hat. 

Example 2.1 : We denote by P ,H the partition of any 
hypergraph H into its connected components. 

With a lowering operator tJ I is naturally associated a 
partitigr operator tJ I A, and c~nversely, with a partition op
erator P a lowering operator pI , defined by 

A A '"' 

tJI H = tJI IH J, pI P(H) = I PH;. (2.13) 
H,EP(H) 

We have pI '"' = p, and tJI AI = tJI if tJI is linear.2' We 
shall usually not distinguish notationally between tJ I and 

A A A 

tJ I ,nor between P and pI , i.e., tJ I H shall be understood to 
A A A 

mean tJ I H, and PP (H) to mean pI P (H). For instance, if 
P{H) = IHi> iE! J, then 

H' 

(a.) 

, 
------r------

I , , , 
------1 

I , 

(b) 

G 
(c) 

FIG. 5. (a) The large rectangle represents a set H, partitioned (dashed lines) 
into six subsets; we call P (H) that partition of H. The circle represents a set 
H'.(b)ThepartitionP(H)V (H') =P(H)' (H') =H" P(H)ofHuH'.(c) 
The partition P(H)/\ (H') = P(H)' H' = H" P(H) of HnH'. 
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P(H)I H' = P(H)/\ [H') = IH;nH',iE!,H;Nf'oI0) 
(2.14) 

i~.the "projection" ofP (H) onH' (Fig. 5). Alsopoo stands for 
(PI )00'"', 

Given two partition operators P and P', we write 

p<,p' iff PH <P'H for all HEdomain(P )ndomain(P 'I. 
Clearly, for any p, PH < tH, i.e., P< t where t is the trivial 
partition operator tH = [H). WedefineP /\P'andPV P'by 
their actions 

2.3.7 c-partitions 

A partition P (H) is called a c-partition if all its parts are 
connected hypergraphs, i.e., 

P (H) is a c-partition <;}P,P (H) = P (H). 

We denote by 1Te (H) the set of all c-partitions of H. Clearly, 
every c-partition of H is a sUbpartition of P,H [but the con
verse is not necessarily true (see, e.g., P3H, in Fig. 9)]. 

Remark: P,~ 'p (H lf~P (H )E1T >...(H )jthus, if 
P(H)It1Te(H), then 0 = P,P,~ 'P(H)oIP,~ 'P1P(H)oI0]. 

A partition is ordered if its elements are in one-to-one 
correspondence with those of an ordered set, e.g., 

P(H) = IH"H2, ... ,Hp J, pEN. 

We say that P (H) is in proper order if the hypergraphs 
~/=, H; are connected foreachj = 1, ... , p. Obviously, prop
er order can always be achieved if P (H) is a c-partition and iff 
H is connected. 

Lemma 2.5: (i) For any two partitions P (H ) and P , (H 'I, 
P '(H '»P (H )~P,P '(H '»p,p (H). 

(ii) If P (H) is a c-partition, then 

P '{H '»P {H )<;}P1P '(H '»P (H). 

Proof (i) LetP(H) = [Hi' iE! J, P'(H') = IHl,jEJ), 
P,H; = IH;m,mEM;j,p,Hi= jHin,nENj). 
P'(H'»P(H)~Hi c;;,Hl,~Him c;;,H; forsomejiEJ,foreach 
mEM; and each iE!. But since H;m is connected, it must be 
entirely contained in a single connected component of H l ' 
i.e., Him c;;,Hl,n for some nE1\}" wJ!ence P,P(H)<P,P'{H:). 

(ii)(~)followsfrom(i), sinceP,P(H) = P(H). (¢=)isob-
vious since P '{H '»P,P '(H '). Q.E.D. 

Given a partition P (H) of the hypergraph H, let us de
note by yep (H)] c;;, 1T(H )thesetofallsuperpartitionsofP (H), 
Y e [P (H)] c;;, 1Te (H) the set of all c-superpartitions of P (H). 

Lemma 2.6: The following statements are equivalent: 

(i) P (H) is a c-partition, 
(ii) ,Ye[P(H)] = P, Y[P(H)], 
(iii) Y[P(H)] = P I'Ye [P(H)]. 
Proof(i)~(ii): Let P (H) be a c-gartition; 

P '(H )EY[P (H)]~P '(H »P (H )~P,P '(H»P (H) [by 
Lemma 2.5]~P;!'(H)EYe[P(H)] [sinxeP,P'(H) is a c
partition];lhus P, Y c;;, Y e; but ~ e c;;,p, Y since Y e 
c;;,Y andP, Y e = Ye' When9.,eP, Y = Ye' (ii)~(i): If 
.f.. (H) is n~t a c-partition, then PIP (H) ",p (H); but A 

P,P(H)EP, Y[sinceP(H)EY];thusP, YoIYe sinceP,Y 
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contains P P (H) which is a proper subpartition of P (H). (ii-
I A A I&? Y' 

)~(iii): (ii)~Y r;;;,P 1- lYe by (2.8); but P 1- J c r;;;, , smce 
Y is the set of all superpartitions of P (H); thus 
P 1- lYe = Y. (iii)~(ii) by applic~tion of PIon (iii) and use of 
(2.8), noticing that Y c r;;;,Range(Pd. Q.E.D. 

3. (VERTEX) CONNECTEDNESS AND RELATED 
PARTITIONS OF A HYPERGRAPH 

3.1 Partition operators associated with vertex sets 

Let Wr;;;, V(JHl) be a set of vertices, Hr;;;,JHl a hypergraph. 
We denote by H - W the Graph (it may contain isolated 
edges) obtained from H by removing the vertices belonging 
to V (H )n W. Let E a and E b be two edges of H: we have 

Ea - - - - - Eb 
H-W 

iff there exists in H a path between edges E a and E b disjoint 
from W (i.e., containing no vertices belonging to Wi. Tkis is 
an equivalence relation between edges. 22 We denote by P W H 

the partition of H into the equivalence classes of - - - - -. 
H-W 

Thus, with each subset Wr;;;, V(JHl) is associated a partition 
operator Pw on .9'[JHl]. Note the case W = 0 (the empty set): 
ProH = PIH is the partition of H into its connected compo-
nents. A 

Remark: Let PwH = {Hi> iEI J. We have 

Pro(H - W) = {Hi - W, iEI J, (3.1) 
i.e., the connected components of H A- Ware the subGraphs 
Hi - W. Thus, one may construct PwH by first removing 
the vertices belonging to W, separating out the connected 
components of the resulting Graph H - W, and then rein
stating the vertices that were removed (Fig. 6);,.. 

Remark: Not every partition is of the typeP wH (Fig. 7). 
Lemma 3.1: Let Wand W' be subsets of V (JHl). We have 

(3.2) 
A A A (33) PWnW' =PWVPW"A A • 

Proof To show that P' <P " , it suffices to show that if 
two edges §..a and Eb of a hypergraph H belong to the)iame 
element of P 'H, they also belong to ~e ~me element of P "H. 
LetPw,H = {H;", mEM J. SincePwPw,H 
= ~ PwH I ,we have {E and Eb in same element of mEM m a 

PwPw,H J¢::>{Ea - - - - - Eb for some mEM ).(3.2)isthenob
H'm-W 

vious, for Ea - - - - - - - - Eb~Ea - - - - - Eb for some mEM 
H-(IfuW') H;"-W 

[i.e., any path between Ea and Eb disjoint from WuW ' lies 
completely in a H;" (since disjoint from W') and is disjoint 

(a) (b) (c) 

FIG. 6. (a) Hypergraph H. (b) Graph H - W, where W = [2,3,4). (e) Parti
tion PwH. 
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H 
1'(H) 

FIG. 7. The partition P(H) is not of the type PwH [in particular 
P(H )#P 11.21 H]. 

from W]; furthermore, Ea - - - - - Eb~l Ea - - - - - Eb and 
lI;n -- W H - W 

Ea - - - - -Eb J¢::>Ea(- - - - -) 1\ (- - - - ~)Eb' To prove (3.3), we 
H - W' H - W H - W . 

show that (i)Pw V PW' <PWnw' and (ii)Pw V PW' >PwnW" (1) 

is obvious since Ea - - - - - Eb~Ea - - - - - - ,- Eb, i.e" 
H - W A A II - (WnW 1 

P w <P WnW" and likewise P W' <P WnW" To show (ii), we note 

that E - - - - - - - -Eb~{ there exists a path (Eo,vl,E I, 
a If __ (WhW') 

v2, .. ·,En _ I ,Vn ,En ), Eo = Ea, En = Eb, such that Vi Ef W or 

viEfW',i.e"Ei_I-----EiorEi_I-----Ei' 
If- w If- W' 

i = l, ... ,n J~Ea (- - - - -) V (- - - - -)Eb' Q,E.D. 
H- W H- W' 

Remark: < cannot be replaced by = in (3,2) (Fig. 8). 
Lemma 3.2: LetPwH = {Hi' iEI J, Then 

V (Hi )nV(H'.iK W for all i,jEI, i=l=J. (3.4) 
Proof Obvious, for if (3.4) did not hold, there would 

exist a path from some edge Ea Elfi to some EbElfj disjoint 
from W. Q.E.D. 

Definition: A subset Cr;;;, V(H) is called a (vertex) cut of 
size 1 c 1 of the hypergraph H if the number of connected 
components of H increases upon removal of the vertex set C, 
but not upon removal of a proper subset of C, i.e., if 

IPcH I> IProH I, but IPwHI = IProH 1 for all W'itc. 
Lemma 3.3: Let H be connected, C a (v) cut of H with 

PcH = [Hi' iEl J. Then 

V(Hi)nV(H)) = C for all i,jEl, i=l=J. (3.5) 

Proof It suffices to show that C r;;;, V (Hi) for each iEl; 
(3.5) will then follow by (3.4). Suppose cet V (Hi ), i.e., 

H 'P/".,,) H 

( b) ~H C ,: 
----

C' 

!:,IG.,.8. (a) Here"we have P 13) {l = [If. j, P 11,21 PA3 ) H = P 11,21 H, . 
P(31 P II 21 H = P II .,,3) Hand P I31 I\PII,'I H = PI 1.21 H. Thus, puttmg 
W= 11:2) and W'= (3),wehavePw'PwH#PwPwH#PWuwH 
#Pw I\Pw,H #Pw'PwH. (b) Schematic drawing to illustrate how 
Pc I\PC'H may differ from P(LC'H, where C and C' are (v) cuts of H; we 
haveEa-- - - -Eb andEa- - -- -Eb' i.e., Ea(- --- -)1\(- - --:)Eb, but not 

H-C H-C' H-C H-C 

Ea - - - --Eb' 
Ii - cuC' 
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CnV(Hi) = Wi ¥c. Call H(i) =H -Hi; suppressing Wi 
disconnects Hi from HI/, [since suppressing C does, and 
C - Wi is notin V (H;)]. Butthis contradicts the factthat Cis 
a (v) cut. Q.E.D. 

3.2 k-(v) linked edges 

Menger's theorem for hypergraphs: Let Ea and Eb be 
two edges of a hypergraph H, and let kEN. Then, the follow
ing two statements are equivalent: 

there exist in H at least k pairwise vertex-disjoint paths 
between Ea and Eb; (3.6a) 

at least k vertices of H must be removed to disconnect 
Ea and Eb. (3.6b) 

The above is a straightforward extension of Menger's 
theorem for graphsl5 (an explicit proof, with some further 
discussion, is given in the Appendix). 

Definition: TwoedgesEa andEb of Hare said to be k-(v) 
linked (in H), denoted 

k-Ivl 

Ea - - - - - Eb , 
H 

if (3.6) is true. 
Remark: A dual notion, k-(edge) linkage, and a stronger 

notion, k-linkage, are discussed in the Appendix. 
Lemma 3.4: Let Cl>C2"",Cm be all the (v) cuts of size 

less than k of the hypergraph H. Then, 

( 
_ _ k-~U~ _) = ( _____ ) /\ ( _____ ) /\ ... /\ ( _____ ) 

fl fl-C, fl-C, fl-Cm 

k-Ivl 

as relations between the edges of H. Thus - - - - - is an equiv
fl 

alence relation between edges. 23 

k·(vl 

Proof Let Ea and Eb be two edges of H. Ea - - - - - Eb 
fl 

g I there exists no (v) cut of H of size < k which disconnects 

Ea andEblglEa -----Eb' 
fl·· C, 

i = 1, ... ,m IgEa(- - - - -) /\ ... /\ (- - - - -)Eb' Q.E.D. 
H-C1 H-Cm 

A k-M 
We denote by PkH the partition of H into its (- - - - -)-

fl 

equivalence classes. Obviously'pk + I <1\, Po = i and PI in
duces the partition into connected components. In view of 
Lemma (3.4) (Fig. 9), 

PkH = (PCI /\Pc,/\ "'/\PcJH. 

3.3 k-(v) blocks and k-(v) partitions 

Definitions: A hypergraph is k-(v) connected, or is a k-(v) 
k-Ivl 

block, if all edge pairs are in the relation - - - - -, or, equiv-
A H 

alently, if PkH = H. The vertex connectivity kv (H) is the 
maximum value of k such that His k-(v) connected; equiv
alently, kv(H) is the minimum size of the (v) cuts of H. 24 

Example: A hypergraph is a 2-(v) block iff it is connect
ed and contains no articulation vertices (but it may contain 
articulation edges) (Fig. 10). kv (H) = 19H is connected and 
has at least one articulation vertex. 

Lemma 3.5: If His k-(v) connected, then so isF[P(H)], 
and 
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FIG. 9. J\H, = (Pc, I\Pc,I\Pc,)H" where C, = ! 1,41. C2 = [2.51. 

C3 = P.6j. P,H2 = (Pc; 1\ Pc; I\Pc ;)H2• where C; = P.2J,C; = 12,31, 

C; = P.31.P;H2 =P d ;,(H2 ). 

foranypartitionP (H), whereF [P (H)] = I V (Hi ),Hi EP (H) I 
(see Sec. 2.3.1). 

Proof F [P (H)] is obtained fromHby coalescing togeth
er edges (Fig. 3); but this does not affect vertex-disjoint paths. 

Q.E.D. 
Definition: A partition P (H) of a hypergraph H is called 

a k-(v) partition if each one of its parts is a k-(v) block, or, 
equivalently, ifPkP(H) = P(H). 

In general, there exist several different k-(v) partitions 
of a given hypergraph; e.g., if His k-(v) connected, then I H I 
and P dis (H) are both k-(v) partitions. 

If H is not k-(v) connected, then Pk H is not in general a 
k-(v) partition [any two edges of H;EPkH are k-(v) linked in 
H, but not necessarily in]!; (seeP3H 1.2 in Fig. 9)]. However, 
repeated application of Pk eventually yields a k-(v) parti
tion-the coarsest such partition of H in fact. Indeed, denot
ing 

p,,=(Pk )'" 

we have 

H.:WC FIG. 10. H, is 2-(v) connected. even 
though it contains an articulation edge 
(Eb)' Hz is not 2-(v) connected. since it 
contains an articulation vertex (V2)' 
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Lemma 3.6: P ~H is a k-(v) partition. and all other k-(v) 
partitions of Hare subpartitions of P icH. Obviously. P k + I 

<,P,,<Pk • 

'" '" '" Proof P "H is a k-(v) partition since Pk (Pk)OO H 
= (Pk)OO H. LetP(H) = [Gj.jElI be any k-(v) partition ofH. 

'" k·(v) 
We have P(H)<PkH. since Ea - - - - - Eb implies 

G} 
k·(v) 

Eu - - - - - Eb• for any two edges Ea and Eb of Gj • Let 
'" H 
PkH = [H;".mEM I. and let Gj.jElm ~J. be the elements of 
P(H) contained inH;", i.e .• P(H)! H;" = f Gj.jElm I; this is 
a gartition of H;" into k-(v) blocks. so aga~ P (H)! H;" 
<PkH;" for each mEM. implyingP(H)«Pk )2H. Repeating 
this argument IIl(H)1 times. we obtain P(H)«Pd OO H. 

Q.E.D. 
Repeated application ofPk is not the simplest manner 

of obtaining P "H. It is simpler to perform cuts of size < k, 
until there remain only k-(v) blocks (Fig. 11 )25: 

Lemma 3. 7: Let CI be a cut of H of size < k, C, a cut of 
one or more elements of Pc H, C3 a cut of one or ~ore ele-

'" '" ' ments of Pc2 Pc ,H, etc., all of sizes <k. The partition of H 
obtained after performing such cuts, until there remains only 

k-(v) blocks. is P ~H. 
Proof It suffices to show that P leH 

<PC'pcn_,,,,Pc,Pc,H for any nEN. Let P leH = [Hi' iEl J. 
'" '" k·(v) 

We have P "H<Pc,H, since Ea - - - - - Eb=:}Eo - - - - - Eb. 
H, H-C1 

A AA AA AA 

Thus, P leH = P "Pc H. But again, P "Pc H <Pc Pc H, etc. 
I 1 2 1 

Q.E.D. 

3.4 The cases k < 2 

In general. P "H =lPkH, because the paths between k
k-(v) 

(v) linked edges are not necessarily contained in the (- - - - -) 
H 

equivalence class of these edges (see HI and H2 in Fig. 9); 
however, they are when k<2, and we have 

Lemma3.8:P~ =Po = 1, P; =P., P~ =P2• 

Proof P ~ = Po = i is obvious. To demonstrate that 
PkH = P ;'H. it suffices to show that ifan edge Ebelongs to 
one of k vertex-disjoint paths between two edges Eu and Eb, 
then E is k-(v) linked to Ea or Eb. This is obvious in the case 
k = 1. Case k = 2: Let 1T I and 1T2 be two vertex-disjoint paths 
between Eo and Eb, and let Ebelong to 1TI say; we then have 

1T, 

the two vertex-disjoint paths E - - - - - Eo and 

11"1 1T2 1T} 

E - - - - - Eb - - - - - Ea, where E - - - - - Eo designates that 

H 

1165 

, 
"",2 ,

c5 ~' 2 

----:----{ ~ 
\li\, 

13 H 
11,2} -2'H 3 
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part of the path 1TI lying between E and Ea [Fig. 12(a)]. 
Q.E.D. 

Remark: In view of Lemma (3.7), we have26 

A. A A A.. A A 

P2H = P~H = Plv,l Plvzl",PlvmIH = Plv,.vz ..... vmIH. 

where VI'V2' .... vm are all the articulation vertices of H. 
Lemma 3. 9: Let H ' be a connected subhypergr~ph of H. 

Then (P2H)! H:"'is a c-partition of H'. 
Proof Let P2H = [Sj .jEl J. We must show that each 

(nonempty) SjnH' is connected. Suppose H'rSj is not con
nected, and let Ea and Eb be two edges of H 'rSj • unlinked in 
H 'rSj • Since H' is connected. there exists a path27 

1T I eH' 
between Eo and Eb, 1TI ctH 'rSj [Fig. 12(b)]. Since Sj is con
nected, there exists a path 1T2 eSj between Ea and Eb• 
'lT2 ctH'rSj • Then 1T l iJ7T2 contains a cycle with edges from 

2-(VI 

both Sj and H' - Sj' i.e .• Sj is not a complete (- - - - -) equiv-

alence class. Q.E.D. 
Lemma 3.10: Let P (H) be a c-partition of the hyper

graph H. The following two statements are equivalent: 

(i) P(H»P2H; 
(ii) Each Hi EP (H) shares at most one vertex with each 

connected component of H - Hi' [In fact. (ii)=:}(i) for any 
partitionP(H).) 

Proof (i)=:}(ii): LetP (H »P2H. SupposeHiEP (H ) shares 
vertices VI andv2 with a connected componentH' ofH - Hi' 
Since Hi is connected, there is a path 1T I between v I and V2 
contained in Hi; likewise, since H' is connected, there is a 
path 1T2 between VI and V2 contained in H' [Fig. 12(c)). Let 
EaE1TI and EbE1T2' where Eo andEb are edges ofH. Clearly. 

2-(v) 1T1 TT2 

Eo - - - - - Eb [the two paths are Eo - - - - - VI - - - - - Eb and 
H 

Ea - - - - - V2 - - - - - Eb; but Eb is not in Hi. whence a contra-
2-(v) 

diction. since Hi must contain complete (- - - - -) equivalence 
H 

classes. 

(a) 

(b) 

(c) 

E ' 
a.~ 

~_------2') - ' 

H' 

FIG. 12. (a) See proof of Lemma 3.8. (b) See proof of Lemma 3.9. (e) See 
proof of Lemma 3.10. 
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(ii)::::?(i): Suppose (ii) is true. Since all paths between any 
edge Ea Ell; and any edge Eb Ell-H; must pass through the 
single vertex shared by H; and the connected component of 
H - H; containing E b , these two edges are at most I-(v) 

2·("1 

linked; thus each H; contains complete (- - - - -) equivalence 
H 

classes, implying (i). A Q.E.D. 
I t is easy to see that for any hypergraph H, F [P 2H] is a 

forest (let P 2H = (Sj, jE.! J ; every cycle in H is contained 
inside one of the Sj; it disagpears when the edges of Sj are 
coalesced together, i.e., F[PzH] contains no cycles). More 
generally we have [Fig. 13(a)]: 

Lemma 3.11: Let H be a connected hypergraph, 
P(H) = (H;,iE! J apartitionofH. ThenF[P (l{)] = (V(H;), 
iE! J is a tree iff P (H) is a c-superpartition of P2H. 

Pr9,of (if) LetP(H) = (HI,H2, ••• ,Hp j beac-superparti
tion of P2H, in proper order. By Lemma 3.10, Hj + I shares a 
single vertex with ~I = I H; [which is connected since P (H) is 
in proper order], i.e., 1 V(Hj+ I )n(uf= I V(H;))I = 1 for each 
j = I, ... ,p - 1, so I V(H;), i = 1, ... ,pj is a tree by Lemma 
2.1. 

(onlyif):LetP(H) = (H;.iE! J besuchthat! V(H;),iElj 
is a tree. Suppose that HI, say, is not connected. Let Ea and 
Eb be two edges of HI not linked in HI' whence nonadjacent. 
Since H is connected, there exists in H a path between Ea and 
E b, not contained inHI; this path becomes a cycle inF [P (H)] 
(wherein the dots representing Ea and Eb are coalesced to
gether), contradicting the hypothesis. Thus P (H) is a c-parti

tion; furthermore, sinceF [P (H )] is a tree, P (H) satisfies (ii) of 
Lemma 3.10, i.e., it is a superpartition ofP2H. Q.J::.D. 

Lemma3.12: LetHbe any hypergraph, andP (H )<PIH. 
Then F [P (H )] is a forest iff P (H) is a c-super
partition ofP2~ 

Proof Let PIH = I H;, iE! J. 
P(H)<PIH::::?P(H) = ~;EI P(H)lH;, whence PIF[P(H)] 
= (F[PI H;], iE! J (since, in view of Lemma 3.5, each 

b 3 

(a) 2.(1-
1 

H P(H) 

(b) 

H P(H) 
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F [PI H;] is connected, and moreover the vertex sets 
V (F [PI H;]) = V (H; ), iE!, are pairwise disjoint). By Lemma 
3.11, theF[p l Hd, iE!, are trees iff each pI H; is ac-superpar
titi~n ofPzH;. i.e., iffP(H) = ~;El P IHi is ac-superpartition 
of P2H. Q.E.D. 

Remark: If we do not specify P (H )<PIH in Lemma 
3.12, the "only if' part must be replaced by: F[P(H)] is a 
forest only if P(H»P2H [Fig. 13(b)]. 

4. A CONTINUOUS NOTION OF CONNECTEDNESS AND 
RELATED PARTITIONS 

Throughout this section, k, K, and E will denote positive 
integers (kEN), real numbers (KER), and strictly positive real 
numbers (EER, c> 0), respectively. 

Given a hypergraph H, let us denote, for any real num
berK, 

CrI«(H)-I (IEI-K)= I IEI-KIHI· 
EEH EEH 

Lemma 4.1: For any hypergraph!!, 
CrK(H»W(H)I- (K - 1)IH I-IPIH I, 

the equality holding iff H is a forest. 
Proof Immediate from Lemma 2.2. 
Given a partition P (H) = (H;, iE! J, let us denote 

0"1( [P (H )]=UI( (F [P (H )]) 

= I(W(H;)I-K)= I W(H;li-KIP(H)I· 
iEl iEl 

Obviously 

P= IPj::::?O"I([P] = IO"K[Pj ], (4.1) 
JEJ JEJ 

O"K[P dis (H)] = CrK(H), O"KUH J] = 1 V(H)I- K. (4.2) 

The function 0" K: rr(H )-R, defines an equivalence rela
tion on rr(H )(see Sec. 1.1). We denote by 

1f.c(H), i = O,I, ... ,nl«(H) 

~r13 

i>-~4 
3 

F [P(H)) 

r[p(H)) 

FIG. 13. Illustrating Lemmas 3.11 and 
3.12. (a) P(H) = [Ha.Hp ). where 
Ha = [b 1 and Hp = [a.c I. so that 
F[P(H)] = [t£.12.3j). (.B.l.,1.2.3.4111. 
WeherehaveP 1H>P(H»P2H. whence 
P (H) not a c-partition =?F [P (H)] isnota 
tree. (b) P(H) = [Ha .Hp.Hy). where 
H" = [a I. H p = [b.c j. and 
Hy = [d.eL 50 that 
F[P(H)] = [(a.[ 1.211. (.B.12.3.1..511. 
(y.! 5.6111. 'feherehaveP(H»P2H. but 
notP(H)<.P1H.50thatF[P(H)]canbea 
tree. even if P (H) is not a c-partition. 
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the UK -equivalence classes of 1T(H), and call 

o:(H) = UK [P(H)], P(H)Etr!c(H). 

We index the 1iK (H) such that dK (H) < ulc (H) if i <j. Thus, 
ct;(H) is the minimum value of UK over 1T(H), and 1T~(H) is 
the set of partitions of H which minimize UK . 

Given a partition P (H), let us denote 

~ [P(H)]= L IV(Hi)I-IV(H)I· 
H,€P(H) 

This measures the degree of mutual overlap of the vertex sets 
V (H;). Obviously, 

~ [P(H)]>O, (4.3) 

the equality holding ifft~e sets V (Hi ), Hi eP (H), are pairwise 
disjoint, i.e., iff P (H »P1H. 

Given a nontrivial partition P(H) [i.e., IP(H)I>2], we 
denote 

R [P(H)]==.d [P(H)]/(IP(H)I- 1), P(H)E1T'(H). 

4.1 K-(U) connectedness and u-connectivity 

Definition: We say that the hypergraph H is K-(U) con
nected if [H IE1T~(H), i.e., if 

uAP(H)]>uA[H J] (4.4a) 

or, equivalently, if 

R [P(H)]>K (4.4b) 

forallnontrivialpartitionsP(H).If1T~(H) = [ [H II ,i.e.,if> 
is replaced by > in (4.4), we say that His K-(U) Connected, 
with a capital C. 

Lemma 4.2: (i) If His K-(U) connected, it is also (K - E)
(u) Connected. (ii) If His K-(U) Connected, there exists E> 0 
such that H is (K + E)-(U) connected. 

Proof (i) is obvious from considering (4.4b). (ii): If His K
(u) Connected, then for any PE1T'(H), R [P] = K + Ep for 
some E p > O. Letting E = min [ E p, PE1T'(H) J, we have 
PE1T'(H)='?R [P]>K + E. Q.E.D. 

Definition: The u-connectivity :I (H) of a hypergraph H 
is the largest value of K for which H is K-(U) connected, or, 
equivalently, 

1 

~1 % l} H" , I 
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o 

0; = 5 
R= '5/2. 

:I (H)=Min{R [P],PE1T'(H)I. 

Remark: The partitions which minimize R are always 
A 

c-p~rtitions, since for an)' P (H ),R [PIP (H)] <R [P (H )] (from 
4 [PIP] = ~ [P] and IPIP I> IP I), the equality holding iff 
PIP (H) = P (H). Thus, to determine...!' (H), ifsuffices to sam
ple 1T;(H). 

We now relate (u) connectedness with (v) connected
ness: 

Lemma 4.3: For any (v) cut C of a hypergraph H, we 
have 

(i) R [PcH] = IC I, 

(ii)uK[PcH]=uK UHJ]+(IPcHI-l)(ICI-K) 

(if C = 0, then Pc = PI)' 
Proof From Lemma 3.3, we deduce 

~ [PcH] = (IPcH 1- 1)IC I 
whence (i) and (ii). Q.E.D. 

Lemma 4.4: (i) If His k-(u) Connected or (k + E)-(U) 
connected, then it is also (k + 1 i-Iv) connected. 

(ii) :I(H)<ku(H). 

Proof If His not (k + 1)-(v) connected, then there exists 
a(v)cutCwith ICI<k<k + E. ButR [PcH] = IC I(~)K='?H 
is not K-(u)(~)onnected. (ii) follows from (i) or Lemma 4.3(i). 

Q.E.D. 

The converse of Lemma 4.4 is not true in general [e.g., 
in Fig. 14, H4 is 3-(v) connected but not 2-(u) Connected, and 
:I (H4) < ku (H4)]' despite the fact that no (vl.cut can decrease 
UK ifK< ku(H) [by Lemma4.3(ii)], andR [PcH]>ku(H) [by 
Lemma 4.3(i)]. What may happen, e.g., is that, because the 

A 

parts of P cH are not necessarily ku (H i-Iv) connected, one 
may decrease UK and R by performing further cuts (see the 
sequence of cuts of H4 in Fig. 14). However, the parts of P cH 
are necessarily 1-(v) connected (by definition ofPcJ, so that 
[in view of(4.1)] a second cut cannot decrease UK ifK< 1, and 
likewise for any further cuts. This suggests the following 
lemma (but does not prove it, since not every partition is 
obtainable as a succession of cuts): 

Lemma 4.5: (i) All hypergraphs are O-(u) connected [as 
well as O-(v) connected]; 

FIG. 14 . ..r(H,) = kv(Hd = 2, 
..r (H2 ) = kv (H2 ) = 3, ..r (H3) = ~, 
kv (H3) = 2, ..r (H.) = 2, kv (H.) = 3. 

Antoine Royer 1167 



                                                                                                                                    

(ii) If a hypergraph is 1-(v) connected, it is also 1-(u) 

connected; 
(iii) If a hypergraph is 2-(v) connected, it is also 1-(u) 

Connected. 
Proof: (i) follows from (4.3). (ii): LetHbe connected, and 

letP (H) = (Hi' iElj E1T'(H ). We have, from applying Lemma 
4.ltoF[P(H)] = (V(Hi),iElj,whichisconnectedbyLemma 
3.5, and using V(F) = V(H), 

ul[P(H)]-ul(F[P(H)]»JV(H)I- 1, (4.5) 

i.e., His 1-(u) connected. (iii): The equality in (4.5) holds iff 
F[P (H)] isatree. If His 2-(v) connected, thensoisF[P (H I], by 
Lemma 3.5, andF [P (H)] is not a tree (since moreover II 1>2); 
whence ul[P(H)) > JV(H)I - 1, i.e., His 1-(u) Connected. 

Q.E.D. 
Remark: A 2-(v) connected hypergraph is not necessar-

ily 2-(u) connected, e.g., H3 in Fig. 14. 
Lemma 4.6: (i) For any hypergraph H28: 

k" (H) = ~I (H) = 0, 

k,,(H) = lqI(H) = 1, 

k"(H»2qI(H» 1. 

(ii) There exists no hypergraph H with I (H) < ° or 
O<I(H)< l. 

Proof (i) follows from Lemmas 4.4 and 4.5 and Eq. (4.3) 
A A 

[noticing that..::1 [PIH] = 0, and IPIH 1 >2 if k" (H) = 0). (ii) 
follows from (i) and the fact that kv(H)E{0,1,2, ... j. Q.E.D. 

Examples: (i) Let H = {(a, { 1,2, ... ,n) ),(b, { 1,2, ... ,n j) j 
(e.g., HI and H2 in Fig. 14); then 
I(H) = R [P dis(H)) = (2n - n)/(2 - 1) = n = kv(H). 

(ii) Let H = {(al,p,2 j), (a2 , (2,3 j), 
(a3, {3,411, ... ,(an , {n, III J, i.e., a ring (e.g., HI and H3 in Fig. 
14). It is easy to show thae9 I(H) = R [P dis(H)) = (2n - n)l 
(n - 1) = n/(n - 1). Here, kv(H) = 2. 

Remark: In these examples, R is minimized by P dis (H ); 
thisisnotalwaysthecase(e.g.,inFig.15,I (H )#R [P dis (H)]). 

The (u) connectivity of a hypergraph H sets a lower 
bound on the degree of mutual overlap of its edges, since we 
have [setting P (H) = P dis (H) in (4.4b)] 

:L, JV(E)I-i U V(E)i >.2'(H)(IH 1- 1). 
EEl{ EEH 

We can indeed see, on the examples above, that for a given 
value of kv (H), a hypergraph is the more "aerated" the 
smaller .2' (H ) is. 

H 

FIG. 15. Example of~ hypergraph where1:(H)iR [P d;,(H)]: 
1:(H) = k,(H) = R [P 12I H] = I, R [Pd;,(H)] = l' 
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4.2 Partitions minimizing UK 

Definition: We say that a partition P (H )E1T(H) is K-(U) 

minimal if it belongs to 1T~ (H), i.e., if 

(4.6) 

for all partitions P '(H )E1T(H). 
Remark 4.1: If P (H) is K-(U) minimal, so must be any 

subset of P (H) in view of (4.1). In particular, each element of 
P (H) must be a K-(U) connected hypergraph [since {H') is K
(u) minimal iff H' is K-(U) connected). 

We will now show that 1T~ (H) is a sublattice of the «) 
lattice 1T(H I of partitions of H, and that every partition in 
~ (H I is a subpartition of every partition in 1T~ ~ € (H), for any 
E> 0. We shall require the following: 

Lemma 4. 7: Let Vi' Wi' iEl, be sets, with Vi ~ Wi for 
each iEl. Denote V = UiEI Vi and W = U iEI Wi' We have 

:L, W;I- JVI<:L, IWil-IWI· (4.7) 
ieI iEi 

Proof Call..::1i = Wi - Vi' so that Wi = Vi + ..::1 i , 
VJld i = 0, and I Wi I = I Vi 1+ l..::1 i I· Denote..::1 = UiEI ..::1 i · 
We have W = Vu..::1, I WI = JV I + 1..::1 1 - IVnJ I. Thus 

= 2: (I V, I + 1..::1, I) - (I V I + 1..::1 I - I Vn,1 I) 
iEI 

= (2: IV, 1- JVI) + (2: 1..::1, 1-1..::11) + IVnJ 1 

>:L,IVil-IVI, 

since~iEI l..::1 i l-I..::1I>Oand IVnJl>O. Q.E.D. 
Lemma 4.8: Let P (H) = (H" iElj be a partition of H; 

G~H a subhypergraph of H such that GnH, #0 for each 
iEl. Then 

UK [P(H)] <UK [{H)]=? UK [P(H)! G] <UK [{ G)]. 
> ~ > 

(4.8~) 

Proof Let P(H)! G = ! Gi , iEl), Gi = GnHi , and 
rewrite (4.8) as 

<: 
:L, IV(H;)I- IV(H)I~K(II 1- 1) 
iEI > 

=?2: IV(G,)I-IV(G)I<K(III-l). 
~iEI > 

(4.9~) 

But this is immediate from (4.7), since V (Gi ) k; V (Hi) for each 
iE!. Q.E.D. 

Lemma 4.9: Let Gk;Hbe a subhypergraph of H, and 
P (H) a partition of H. 

(i) If P (H) is K-(U) minimal, then 

UK [P(H)! G]<UK U G j). 

(ii) If G is K-(U) connected, then 

uK[G t P(H))<uK[P(H)]. 

Proof Let P(H) = I Hi' iE! ). Denote Ia = I iliE!, 

HinG #0), h = I - la' F = UiEla Hi' Hb = U iEIb Hi 
= H - Ha. Denote pO=P(H)!HO = (Hi,iElo J, 
pb=P(H)!H b= {HuiE!bJ. We have 

Antoine Royer 1168 



                                                                                                                                    

and since G c;;, H a 
, 

(4.10) IIj 1= lforeachjE.!,implyingP'(H)<P(H). Wehave,notic
ing that (8ij' iEl.; I = P(H)I GjE'rr(Gj ), 

pal G = P(H)I G. (4.11) 

(i) If P (H) is K-(U) minimal, so must be pa and pb in view 
of (4.10), whence UK [pa]<uKuna I]. Since GNfi :f0 for 
each iEla , we have by (4.8a), UK [pal G ]<UK U G )]; whence 
Lemma 4.9(i) in view ofEq. (4.11). 

(ii) IfGisK-(u) connected, we have UK [pal G];;;'UK U G I]. 
Since HinG :f0 for each iEla , we have, by (4.8b), 
UK [pa ];;;'UK U H a I]; adding UK [pb] to both sides yields 
Lemma4.9(ii) [recallG 1 P(H) = (Ha JU(Hi,iElb I ifGc;;,H]. 

Q.E.D. 
Lemma 4. 10: LetP (H) beaK-(u) minimal partitionofH, 

and P '(H') any partition of H '30: 

(i) if H~H', then UK [P AP']<UK [P '], 
(ii) if Hc;;,H', then uK[PV P']<uK[P']. 
Proof LetP(H) = (HI,Hz, ... ,Hp J,P'(H') = (Gj,jE.! I. 
(i) uK[PAP'] = ~jE.!UK [P(H)I Gj ]<~jE.!UK [( Gj J] 

= UK [P'(H')]. 
(ii) uK[PV P'] = UK [H;H i .. ·H ;P'(H')] 

<UK [H iH j ···H ;P'] <"'<UK [P'(H')]. 

We used Lemma 2.4, Eq. (4.1), and Lemma 4.9 [noticing that 
HIP /I (H ')E'rr(H') if Hi c;;,H', and that each Hi EP (H) is K-(U) 
connected, in view of Remark 4.1. Q.E.D. 

Theorem 4.1: If PI (H) andPz(H) areK-(u) minimal parti
tions of H, so are PI APz and PI V Pz' 

Proof SincePI(H) iSK-(u) minimal, UK [PI APZ]<uK [Pz] 
and UK [PI V PZ]<uK [Pz], by Lemma 4.10. But UK [Pz] is the 
minimum value of UK' Q.E.D. 

Thus, the set 1T~(H) of K-(U) minimal partitions of a hy
pergraph H is a sublattice gfthe «) lattice 1T(H) oj all parti
tions of H. We denote by PKH the l.u.b., and by PKH the 

~ -
g.l.b. of 1T~(H), i~., PKH is the coarsest K-(U) minimal parti-
tion of H, while PKH is the finest. 

Lemma 4.11: (i) Every element of P (H )E1T~ (H) is K-(U) 
connected. 

(ii) Every element of PKH is K-(U) Connected. 

(iii) Every element of;Z H(H) is a (k + 1)-(v) partition. 
(iv) PkH is a (k + 1)-(v) partition. 

(v) p,.+ € <Pk <P k+ I' 

Proof (i) was already argued in Remark 4.1. (ii): Sup
pose that HiEPkH is not K-(U) Connected; then UK does not 
increase unde; some further partitioning of Hi [in view of 
Eq. (4.1)], i.e., PkH is not the finestK-(u) minimal partition of 
H. (iii) and (iv)follow from (i), (ii), and Lemma (4.4). (v) fol
lows from (iv), Lemma 3.6, and Theorem 4.2 below. Q.E.D. 

Remark: If P (H) is k-(u) minimal, no two ofits parts can 
share more than k vertices, for otherwise Uk would decrease 
~hen they are lumped together; likewise, two elements of 
P k H cannot share more than k - 1 vertices, for otherwise 
Uk would not increase when they are lumped together. 

Theorem 4.2: Every partition in 1T~ + € (H) is a subpart i
tion of every partition in 1T~ (H), which we express as 

1T~ + €(H )<1T~(H). 
Proof Let P(H) = (Hi' iEl JE1T~(H), P'(H) = (Gj , 

jE.! JE1T~H(H). Denote 8ij = HinGj , ~ = liliEl, 8ij :f0J, 
K j =~iEIJHi,Pj =Pj(Kj ) = (Hi,iEl.;J. We will show that 
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,j [Pj ] = I IV(Hdl-IV(Kj}l;;;' I 1V(8ij)1 - IV(Gj)1 
iEI) iElj 

=,j [P(H)IGj];;;'(K+E)(I~I-l); (4.12) 

the first ;;;. is because V (8 ij ) c;;, V (Hi) for each iEl.;, and 
Lemma 4.7; the second;;;. because Gj is (K + E)-(U) connect
ed, by Lemma 4.11(i) [cf. Eq. (4.4b)]. In view of Remark (4.1), 
Pj is K-(U) minimal, so that 

UK [Pj ]<UK [!Kjj]q,j [Pj]<K(I~I-l). (4.12') 

Combining Eqs. (4.12) and (4.12'), we get 

(K + EHllj I - 1)<K(IIj I - 1), 

i.e., IIj 1< 1, whence IIj I = 1 since IIj I;;;. 1. Q.E.D. 
We do not know whether a simple formula exists for 

u~ (H), nor whether it is possible to simply characterize (oth
er than by its definition) the sublattice 1T~ (H) for arbitrary 
values of K. However, the cases K< 1 are easily solved. 

4.2. 1 Cases K< 1 

Lemma 4.1231: (i) 1T~(H) = (!H J I and 

u~(H) = IV(H)I-KjfK<O. 
(ii) 1Tg(H) = Y[PIH], the set of all superpartitions of 

PIH, and ug(H) = LV(H)I· A 

(iii) 1T~(H) = (PIH I and ~(H) = IV(H)I- KIPIH I if 
O<K< 1. 

A (iv) 1T~ (H) = Y c [P2H ], the ~et of all c-superpartitions 

of P2H, ~nd ul(H) ~ 1V(ff] - I{\H I'
A 

~ A A 

(v)Po=Pb =Po = I,PI =P; =PO =PI,P2 =P; A _ 

=PI • 

- Proof (ii): For any partition P (H) = (Hi' iEl J, we have 
uo[P(H)] = ~iEI I V(Hi)I;;;.1 V(H)I, the equality holding iff 
the sets V (Hi)' iEl, are pairwise disjoint, i.e., iff P (H) 
;;;'PIH. (iv): In view of Lemma 4.1, we have, for any P(H), 

ul[P(H)]=ul(F[P(H)]);;;.1 V(F)I - IP1F I 
;;;.IV(H)I-IPIHI, (4.13) 

the first equality holding iff F is a forest; the second inequa
lity follows from V(F) = ~(H) and IPIF I<IPIH I, the 
equality holding iff P (H )<PIH, in view oflemma 3.5. Thus, 
in view of Lemma 3.12, both equalities in Eq. (4.13) hold iff 
P (H) is a c-superpartition of PzH. (v) follows from (ii), (iv), 
and Lemma 3.8; (i) and (iii) from (v), Lemma 4.11, and 
Theorem 4.2.32 Q.E.D. 

A 

Remark: u~(H) = IV(H)I - KIPIH I for O<K< 1, but 
not in general for K> 1 [e.g., in Fig. 16, u~(H) 

= 3 < IV(H)I- 21 P IH 1= 4]. 

H 
~iS (H) 

FIG. 16. ~(H) = (Pd,,(H)J, di(H) = a2 [Pd"(H)] = 3. 
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4.3 Recapitulation 

AWe considered three kinds of partitions of a hypergraph 
H: PkH the J>artition into subsets of edges pairwise k-(u) 
linked in H; P ~H the coarsest partition into k-(u) connected 
blocks; 1T~ (H) the sublattice of K-(l7) minimal partitions. 

We have the partial ordering shown in Fig. 17. For any 
particular hypergraph, the above sequence of partitions be
comes uninteresting after the discrete partition is reached 
[since P dis (H) is the finest partition of H, so that all further 
partitions in the sequence are also equal to P dis (H )]. 

4.4 Special cases 

If H is a forest, then P2H = P dis (H), and we have 
Lemma 4.13: If H is a forest, then 1T~ (H) = 1 P dis (H ) J 

for K> 1, and l7~(H) = W(H)I - (K - 1)IH 1- IPIH I for 
K>1. 
A Pr~f Follows from 1T~(H)< (P2H J if K> 1, 
PIH = P2H = P dis (H), Eq. (4.2), and Lemma 4.1. 
- If H is a graph, we have P3H = P dis (H), since each edge 
contains at most two vertices, and is therefore at most 2-(u) 
linked to any other edge; thus 

Lemma 4.14: If H is a graph (without isolated edges or 
vertices), we have (i) P2H = P dis(H); (ii) 1T~(H) = (P dis(H)J 
for K> 2; (iii) d;(H)': 2n2 + n l - KIH I for K>2, where ni , 
i = 1,2, is the number of edges containing i vertices [if H 
contains only edges of degree 2, then n I = 0, n2 = IH I, and 
l7~(H) = (2 - K)IH I], A A 

Proof (i) follows from P2H <P3H = P dis (H), (ii) from 
1T~(H)< (f.2H J = (P dis (H)T if K > 2, and (iii) from Eq. (4.2). 

........ /'\ , -::::-
~=~ 'P. 1 

() 
A AI '" ~ 

r;=~=P.o=P 
- 1 

() 

Q.E.D. 

FIG. 17. Partial ordering of the partition 

operators Ph' P~. Ph' and Ph' p.-+Pb 

~F. >Fb' Ph C;~h symboli;es the lattice 
tf. of k-(a) minimal partitions. The lat

tices rf. f~r k < K ~ k + 1 are located 
between ~k and Fk + ,. 
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4.5 Partitions minimizing l7~ 

Given a partition P (H) = (Hi' iEl J of a hypergraph H, 
let us denote 

l7~ [P(H)] l7K [PIP(H)] 

= I(W(Hi)I-KIPIHii) 
;EI 

(the se.£ond line follows f~m PIP (H) = '1,iEIPIHi 
=XTK[PIP(H)] = '1,iEIl7K[PIH;], and 

l7K [PIH] = W(H)I - KIPIH I for any H). 
Lemma 4.15: (i) l7~ [PIP (H)] = l7~ [P (H)] for any par

tition P (H); 

(ii) P = '1,jEJ Pj~l7~ [P ] = '1,jEJ l7~ [Pj ]; 
(iii) l7~ [ (H J ] = '1, H'EP,H l7~ [ (H' J ] for any hyper

graphH. 
Proof (i) since PIPI = PI; (ii) from Eq. (4.1) and 

A A 

P = '1,fr:.!. Pj~PIP = '1,jEJ PIP,; Qii) from l7~ [( H J] 
= l7~ [PIH] and (ii) applied to PIH = '1, H'EP,H (H' J . 

Q.E.D. 
Let us denote by 

1T;i(H), i = O,I, ... ,n;(H) 

the l7~ -equivalence classes of 1T(H), and call 

l7;i(H) = l7; [P(H)], P(H)E1T;i(H), 

the indexing being such that l7~i(H ) < l7:!(H ) if i <j. Thus, 
1T;O(H) is the minimum value of l7; over 1T(H) and 1T;O(H) is 
the set of partitions of H which minimize l7;. 

Remark: If P(H)E1T;i(H), thenP I-IPI(H)~1T;i(H), in 
view of Lemma 4.15(i). 33 

Lemma 4.16: For every iE(O,I, ... ,n;(H)j, there is a 
jE( 0, 1, ... ,nK (H) J such that 

1T;i(H) = P 1-11T;(H) and l7;i(H) = l7;. 

Thus, the l7;-partition of 1T(H) is a superpartition of the l7K-
partition of 1T(H). 

Proof For every P(H)E1T;i(H), we have P I-IPIP(H) 
C1T~i; but PIP (H)E1T;(H) for somejE(O, ... ,nK(H)}, whence 
;;;i~p 1-11T; and l7;i(H) = l7; [~(H)] = l7K [FIP(H)] 
= l7~ (If). But for every P (H)EP 1- I 1Tj, l7; [P (H)] 
= l7 K [P IP (H)] = l7~ = l7:;"; implying P 1- 11T/, ~ 1T;i. Q.E.D. 

Remark: In general, P 1-11T;(H) will be empty for some 
values ofjE( O, ... ,nK(H)j [note that P 1- 11T;(H)=10 iff 1T;(H) 
contains at least one c-partition]. 

Lemma 4.17: (i) 1T;O(H) = Y[PIH] and l7;O(H) 
= W(H)I-KIPIHI ifK<O. 

(ii) 1T;O(H) = P 1- 11T~ (H) and l7;O(H) = l7~ (H) if K>O. 
Proof In view of Lemma 4.11, 1T~ (H) contains at least 

one c-partition if K>O, so that P 1- 11T~is not empty, whence 
(ii) by Lemma 4.16. (i): LetK<O, sothat~(H) = ((H J J by 
Lemma 4.12. (a) If H is connected, then P 1- I ( (H J J #0 so 
that1T~O(H) = P 1- I( (H J J = ((H J J. (b) If His not connect
ed, then P 1- I ( (H ) J = 0 so that here 1T;o = P 1- 11T; for some 
j> 1. Let us find the partitions P (H) = (Hi' iEl) which mini
mizel7; [P(H)] = '1,iE/ I V(Hi)l- Kif I withK<O. In view of 
Lemma 4.15(i), the set of partitions minimizing l7~ equals 
P II applied on the set of c-Rartitions minimizing l7;. Now, 
P(H)E1Tc (H)impliesP(H)<PIH,sothat - Kif I is minimized 
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within 1T (H) by PIH; but so is l:iE] 1 V(Hi )1. Whence 1T;o(H) 
= P 1- I~IH. Combining (a) and (b), we have 1T;O(H) 
= P 1- IPIH = Y[PIH) and 

O";O(H) = 0"; [{H}] = I V(H)I- Klp,H I. Q.E.D. 
Lemma 4.18: 1T;O(H) = Y[PIH] ifK< 1; 1T;O(H) 

= Y[PzH). 
Proof Follows from Lemmas 4.12,4.17, and 2.6(iii) [no

ticing that PzHE1Tc (H )). 
Remark 4.2: In the cases where1T~(H) = {P dis(H)j (see 

Sec. 4.4), 1T;O(H) = P 1- I {P dis (H )} is the set of all the parti
tions of H whose parts Hi consist of pairwise vertex-disjoint 
edges, i.e., any vertex appears at most once in each 
Hi EP (H )E1T;O(H). 

5. CUMULANTS OVER HYPERGRAPHS 

5.1 Cumulants6•7 

Let {Xi' iEl} be a set of stochastic variables, and denote 
by «( ... ) the statistical average, i.e., (f({x i , iEl}) is the ex
pectation of the functionf( {Xi }); in particular, (1) = 1. Two 
sets of stochastic variables {xuiEl} and {Yj,jEJ 1 arestatisti
cally independent if, for any two functionsf( {Xi' iEll) and 
g({ Yj,jEJ j), we have 

(fO x;) )gO Yj j)) = (fU x;}) ( g({ Yj j)). (5.1) 

The following combination of multivariate moments is 
called a cumulant: 

(II Xi) - I (_)IPI- I(IP 1 - I)! II (II Xj ), (5.2) 
ie[ cl x I PE11j1) JeP jEJ 

the sum being over all partitions of the set I. E.g., denoting 
(Xi) = Mi , (XiXj ) = Mij' etc., 

(Xi)clxl = (X;), (XiXj)clxl = (XiX) - (Xi) (Xj ), 

(5.3) 

= Ml23 - M12M 3 - M IM z3 - M13M Z + 2MIM zM3· 

The {x) in sUbscript indicates the variables with respect to 
which the cumulant is built; e.g., if we setfl = xIXZ and 
fz = X 3, then 

(fJz)clfl = (fJz) - (fl) (fz) 

is not the same as (fJz) clxl = (X 1XzX3) c/xl . 
Cumulants occur in a wide variety of probabilistic and 

statistical mechanical problems. They owe their usefulness 
to the following three properties: 

Theorem 5.16
•
7

: (i) A cumulant is invariant under addi
tion of constants to its arguments, i.e., 

(II Xi) =(II(xi+Ci)) ,111>2, 
iE[ clxl ie[ clx+cl 

where Ci , iEl, are constants. 

(ii) A cumulant vanishes if its arguments separate into 
two or more statistically independent subsets, i.e., if Eq. (5.1) 
holds, then 

{U xilJ Yj tx.YI = O. 

(iii) 
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= (exp(? Xi) - 1) 
le[ elxl 

1 
=I(x;)clxl +-I(xixj)clxl + .... 

iE[ 2 i.j 

The notion of cumulant can be generalized as follows: 
given a set 

{M[" 1'c;;,I, 1'#0} 

of objects indexed by subsets of a set I, the "cumulant" (M] )c 
is defined as 

(M[)c= I (_)IPI-I(IP I - I)! II MI" (5.4) 
PE11j[) ['eP 

IfM[' = (llie[' xi),then(M/)c = (lliE[x;)clxl·Adapting 
Theorem 5.1(ii) we have 

Lemma 5.1: If M[, + J' = M[, MJ, for all nonempty 
l' c;;,I and J' c;;,J, then (M[ + J)e = O. 

Example 5.1: LetMr = (llieI' Xi) where ( ) is an un
ormalized avera~ing operatio~; i.e., (1) # 1. Denoting 

(M[)c -(lliE1XI ) clx}. we have «(llie[Xi )(lljeJ Yj) cix,yl 
=Oif«(lliErxj)(lljeJ'Yj) = (llieI' xJ (lljEJ' Yj) for all 
nonempty I' c;;,I and J' c;;,J. 

5.2 Cumulants of hypergraphs 

Let {M H' , H ' c;;, H } be a set of algebraic objects in
dexed by subhypergraphs of a hypergraph H. The construct 
(5.4) here becomes 

(MH)e = I (_)IPI-I(IPI_I)! II MH" (5.5) 
PE11jH) H'EP 

Let {x E' EEH } be a set of stochastic variables indexed 
by the edges of a hypergraph H. Let us denote for all H' c;;,H 

H'x= II XE, MH'=(H'X), (HX)clxl =(MH)e' 
EeH' 

(5.6) 

Such objects occur in many statistical-mechanical problems. 
The vertices of H usually correspond to particles, and ( ) to 
the phase space average; the X E may represent, e.g., multi
particle interactions. Usually, two or more quantities having 
no particles in common will be statistically independent, i.e., 
M H' factorizes according to the connected components of 
H': 

Mw = II MH, forallH'c;;,H (5.7) 
H,EP1H' 

(i.e., the sets {XE' EEHi }, HjEPIH, are independent). We 
have 

Lemma 5.2: IfEq. (5.7) holds, then (MH)e = 0 if His 
not connected. 

Proof LetH = HI + Hz where V(HdnV(H2) = 0; Eq. 
(5.7) implies thatMH' H' = MH,MH, for allH; c;;,HI and 

1 + 2 I 2 

H; c;;,H2, whence (M HI + HJ = 0 by Lemma 5.1. Q.E.D. 

5.3 c,,-subcumulants 

Let us now denote 

(MH)C~= I (_)IPI-I(jPI_I)! II MH" 
PE7T'~'(H) H'eP 
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where 11T~;(H), i = 0, 1, ... ,n~(H) J is the O"~-partition of 1T(H). 
Thus 

(5.9) 

Theorem 5.2: If the condition (5.7) holds, then 
(MH )< = 0 for each IEIO, 1, ... ,n~(H) I if His not connected. 

Proof Let E be a real number, and define for all H ' ~ H, 

Qw=MwE<IIH'II. (5.10) 

For any partition P (H), we have, in view of Lemma 4.15(ii), 

II Qw =E(T~IP(H)1 II M w , 
WEP(H) WEP(H) 

(5.11) 

whence 

Now, ifEq. (5.7) holds, then, because of Lemma 4.15(iii), 

Qw = U Qw' 
H"EP,H' 

This implies, by Lemma (5.2), that (QH)c = 0 if H is not con
nected; but since E can assume arbitrary values, each term on 
the rhs of Eq. (5.12) must vanish separately. Q.E.D. 

The objects (M H) i may be called subcumulants, since 
c. 

they consist of only part of the terms constituting the cum u
lant (M H )c' yet still possess the important property of 
Lemma 5.2. If M H = (Ir) we use the notation 

(HX)<IXI = (MH)c~' 

Relations of the kind (5.10) actually occur in certain 
statistical-mechanical problems.4,13 More explicitly, we 
have 

(H'X) = E)V(W)I-K(iW'I(H'X) for allH'~H, (5.13) 

where E is a small quantity eventually tending to zero, and 
( ) is an unormalized averaging operation such that (H 'X) 
remains finite as E-<l. We thus have [see Eq, (5.12)] 

n' 

(HX)clxl = i E'7~i(H)(HX) c~ixJ' (5.14) 
i=O 

In the problems referred to, the cumulants (Ir) cjxl appear 

with multiplicative factors E - C7~O(H), so that when the limit 
E-<l is taken only the term i = 0 in Eq. (5.14) survives, i.e., 

1· - C7~O(H)(HX) (H X( 
1m E clxl = 1 c~lxl ' 

E--<J 
(5.15) 

whence the necessity of determining the subcumulants 

(Ir ) c~lxJ . A 

Examples: (i)K< 1: Here, 1T~O(H) = Y[P1H]. Let 
P1H = I Cu iEl J; then 

(HX)c~ xl = L (- )IPI-I(lPI-I)! IT In Cf) 
I l'E17j 1) I' EP \;El' 

= (IT Cf) =(HX)clcxl 
;El cl CXI 

(5.16) 

is the cumulant built on the connected components of H. 
A A 

(ii)K = l:1T;O(H) = Y[PzH]. LetP2H = {Sj,jEJ j; then 

(HX)colxl = III s;) =(HX)clsxl (5.17) \ \jEJ clSXI 
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is the cumulant built on the 2-(u) blocks (or "stars") of H. 
In the above two examples it is obvious that the subcu

mulants (H X) c~ixl have the property of Theorem 5.2, being 

equal to ordinary cumulants. 

(iii) In the special cases where 1T~ (H) = I P dis (H) I (see 
Sec. 4.4), we can write, in view of Remark 4.2, 

(HX)c~lxi = (HX)Clxi' (5.18) 

where 

«( ... ) = (L ( ... ) (5.19) 

and L is a "leveling" operator6
,4 which eliminates all pro

ducts containing any vertex more than once (L is understood 
to act only inside ( »). 

(iv) Let Tbe a tree. Since Tis connected, Eq. (5.16) gives 

(TX)C~lxl =(T") forK<l. (5.20) 

Since PzT = P dis (T), we have 1T;O(T) = yep dis (T)] and 

(TX) c11xl = (TX)clxl' (5.20') 

When K> 1, 1T~O(T) = P I-IPdis(T), so that 

(TX) c~lxl = (TX)Clxl' K> 1, (5.20") 

with ( ) given by Eq. (5.19). IfEq. (5.7) holds, then, by 
Lemma B.l of Ref. 4, 

(T")Clxl =a(T) IT (xE), 
EET 

where 

a(T) = ( - )ITI - I II (lui - 1)1. 
I!EV(T) 

6. CONCLUSION 

In the statistical-mechanical problems referred to in 
Sec. 5.3, E is the inverse of the volume, so that E-<l is the 
thermodynamic limit [the multiplicative factors preceding 

• a,o(H) 
the cumulants (Ir ) clxl are, more speCifically, (nE- 1

) K 

where n is the particle number density]. As to K, it has the 
values 0 or 1 [K = 0 (and O"~O(H) = I V(H) I) in the theory of 
pressure broadening of spectral lines by foreign gas 13; K = 1 
(andO"~O(H) = I V(H)I - IP1H I)inthetheoryofself-broaden
ing of spectral lines, and in the quantum virial expansion 
problem4]. 

The present paper is in fact an outgrowth of the demon
stration ofEq. (5.15) and determination of the subcumulants 
(HX) c~lxl' for the special cases K = 0 and 1 required in the 

above-mentioned problems. These special cases can be, and 
have previously been,4,13 solved in much less (though still 
substantial) space than the present paper. But it is more satis
fying to see these isolated results set within a more general 
theory, which may eventually turn out to be useful for other 
applications, besides being of mathematical interest. 

ACKNOWLEDGMENTS 

I wish to thank Professor A. Kotzig and Professor I. 
Rosenberg for several discussions on this subject, and the 
latter in particular for reading the manuscript and suggest
ing several improvements. 

Antoine Royer 1172 



                                                                                                                                    

APPENDIX: MENGER'S THEOREM FOR HYPERGRAPHS 

Theorem AI: Let H be a hypergraph, Ea and Eb two 
edges of H, kEN. The following two statements are equiva
lent: 

(i) there exist at least k vertex-disjoint paths between Ea 
andEb; 

(ii) one must remove at least k vertices to unlink Ea and 

E b • 

Note that h;;Min[ lEa 1,IEb Ij· 
Proof (i)=>(ii) is obvious. (ii)=>(i): (The following proof 

by induction on the number of edges is a simple adaptation of 
the proof of Menger's theorem for graphs given in Ref. 15.) If 
H = [Ea,Eb j, the result is obvious (Fig. 18). LetthenH have 
m > 2 edges and k = k (Ea ,E b ;H ) be the minimum number of 
vertices that must be removed to unlink Ea and Eb. We 
assume that (ii)=>(i) is true for all hypergraphs ofless than m 
edges (induction hypothesis). 

We consider two cases: Case (a): there exists a k-(v) cues 
C unlinking Ea and Eb, .Qot contained in Ea or Eb, i.e., 
CCbEa and CCbEb. LetPcH= [HI,H2, ... ,Hp j, with 
EaEHI' EbEH2' say. By Lemma 3.3, V(HI);2C and 
V(H2);2C, whence IHII > land IH21 > 1 [EaEHI' H I;2C, 
and CCbEa imply that HI contains other edges besides Ea]. 
Consider the hypergraphs H; = Hlu[ E ;, j and H; 
= [E ~ jUH2' where $ ~ = V(HI), E;' = V(Hz); thus H; is 

obtained from H by coalescing together the edges of Hz in to 
a single edge E;'; clearly, k (Ea ,E;';H;) = k (E ~ ,Eb;H;) 
= k (Ea,Eb;H) = k. Since IHi I <mand IH; I <m (implied 
by IH21 > 1 and IHII > 1), there exist, by the induction hy
pothesis, k vertex-disjoint paths in H; between Ea and E ;" 
each one passing through a vertex of C; and likewise between 
E ~ and E b in H ; . By joining at vertices of C the parts of the 
paths between Ea and E;' lying inside HI with the parts of 
the paths between E ~ and Eb lying inside H 2, we obtain k 
vertex-disjoint paths in H between Ea and Eb. 

Case (b): Each k-(v) cut unlinking Ea and Eb is com
pletely contained in either Ea or Eb • We can assume without 
loss of generality that each vertex of Hbelongs to a k-(v) cut, 
since otherwise its removal would not affect the value of 
k = k (Ea ,Eb;H). It follows that the vertex setsEa andEb are 
both k-(v) cuts [since each vertex of Ea andEb belongs to ak
(v) cut which is itself contained in either Ea or Eb]' Thus Ea 
and Eb both contain k vertices. Each vertex of Ea must be 
linked to Eb (since it belongs to a cut), whence to at least one 
vertex of Eb , and vice versa. This implies that the vertices 
VPV2, ... ,Vk of Ea and the vertices WI,WZ, ... ,Wk of Eb can be 
ordered in such a manner that Vi is linked to Wi for each 
i = l, ... ,k (matching). But the path between Vi and Wi con
tains no other vertices (besides Vi and Wi ), since we excluded 
vertices not belonging to k-(v) cuts, i.e., to Ea or Eb (we have 
either Vi = Wi or vi-E '-w;. where E' is an edge different 
from Ea or Eb)' We thus have k vertex-disjoint paths Ea
vi-Eb or Ea-Vi-E '-Wi-Eb' i = 1, ... ,k. Q.E.D. 
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Corollary Al: Let hi and hj be any two distinct elements 
of Hu V (H), except a pair of adjacent edges, or a vertex and an 
edge incident on each other. The following two statements 
are equivalent: 

(i) there exist at least k vertex-disjoint paths between hi 
and hj; 

(ii) one must remove at least k vertices to unlink hi and 

Proof (i)=>(ii) is obvious. (ii)=>(i): let vEV(H), EbEll, 
nonincident on each other. Coalesce together all the edges 
incident on v, and call the resulting edge Ev' The number of 
vertices that must be removed to unlink Ev and Eb is the 
same as that needed to unlink V and Eb ; likewise the number 
of vertex-disjoint paths between Ev and Eb is the same as 
that between V and Eb (Fig. 19). Apply Theorem Al to Ev 
and E b • If V and ware two nonadjacent vertices, form Ev and 
Ew and use the same argument. Q.E.D. 

Duals to Theorem A 1 and Corollary A 1 are obtained by 
interchanging edges and vertices. When applied to graphs, 
Theorem AI, Corollary AI, and their duals contain the edge 
form and vertex forms of Menger's theorem for graphs. 

k-(e) 

Remark: Let us write hi - - - - - hj if there exist k edge-

disjoint paths between hi and hj (or equivalently, if one must 
remove at least k edges to unlink hi and hj ). By duality with 

k-(e) 

Lemma 3.4, - - - - - is an equivalence relation between ver-
k-(e) k-(v) 

tices. The relations - - - - - and - - - - - are different in general; 
Z-(e) 2-(v) 

however, - - - - - and - - - - - are equivalent relations in hyper-

graphs whose edges are all of degree < 3 (because if an edge is 
an articulation, then at least one of its incident vertices is also 
an articulation). 

We say that H is k-(e) connected iff all vertex pairs are in 
k-(e) 

the relation - - - - -. 
H 

Corollary A2: Let hi and hj be any two elements of 
Hu V (H) not incident on each other. The following two state
ments are equivalent: 

(i) there exist at least k disjoint (Le., sharing neither ver
tices nor edges) paths between hi and hj; 

(ii) one must remove at least k elements (edges or ver
tices) of HuV(H) to unlink hi and hj' 

k 

The above statements are abbreviated hi - - - - - hj • 
H 

Proof This is just a statement of Corollary A I as ap-
plied to the bipartite graph B [H] (wherein all vertices corre
spond to elements of V (H )uH, so that vertex-disjoint paths in 
B [H] correspond to disjoint paths in H). Q.E.D. 

k 

Remark: The relation - - - - - is not an equivalence rela
tion in general (Fig. 20). However, it is an equivalence rela
tion between edges in a hypergraph whose edges are all of 
degree <3, in which case vertex-disjoint paths are also edge 

.... ---- .... 

0---4----- -'-'.[ 
V fv', _____ ~/ b 

FIG. 19. The set of edges incident on vertex v are coalesced into a single edge 

E". 
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2 

FIG. 20. Example of a hypergraph on which - - - - is not an equivalence 
2 2 2 

relation; we have Ea- - - -Eb and Eb- - - -Ec' but not Ea- - - -Ec' 

disjoint (but not the converse) (Fig. 21) [note then that all the 
k 

equivalence classes of - - - - - each consist of a single edge, 
k 

unless k<3 (since Ea - - - - - Eb implies k<MinllEa I, 
IEb II)]· 

Lemma AI: Let Ea and Eb be two edges of the hyper-
k-(v) k-(v) 

graphH. If Ea - - - - - Eb, then also VI - - - - - Eb, 
k-(v) k.(v) 

Ea - - - - - V2 , and v I - - - - - V2 for any vertices vlEEa and 

v2EEb • 

Proof Let 1TI,1T2, ... ,1Tk be k vertex-disjoint paths 
between Ea and Eb. If VI is on one of the paths between Ea 
and Eb , 1TI say, we have the k vertex-disjoint paths 

between VI andEb [Fig. 22(a)]. If VI is not on one of the paths, 
tT, 

we have the k vertex-disjoint paths 1T; = vI-Ea - - - - - Eb , 

k-(v) 

i = 1, ... ,k. To show VI - - - - -V2, we apply the same argument 

as above, with V2 playing the role of VI' VI that of Eb, and 1T; 

that of 1Ti • Q.E.D. 
Remark: The converse of Lemma A 1 is not true in gen

eral [Fig. 23(b)]. 
k-(v) 

Corollary A3: H is k-(v) connected iff hi - - - - -hj for all 
_ H 

pairs of elements hi andhj inH = HuV(H). Dually,Hisk-(e) 
k-(e) 

connected iff hi - - - - -hj for all hi ,hjElI. 
H 

Let us say that H is k connected iff there exist k disjoint 
paths between every pair of elements of lI. Let us also say 
thatH is k-(vv) connected ifthere exist k vertex-disjoint paths 
between every pair of vertices in V (H). Clearly, His k con
nected iff B [H] is k-(vv) connected. Also, in view of Lemma 
AI, if His k-(v) connected, it is also k-(vv) connected (but not 
the converse in general). 

Ca) ( b) 

FIG. 21. (al Two vertex-disjoint paths (1T, and 1T21 can both pass through an 
edge of degree ;;.4, but (bl not through an edge of degree.;; 3. 
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a. b 

(b) 1o--_--{')--_--o2 

3-(v) 3-(vl 3-(1') 3-(vJ 

FIG. 22. (al Ea- - - - -Eb=;,v,- - - - -V2' but (bl V,- - - - -v2:::/:;>Ea- - - - -Eb 

[Ea and Eb are only 2-(vl linked). 
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several different partial orderings of n (H). Examples are P (H ).;;;P '(H ') if: 
(i) each HiEP(H) is contained in someH;EP'(H'); 

(ii) each H;EP'(H') contains some HiEP(H); 

(iii) both (i) and (ii) hold; 
(iv) (i) and/or (ii) hold. 

All these correspond to the usual partial ordering of partitions if H = H' 
[i.e .• on niH n. but define different partial orderings on n (H). That chosen 
in the text [(i) above] is the most convenient for our purposes, as it leads to 
Lemma 2.4 and 4.10 which are used for demonstrating Theorem 4.1. 

P po 

2°Ifwe write (=).;;;(=) if P(H).;;;P'(H') (implying Hr;;.H'). then the set of 

~ql!ivalen~e relation~ on sub,.sets of H constit.ute a (.;;;) lattice. 
2'p' H = P' (H J = PH; tfl 'P= !.H,EP tfl Hi = !.H,EP tfllH, J 

= tf I !. H,EP [Hi J = tf 'Po the third equality holding if tf I is linear. 

221n fact. - - - - - is an equivalence relation on Hu( V(H) - WI· 
H·W 

k-(v) 

23 _____ is an equivalence relation on H. but in general not on HuV(H) (the 
H 

argument in the proof of Lemma 3.4 does not work if Ea andlor Eb can 
2-(u) 2-{u) 

belong to one ofthe (v) cuts]. E.g .• in Fig. 10. Ea - - - - -Eb and Hb - - - - -Ee 
HI HI 

2-{v) 2-(v) 2-(u) 

imply Ha - - - - -Ee; but we have V,- - - - -V2 and v2- - - - -V3' yet not 

2-(u) 

V.-----V3" 
11, 

~ ~ ~ 

2'Remark: LetP(H) = [H"H2 •...• Hp J. Ifp = 2. then V(HdnV(H2) is obvi
ously a (v) cutofH. so that k,(H).;;;1 V(HdnV(H2)1. But ifp;;.2, we do not 
necessari"lYhave I V (Hi )nV(~)1 ;;.k,(H). E.g., letHbeasin Fig. 8(a).andlet 
P(H) = P II .2.31 H = ((aJ.(b J.! cJ J; we have 
!V(Hi)nV(Hj)1 = l<k,(H) = 2 [note that p.2.3 J is nota (v) cut of H. so 
that Eq. (3.5) does not apply]. A A A 

25Altematively. if we define an "operator';"Qk bx.QkH = PcHwhere Cis 
any (v) cut of H of size less than k. then P k = Q k' 

2·We have Pc APc A··· APc H = Pc Pc ···pc H = Pc UCU'"VC H if the 
12m 12m 12m 

sets C,. i = I •...• m. are all (v) cuts of size I; otherwise. only the weaker 
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result (3.2) holds in general [e.g .• in Fig. 9. 1Tc (H,)i/i\H, = Pc, A Pc, 

APc,H, "'Pc,uc,uc,H,E1Tc(H,) (by definition, PwH E1Te(H) for any vertex 

set WI]. The above equalities are due to the fact that when a (v) cut of size 1 
is performed, no new cuts are created, i.e .• the 2-(v) blocks of H get separat
ed from one another without getting "opened up." Note also that the 
relation P kH = P C,uc,U""VCm where Ci , i = I •...• m. are all the (v) cuts of H 

of size < k. true for k.;;;2, does not hold in general if k;;.3 [e.~. in Fig. 9. 
P 3' H, = Pc uC uC H,. butP;H2 = Pdi,(H2) ",pc' C' c,H2 = P3H 2], 

1 2 J IV 2\J .1 

27Given a path 1T. we write 1TCH if each edge in 1T is also in H. 
28If k, (H) = !.t then H has at least one articulation vertex. v say, and 
~(H)=R[PI"IH]= I. 

29Consider the discrete partition of a ring hypergraph. If we form a new c
partition by lumping together two adjacent edges, then A and 1 P 1 both 
decrease by I. so that R increases; likewise if we lump a third edge with the 
preceding pair. and so on. Thus. ~ (H) = R [P di, (H)] 

30Note that the condition H-;),H' (resp. Hr;;.H') implies that PAP' (resp. 
PV P') is a partition of H'. 

3IThe singularities of the function 1T~(H): lR-.niH) at K = 0 and 1 appear 
less surprising when we observe that in 0-.[ P (!t)] = O'o[ P (H)] - KI P (H ) I. 
the first term is constant inside JfoIH) = Y[P,H], while - KIP(H)I is 
minimized inside Jfo (H) by P,H alone if K > 0; likewise, in 

0'. [P(H)] = ~,[P(H)]- (K - I)IP(H)I, the first term is constant inside 
1T~(H) = Y[P2Hl. while - (K- I)IP(H)I is minimized inside ~(H) by 
P,H alone if K < I. 

32PO = i also follows from Lemma4.5(i). which implies iH = (H JEJfo(H), 

~, = P; also follow from Lemma 4.5(iii). which implies P; ;;.~" and 
Lemma 4.11. 

33Notethat if P(H) is ac-partition, thenP ,- 'P,P(H) = P ,- 'P(H). while if 
P(H)f£1Tc(H), then P ,-'P,P(H)",P ,- 'P(H) = 0. 

34Note that a condition like Eq. (5.1) would be self-inconsistent if (I) '" I, 
for the case! = g==1 would give (I) = (I) (I). 

35We call k-(v) cut any (v) cut C of size I C 1 = k. 
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Determination of point group harmonics for arbitrary j by a projection 
method.a
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We give a method for systematically building cubic harmonics, i.e., base vectors of irreducible 
representations of the group of invariance of a cube. Applications include solid state physics, 
molecular chemistry, spectroscopy, etc. The only necessary operators are C~ and R

y
, rotation of 

1T/2 around Oy. Projectors on representations are constructed; then their rows are orthogonalized 
by a Schmidt method and normalized simply by dividing by the square root of a diagonal element. 

PACS numbers: 02.20. + b 

INTRODUCTION 

The knowledge oflinear combinations of spherical har
monics [or more generally of the standard vectors of an irre
ducible representation ofSU(2)J that are invariant under the 
action of elements of a point group is essential to the efficient 
solution of numerous problems in solid state physics, molec
ular spectroscopy, electronic structure, and vibrational 
structure. The determination of these linear combinations 
derives trivially from the reduction ofthe successive irredu
cible representations of the rotation group 0(3) orSU(2) (cor
responding respectively to integer or half-integer values of 
the quantum number j) by all point groups but those of the 
cube (and therefore tetrahedron) and icosahedron. 

Since Bethel computed cubic harmonics for crystal 
field calculations, the need for such harmonics has been en
countered in quite different areas (for a list of applications, 
see, e.g., Ref. 2). In the field of molecular spectroscopy, mol
ecules such as CH4 and SF 6 in the gas phase exhibit cubic 
point symmetry and cubic harmonics are required for in
teger values of j up to 150.3 In the field of solid state physics, 
the degeneracy of d n or f n configurations is removed by the 
combination of electrostatic repulsion, spin-orbit coupling, 
and crystal field. When this crystal field has cubic symmetry, 
the numerical calculations involved in the determination of 
eigenvalues and eigenvectors of the Hamiltonian are consid
erably reduced by the block decomposition of its represent
ing matrix into much smaller blocks. This reduction requires 
that cubic harmonics be chosen as base vectors, and, more
over, the use of the fictitious angular momentum4 simplifies 
the calculation of magnetic properties (see, e.g., Ref. 5). For 
instance, in the case of ions in f n configurations, values of j 
may be required up to 25/2 in order to describe ground 
states. 

Since 1929, when Bethe published his method and ta
bles for integer values ofj up to 4, the determination of cubic 

-) Preliminary results of this paper were given in N. Boccara, "Symmetries 
and broken symmetries in condensed matter physics," Idset 1981, Paris 
Iproceedings of Colloque Pierre Curie, Paris, 1980), poster session. 

harmonics has been tackled repeatedly by numerous authors 
for the cube 6-18,2 and by a few ones for the icosahedron (see 
references in Ref. 19). The half-integer case, for which there 
are no associated harmonic polynomials in Cartesian coordi
nates, has been dealt with very rarely9,10,20,21 or incomplete
ly,22-24 as far as tables are concerned. A great variety exists 
for the presentation of tables: representations can be listed as 
functions of standard vectors I jm), Cartesian coordinates, 
spherical coordinates, or monopoles, i.e., partial derivatives 
of 1/ r, the coefficients being either rationap·6-8,13-15,17.18,20,21 
or real. 

Unaware of previous work, mainly that of Jahn6 (in
teger j<; 10) and Hecht8 (integerj = 11,12,13), a lot of auth
ors5,25-37 have published already known tables. 

Much more interesting than that historical survey are 
the methods used. Cubic harmonics have been determined in 
one of three ways, namely: 

(1) As orthogonal sets of partial derivatives of 1/r hav
ing the symmetry of the desired r i representation: this 
method has been devised at the same period by Elert38 and 
Bethe, I used by J ahn, 6 well formulated by von der Lage and 
Bethe,25 and greatly improved by Moret-Bailly.27 Its main 
disadvantage, besides its tediousness, is its built-in inability 
to handle half-integer representations. 

(2) As eigenvectors of the homogeneous polynomial in 
J +, Jz , J _ oflowest degree (i.e., 4, apart from 0) which trans
forms like a r l representation, i.e., which is completely in
variant under action of the group. This operator-equivalent 
technique, which handles in the same way integer and half
integer representations, has been sketched for by Kynch,22 
nicely formulated by Stevens,39 and mainly applied by Lea, 
Leask, and Wolf.9 One disadvantage is that, in case a repre
sentation occurs more than once for a givenj, coefficients of 
eigenvectors are not the square root of rational numbers. 
Many authors were interested only in the eigenvalues. 22.40--42 

(3) As eigenvectors of projection operators: Wigner43 

defined general projectors and transfer operators using 
group characters, then Melvin44 and McIntosh45 expressed 
them as a product of two factors, Altmann46 gave relatively 
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short expressions for these projectors and diagonalized them 
numerically, Fox and Ozier47 and Fox and Krohn2 made 
various improvements to the numerical work. None of these 
authors applied the method to half-integer representations, 
probably because molecular spectroscopy requires only in
teger representations. 

A fourth method must be mentioned which may be very 
promising: it is that of orthogonal polynomials, generating 
functions and so on. Indeed, as noted by Betts, Bhatia, and 
Wyman,7 in the case of evenj, polynomials of x,y, z express
ing r 1 representations, when divided by zj, are particular 
Appell polynomials in the two variables X Z I~, y2 I~. Using 
generating functions techniques, Puff1s obtained a closed 
form formula, with two summations, for r 1 representations 
in spherical coordinates. Dunkl48 used Krawtchouk polyno
mials in variablej - m to express the projectors on r 1 and r z 
representations in the standard basis lim>, but no attempt 
was made to build orthogonal sets in case of degeneracy. Let 
us remark that, from the work of Dunkl, one can deduce, by 
subtraction from the identity operator, compact expressions 
using Krawtchouk polynomials for projectors on the two 
components of r 3 • Since r 4 and rs are very easy to handle, 
only r 6 , r7, and r8 need compact expressions for their pro
jectors, from this point of view. 

For summarizing, the implementation of Fox and 
Krohnz is up to now the best available algorithm. 

This wide need for cubic harmonics prompted us to 
devise a general, efficient method. Even if it is closely related, 
our method is essentially different from that of Fox and 
Krohn. 

(1) As any standard base vector ofSU(2) can be project
ed on at most two representations of Oh' the knowledge of 
the behavior of these representations under one carefully 
chosen element of Oh is enough to obtain the projectors. 

(2) This projection method gives unnormalized vectors 
the coefficients of which are rotation matrix elements, and it 
also gives the square of the norm as a constant plus a rotation 
matrix element. 

(3) In case of degeneracy, a simple Schmidt orthogonali
zation of the unnormalized vectors introduces minors of ro
tation matrix elements of increasing order and the square of 
the norm is still one of them. 

This method does not require any determination of the 
set of eigenvectors of a matrix and, therefore, does not in
volve a heavy equipment. Instead, it takes full advantage of 
the properties of projectors for both integer and half-integer 
values ofj. This approach has two benefits: it significantly 
reduces the workload, and it enables an exact determination 
of coefficients in the form of square roots of rational 
numbers. Moreover, no complex numbers occur in our 
method even for half-integers. Two forthcoming papers 
solve the same kind of problem: one for the cubic group with 
a ternary axis of quantization49 and the other for icosahedral 
harmonics. 19 

I. THE CUBIC GROUP AND ITS REPRESENTATIONS 

The cubic groupSO has three fourfold rotations around 
three mutually orthogonal axes, which we choose as our ref
erence frame Oxyz. The two rotations whose Euler anglesS1 
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(a,/J,y) are respectively (1T12, 0,0) and (0,1T12,0) are a system 
of generators of the group whose 24 elements have the fol
lowing Euler angles: 

a = 0, 1T12, 1T, 31T12, {3 = 0, 1T, 

a = 0, 1T12, 1T, 31T12, {3 = 1T12, 

y=O, (la) 

y = 0, 1T12, 1T, 31T12.(lb) 

The double cubic group 0 + is obtained by adding to 
that list the 24 elements derived by addition of 21T to a. 

The action of an arbitrary element on a base vector 
I jm> of an irreducible representation!iJj ofSU(2) is given by 
the rotation matrix having the corresponding Euler angles. 
The only nontrivial matrix we will have to deal with is 
R (0, 1T12, 0) = Ry; this matrix is real; we will note its ele
ments as d~lm'(1T/2).51 

The eight elements (la) define what is called the D4 
group. so It is suitable to introduce the subs paces of !iJ j 
which are invariant under D4 • 

TABLES I and II. Correspondence between irreducible representations of 
0. and subspaces adapted to D4 • Each of subs paces adapted to the irreduci· 
ble representations of D •• listed in first column, is the direct sum of those 
subspaces of irreducible representations of 0. which are listed in its row. 
Every case contains two notations: the one used in the present paper, adapt
ed from Bethel and the one defined by Placzek" and more widely known as 
the Mulliken" notation. Our notation is chosen as follows: Ir; fJ) notes a 
component p of a respresentation r;, i = I to 8, which behaves under a 
rotation like its associated base vectors listed in (2) and (3). 

TABLE I. 

0 r l r2 r3 r. r, 
D. A, A2 E TI T2 

16+ ) Ir.(» Ir36) 
AI IA,a,) IE8) 

12 +) Ir22) Ir32) 
H, IA2a2) lEE) 

I) ) Ir.i) Ir,) 
E IT,I) IT2 -I) 

16- ) IF.6) 
A2 IT,D) 

12 -) Ir,2) 
H2 IT2O) 

1- ) Ir4 - i) Ir, - I) 
E IT,-I) IT2 1) 

TABLE II. 

0+ r6 r7 r. 
D/ E' E" U' 

I~) Ir7 ~) Irs ~) 
E" IE"P") IU'K) 

I!) Ir6 !) Ir. ~) 
E' IE'a') IU'A) 

1- J) IF6 -~) Irs -~) 
E' IE'P') I U'fl) 

1- ~) Ir7 -~) Irs -~) 
E" IE"a") IU'v) 
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For integer values ofj, they are six: 

10 ± ) = !lim ± ) = 1 (lim) 
~2(1 + 8m ,o) 

± ( - 1 Y - m li - m) ), 

m;;'O, m-O(4) l, (2) 

12 ± ) = II jm ± ) = ~ (I jm) ± ( - 1 Y - m I j - m»), 

m >0, m=2 (4)), 

I ± i) = Iljm), m ± 1 (4)j 

(the A stands for "mod 4"). 

For half-integer values ofj, they are four: 

I ±~) = !lim), m- ± ~(4)), 
I ±!) = I lim), m- ± !(4)l· 

IFI 0) - Irl 0), 

Ir2 2) --lr2 2), 

[r; 
1F3 

O)J [-~ PJr O)J 
i) ~ i ~2 I; 2)' 

1 
Ir4 i) --

2 ji 2 

Ir4 0) 1 

° 
1 

-+ - --
ji ji 

Ir4 -1) 1 
-

2 ji 2 

IFs i) 1 
--

2 ji 2 

IFs 2) 1 

° 
1 

- --
ji ji 

Irs - i) 1 
-

2 ji 2 

Ir4 

Ir4 

1F4 

Irs 

Irs 

IFs 

(3) 

I 

i) 

0), 

-1) 

i) 

2). 

- i) 

Let us note that most workers in the field, following 
Bethe, did introduce such subspaces, but without the good 
sign ( - 1 Y - m, the result being a useless distinction between 
even j and odd j cases. 

For integer values ofj, there are five irreducible repre
sentations of o:r l , r 2 , r 3, r 4 , rs in Bethe notation. The be
havior of these representations under a rotation of 1T/2 
around Oz and of 1T around Oy allows us to determine the 
components of every representation of 0 in the subspaces 
defined above relatively to D4 (see Table I). r l and r 2 are 
one-dimensional, and r3 is two-dimensional. r l , r 2, and r3 
are invariant under a rotation of 1T around Oy. r 4 and rs are 
three-dimensional and transform under the rotation 
R (0,1T,0) of 1T around Oy according to 

(4) 

Under the rotation Ry of 1T/2 around Oy, r l transforms 
like an angular momentumj = 0, r4likej = 1, and the laws 
of transformation of r 2, r 3, rs are deduced from the 
reduced matrix elements for j = 2 andj = 3: 

(5) 

For half-integer values ofj, there are three additional irreducible representations: r6 and r7 of dimension two and r8 of 
dimension four. Under the rotation of 1T around Oy they transform according to 

R (0,1T,0)1F6m) = (- 1)1I2- m IF6 - m), 

R (0,1T,0)lr7m) = (- Ij312- m lr7 - m), 

R (0,1T,0)lr8m) = (- If/2- m 1F8 - m). 

(6) 

Therefore, only components with m;;'O need to be determined. The action of the rotation of 1T/2 around OZ leads to Table 

II. 
Under the rotation R y of 1T /2 around Oy, r6 transforms likej = !, r 8likej = ~, and the law of transformation of r 7 may be 

determined from the reduced matrix elements of} = ~ tabulated, for instance, in Ref. 52: 
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1» ~ 2 -./2 
~ 

A) 1 _1 

2 2 

-I) 

-f> 

1 

2-./2 

!3 
2-./2 

!3 
2-./2 

1 

2-./2 

!3 
2-./2 

1 

2-./2 

1 

2-./2 

!3 
2-./2 

D] 
A ' 

-!) 

!3 
2-./2 

1 

2-./2 

1 

2-./2 

!3 
2-./2 

1 

2-./2 

!3 
2-./2 

!3 
2-./2 

1 

2-./2 

j) 

I) 

-1) 

These laws of transformation will be the basic material for determining projectors. 

(7) 

II. PROJECTION OF A VECTOR I jm) ON AN IRREDUCIBLE REPRESENTATION OF THE DOUBLE CUBIC GROUP 0+ 
FOR HALF-INTEGER VALUES OF j 

An arbitrary vector lim) is the sum of two unnormalized vectors belonging to two of the three spaces r 6' r 7' r s (see Table 
II); for instance, if m=! (4): 

lim) = Ir6!)m + Irs!)m, (8) 

where subscript m reminds us that the vector is unnormalized and depends on m. 
Our purpose is to determine not only the two terms of the above sum, but also the other components of the involved 

representations. Due to relations (6), we will give the formulas only for m > O. 
The action of Ry upon lim) yields 

m=! (4): Rylim) = ~d~l'm(;)lim') 
1 AI ... 

= -./2lr 6!)m - -./2lr6 - !)m 

+ v: Irs ~)m - \, Irs I)m - \, Irs - I)m + v: iFs - j)m' 
2-y2 2-y2 2-y2 2-y2 

(9) 

Identifying these two expressions leads to 

m=! (4): Irs ~)m = 2-./2 L d~~m(.!!...)lim')' !3 m'",,312 (4) 2 
(10) 

which is one of the desired components. 

In order to isolate the component Ir6 !) m , we perform the combination of(8) and (9) which eliminates Ir 1) and gives a 
coefficient of Ir6 !) m equal to 1: s 2 m 

m=-2
1 

(4):lr6!>m = -3
1 L (Om.m' + 2-./2dt,;,1'm (.!!...))lJm')' 

m'",,112 (4) 2 (11) 

Similarly, 

m=~ (4): Irs~>m =~ L (Om.m' --./2dt,;,~m(.!!...))lJm')' 
2 3 m'''''112 (4) 2 (12) 
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In the same manner, if m is congruent to ~ mod 4, then 

m-~ (4): jjm) = IF7~)m + IFs~)m' 
2 

and the action of Ry upon I jm) leads to 

m=~(4): RYljm)=Ld~~m(!!.-)ljm')= --I-IF7~)m +-I-IF7-~)m 
2 m' 2 ~ ~ 

1 ') {3 ') {3 , 1 ' 
+~IFg~ m -~lFg! m +-IFg -1)m -~IFs -~)m 

2,,2 2,,2 2~ 2,,2 

from which we deduce 

and 

3 
m=- (4): 

2 

By linear combinations of(I3) and (14) we obtain 

m=~ (4): IF7~)m = l. L (8m ,,,, - 2~d~1'm(!!.-))lim') 
2 3 m'0=3/2 (4) 2 

m=~ (4): iFs~) m = ~ L (8m'm + ~d ~l'm (!!.-)) lim'). 
2 3 m'==3/2 (4) 2 

(13) 

(14) 

(15) 

(16) 

(17) 

In conclusion, if we perform these operations on all vectors of subs paces I!) and I ~), the projectors on F6, F7, and Fs are, 
respectively, 

(I8a) P6 = (~ ~I + 2~Ry)l3) 
P7 = CI - 2~Ry)l~ ~). (I8b) 

_ ((2 + 2~Ry)l3 - (2~/{3)Ry) 
Ps - , 

(2~/{3)Ry (2 - 2~Ry)l3 
(I8c) 

where the first row or column corresponds to space I~) and the second one to 11)' The three projectors are symmetrical (see Sec. 

IV), including P s because the opposite signs appearing in front of (2~/ {3)R y cancel the opposite signs of the two restrictions of 
R y • 

III. PROJECTION OF A VECTOR 1 jm) ON AN IRREDUCIBLE REPRESENTATION OF THE CUBIC GROUP 0 FOR 
INTEGER VALUES OF j 

Examining Table I shows that it is advisable, for even values of m, to use the symmetrical and anti symmetrical combina
tions (2) of vectors I jm) which span the irreducible representations of the point group D 4' Moreover, F I' F 2, and F3 generate 
the subspaces 10 + ) and 12 + ) while F4 and Fs generate the four others; this will make us split the study in two parts. 

A. Projection of F 1,F2,F3 

svI,42.5p 
Considering an arbitrary vector I jm + ) of 10 + ) with m;;;'O, we write it as the sum 

lim + ) = IFIO)m + 1F30)m' 

The action of Ry gives 

m=O(4): R lim +) = 1 L (d~)'m(~) + (- Iy-md~),._m( ~))Iim') 
m;;;.O y ~2(I + 8mo ) m' 2 2 

L 2 d~)'m(!!.-)Iim' + ) = IFIO)m -l.IF30)m + {3 IF32)m, 
m';;.0~(l+8m.o)(I+8m"0) 2 2 2 

(19) 

where we have used the symmetry relations of d ~)m' (17/2) to derive the second line from the first one (see the Appendix). 

Therefore 
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m=0(4) 
m;;.O 

By linear combinations of(I9) and (20) we get 

m=0(4): Ir/»m = ~ L (8m'm + 4 d~l'm(!!...))Uml + ), 
m;;.O 3 m':=O(4) ~(I + 8m,o)(1 + 8m"o) 2 

m=0(4) 
m;;.O 

m'>O 

In order to obtain 1F22), we consider a vector of 12 + ) 
m=2(4) , A A 

: I Jm + ) = Ir22)m + Ir32)m 
m>O 

and the same type of computation leads to 

m=2(4) 

m-2 (4), 1F22)m = ~ L (8m'm - 4d~)'m(!!...))Uml +), 
m > ° 3 m':=2 (4) 2 

m'>O 

Ir32)m=~ L (28m'm+4d~l'm(!!...))I}ml+). 
3 m':=2 (4) 2 

m'>O 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
As for half-integer values of}, if we perform these computations for every value of m, we can obtain the projector on every 

subspace. Using the formula 

(28) 

(29a) 

(29b) 

(29c) 

where the first row or column corresponds to space 10 + ) and the second one to 12 + ). 
We could have derived these results in another way. r l and r2 are invariant under the rotation R3 of 217/3 around the 

ternary axis (1,1,1) with Euler angles (1T/2, 1T/2,0), Therefore, the projector (1 + R3 + R ~)l3 is equal to PI + P2; the restric
tion of R3 to 10 + ) is equal to Ry while its restriction to 12 + ) is equal to - Ry. 

B. Projection of r4 and Fs 

Since the components Ir40) and Ir52) are the only ones to generate subspaces 10 - ) and 12 - ), respectively, a simple 
convention is to choose the basis vectors (2) as the representations 

Ir40)m = Ijm -), Ir52)m = Ijm - ). (30) 

We still have to determine Ir41) and Irsi). TheactionofRy upon Ir40)m gives 

m=0(4): Rylr40)m = Ii I d~1'm(!!...)ljml)=_I-lr4i>m --I-lr4 -i)m' 
m;;.O 11+8 m'odd 2 '2 Ii 'J m,O v~ 

(31) 

Therefore 
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m=0(4). 

m;;.O 

Similarly, 

m=2(4l. 

m>O 

(32) 

(33) 

Although every component of every representation is at this point determined, it may be of interest to project a vector of 
I i) on r 4 and r5 separately: 

m=1 (4): I jm) = Ir4 1>m + Ir5i)m, (34) 

m=1 (4): Ry I jm) =! Ir4 1>m - (l/~)lr40)m +! Ir4 - l>m - ~ 1F5i)m - (l/~)lr50)m -11r5 - l>m. (35) 

Therefore, another choice may be 

m=1 (4): 

m'>O 

(36) 

m'>O 

but in this case, components Ir40) and Ir52) mix all vectors, to the contrary offormula (30). To compute a matrix element, it 
is easier to use formula (30). For example, the proportionality coefficient of the fictitious spin4

,2l / = 1 can be obtained from 

a = (r4il-
1-J+lr40) = 1 (~j(j + 1) - m(m + l)d~l+ l,m('!!"') - ~j(j + 1) - m(m - l)d~I_I,m(.!!...)) 
~ 1 + Dm,o 2 2 

(a is by definition equal to 1 for j = 1). 
For any representation other than r 4 or r 5 , for which a 

fictitious spin can be introduced, i.e., r 6 , r 7, r g , each coeffi
cient a is a sum with many more terms. 

IV. ORTHOGONALIZATION AND NORMALIZATION 

The projection method yields directly the norm of re
presentations. Indeed, for instance, if m is congruent to 
~ mod 4, 

m==!(4): [jm) = [r6~)m + Jrs1)m 
P6 [jm) = [r6!)m; 

therefore, 

(jm[P6 Um) = m (F61 [r6-!)m 

(37) 

(38) 

(39) 

and [r6!) m is normalized simply by dividing it by the square 
root ofthe diagonal element of the projector. If this element 
is zero, the representation does not exist, at least for the pro
jected 1 jm); as the diagonal element of a projector, it can 
never be negative. A similar computation gives the norm of 
Irs!) m and the same value must also be used for the associat
ed [rst> m component as given by Eq. (10). 

In the formulas giving the projectors, PI' P2 , P6 , and P7 

are true projectors in the sense that P 2 = P while, for P 3 and 
Pg, p 2 = 2P because two components are involved. How-
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ever, the restrictions of P3 to 10 + ) or 12 + ) only and of Pg 

to I!) or I~) only are true projectors. 

When the trace of a true projector is equal to 1, after the 
above described operation of normalization, all the rows of 
the projector are equal to within an undetermined sign. 

When the trace of a true projector is greater than 1, the 
number of representations is equal to the trace; every row, 
after having been divided by its diagonal element, is a nor
malized representation, but these rows are neither identical 
nor orthogonal. However, the overlap of 1F6!) m and 
Jr6~) m' before normalization, is given by 

(40) 

Instead of projecting the vectors of basis 1 jmi )in which 
the projector is expressed [throughout this section, I jm i ) 

will mean an arbitrary vector defined by (2) and (3)], we pro
ject a new sequence of vectors 1 jm i ) defined as follows: 

Ijm i )= Ijm,) + )'ailUm/), 
t:. 

(41) 

where the au's are chosen such that the projected vector 
PI jm i ) has no components on I jm k ) for k inferior to i: 

(42) 

As long as the elimination of only liml) is involved, the 
coefficients ail are easy to obtain, and the resulting new ma-
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trix elements are 

(jmk IP Vm;) = (jmk IP Vm;) 

(jm/IP Vm;) (jmk IP Vm/) 

(jm/IPVm/) 
(43) 

This is identical to a triangulation method performed 
successively on every line. Due to relation (40) this method is 
equivalent to the Schmidt orthogonalization method. 

The original elements (jmk IP lim;) contain the square 
root of a quotient of product offactorials (see the Appendix). 
We easily see that exactly the same square root is found in 
(jmk IP lim;), but a large number may have appeared in de
nominator. As for diagonal elements, the original ones are 
rational and the new ones also. 

All this process can be iterated, and it will stop after r 
times, r being the trace of the projector: the d - r remaining 
rows are then all zeros. 

III ) I~) 1-1) I~) 

1 ~11 X 15 ~15 XII 11 -- --
32/2 32 32/2 32/2 

~11 X 15 3 11 ~21 X 11 ---
32 16{2 32 32 

R = ~11 X 15 11 5 55 
-- --y 

32/2 32 32/2 32/2 

11 ~21 X 11 $5 9 
-- ---
32/2 32 32/2 32/2 

3~ IE .j3 .jff 
32 16{2 32 32 

5~ IE 7.j3 7$ ---
32/2 32 32/2 32/2 

If the considered representation has more than one 
component (e.g., F 3,rS)' the present elimination process 
must be performed on all components simultaneously. 

At the end of the iterations, the rectangular matrix of 
the projector has only r nonzero lines. The element at inter
section of the pth line and the qth column is 0 for q <p; 
otherwise, it is equal to the quotient of the minor of order p 
made with the first p elements of columns 1 to p - 1 and 
column q by the product of diagonal minors of order 1 to 
p - 1. Of course, practically, it is better to apply repeatedly 
formula (43). 

A consequence of the triangulation method is 

(jm; IP lim;) = (jm; IP lim;), 

expression equal to the square of the norm. 
To illustrate the method, let us take the example of 

i = ¥. After reordering base vectors so as to group vectors of 
subspaces (3), the restriction of Ry to subspaces I + 1) and 
I + I) is 

Ii) I-~) 

3~ 5~ III ) ---
32 32/2 

IE IE I~) 
16{2 32 

.j3 7.j3 
1-1)' 

32 32/2 

.jff 7$ 
\~) 

32 32/2 

5 vW5 Ii) --- ---
16{2 32 

vW5 19 
I-n --- --

32 32/2 

Projectors P6 on IF6I) and P7 on IF J) are given by formulas (18) 

7 _It 7$ 5 $5 _$5 
48 8../6 48 16 8../6 16.j3 

P6 = 
It IE P7 = 

$5 11 11 , --
8../6 8 8../6 8../6 24 24/2 

7.[5 IE 35 $5 11 11 --- --
48 8../6 48 16.j3 24/2 48 

For each of them, the trace is 1; therefore, the three rows are proportional and, after dividing each row by its diagonal 
element, the three rows are equal to within an undetermined sign: 

It 1 IE --- $ vTI vTI 
4.j3 2/2 4.j3 4 2../6 4.j3 

It 1 _IE -- _$ JIT vTI 
4.j3 2/2 4.j3 4 2../6 4.j3 

It 1 IE $ JIT vTI ---
4.j3 2/2 4.j3 4 2../6 4.j3 
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As for projector Ps on Irs~> and IrsI>, its matrix is, in the same basis, 

11 ~ ~ {IT tFi ~ 
16 8J6 16vS 16vS 8,fi 16vS 

~ 13 11 3$ .J35 1 
--- ---

8J6 24 24{i 8,fi 8{3 8,fi 

~ 11 37 5$ .J35 7 
---

16vS 24{i 48 16 8J6 16 
Ps= 

{IT 3$ 5$ 41 7 7$ --
16{3 8{2 16 48 8J6 48 

tFi .J35 .J35 17 7 .J35 
8{2 8{3 8J6 8J6 8 8J6 

$5 1 7 7$ .J35 13 ---
16vS 8,fi 16 48 8J6 48 

The trace of each of the two 3 X 3 diagonal blocks is 2; therefore, the rank of Ps is 2. The elimination procedure (43), which 
isjust to be performed on the first three rows or on the last three rows, can be extended for clarity to the whole matrix which be-
comes, after the first step, 

11 $5 $5 11 tFi ~ --
16 8J6 16vS 16{3 8,fi 16{3 

1 ,fi $ 1 
0 - 0 ---

3 3 3{2 

0 
,fi 2 $ 0 

Pg
-

3 3 3 

0 $ $ 5 
0 

3,fi 3 6 

0 0 0 0 0 

0 
- 1 1 $ 0 --
3,fi 3 6 

We notice that in this case the fifth row is accidentally 
zero; this means that the r g obtained by projection from 14) 
of the Ii> subspace (i.e., our choice) coincides with the rg 
obtained by projection from I!> of the II) subspace. Rows 2, 
3,4, and 6 are proportional and have no component on 14) 
and IP. 

Therefore, only the first two rows of Ry have been 
necessary to determine rg and r 6 • Three more elements of 
the fourth row lead to r7 • We could also notice that all these 
results could have been obtained with only the first and the 
fourth rows. 

In order to obtain the r g representations for an arbitrary 
half-integerj, one should project a number of vectors of I!) 
equal to the number of r 6' plus a number of vectors of 11> 
equal to the number of r 7 ; ifj - ~ isa multipleof3, one more 
vector need be projected. However, there can occur an 
"unhappy" choice such as the one of I-'i) and I!) for our 
examplej = J,j. 

CONCLUSION 

The determination of cubic harmonics has been per
formed completely using only a small amount of group the-
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I 
ory. Moreover, once the reduced rotation matrix elements 
d 1,;.1m' (:rr 12) are known, the computation is so simple that it 
can be carried out without the help of a computer, even for 
relatively high values ofj. Even if we do not write them down 
explicitly, we have obtained closed expressions for the com
ponents of normalized cubic harmonics; for instance, a nor
malized 1F7 ~) component is simply given by 

Ir7~) m = _1_(1 - 2,fid 1,;.1m (!!...)) -112 L (Om'.m 
{3 2 m'",,3/2 (4) 

- 2.J2d1,;.1'm ( ;))Vml). 
In case there is no degeneracy, these expressions are 

independent of m, except for a sign; in case of degeneracy, 
the orthogonalization process described in Sec. IV may be 
applied. 

For every representation, a convention must be chosen 
in case of degeneracy in order to perform the orthogonaliza
tion. For instance, if r is the number of r i representations for 
a givenj, a set of r orthogonal representations r i is uniquely 
determined, up to a permutation, by the choice of successive 
values ml , m2, ... ,mr _ I in (43). 
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Let us mention a few possible conventions: 
(a) The "low m" convention: 

mk = 4(k - 1) + m l, k = 2, ... ,r - 1, where ml is chosen to 
be the lowest possible value of m in the associated D4 sub
space. 

(b) The "high m" convention: 
mk = - 4(k - 1) + m l, k = 2, ... ,r - 1, with ml equal to 
the highest possible value. 

Every author who tabulated orthonormal 
sets2•6,S,12,16-IS,2S,29,31 chose either the low m or the high m 
convention. If one wants, as we do, to express the coefficients 
in terms of integers, we can devise a "smallest length" con
vention: As explained in the text, the new matrix elements 
may have in their denominator a large prime number coming 
from the numerator of diagonal element Ijm j IP ~mj)' and 
this large prime number will not cancel after normalization. 
Hence the convention: at each stage, choose for mj the value 
which minimizes the rank of the highest prime number in the 
numerator of current diagonal elements. 

These three conventions, like any use of algorithm (43), 
create at least r(r - 1)/2 zeros among the set of coefficients. 
None of them can avoid the appearance oflarge prime 
numbers; the third one only delays it without completely 
avoiding it, particularly for rs. 

We have built simple orthonormal sets of representa
tions for all values ofj up to ~ (this is the maximum value of 
the total angular momentum for fundamental electronic 
states of all known elements, given by I (I + 1) + ~ for I = 4, 
which corresponds to a half-filled g shell), using algorithm 
(43) followed by orthonormal combinations in order to sup
press square roots of high prime numbers. Our plan was to 
publish these tables in the present article, but we just found 
quite simple relations between some representations, which 
makes useless the computation of certain kinds of represen
tations. 

If r , (I) is a representation for a given value of I, 

~(2s + 1)(21 + l){r,(/)lso-> }/~2j + 1, where { }j means 
coupling by a Clebsch-Gordan coefficient I with s to j, is the 
0- component of a r6 representation with s = !, a r4 repre
sentation with s = 1 or a rs representation with s = 3/2; 
these representations are orthonormalized. As the coeffi
cients of these three kinds of representations are the product 
of r , coefficients by simple Clebsch-Gordan coefficients, we 
consider tables for r 4 , r6, r s, as unnecessary. Similarly, rs 
and r7 can be expressed in terms of r2 representations. Such 
a subject is quite different from the matter of the present 
article; proofs of these relations and some of their conse
quences will be the matter of a forthcoming article which 
will include tables of r

" 
r2, and r3 only. 

APPENDIX: ON ROTATION MATRIX ELEMENTS 

The rotation matrix elements related to Euler angles (a, 
/3, r) are 

(imiR (a,/3, rWm') = D~~m,(a,/3, r), 

and they can be expressed in terms of the reduced matrix 
elements d ~~m' (j3 ) by 
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D (J) (a,/3 r) = e - imad (J) ,(j3)e - im'y 
m,m' m,m 

with 

d~~m,(j3) 

= 2) - 1)' ~U + m)!U - m)!U + m')!U - m')! 
, U + m - t)!t!U - m' - t)!(t - m + m')! 

( 
/3)~+m-~-u(. /3)u-m+~ 

X cos- Stn- . 
2 2 

These functions are related by many recurrence rela
tions (see, for instance, EdmondsS' ). For example, 

~jU + 1) - m'(m' - l)d~:m'_' (j3) 

+ ~j(j + 1) - m'(m' + l)d~),m' + I (j3) 

= 2 m' cos/3 - m dlJ) ,In). 
sin /3 m.m \jJ 

Unfortunately, for large values ofj, this formula is 
unstable and it is better to use 

U + 1)[(/ - m2)(f - m,2)] 1/2dl,/.,-;,)lfj3) 

+ j[(U + W - m 2)(U + 1)2 - m,2)]' 12dl,/.,;;',II(j3) 

= (2j + l)(jIj + 1) cos /3 - mm')d ~~m' (j3). 

The reduced matrix elements have the following sym
metry relations: 

di,!!,m,(j3) =d(~m',_m(j3) = (- It-m'd~\m(j3) 

= (- It-m'd(~m,~m,(j3), 

d~),m,(j3) = ( - lY- m'd(~ m,m,(1T - fJ) 

=(-ly+md~),~m'(1T-/3). 

We are specially interested by the particular value 
fJ = 1T12, in which case d ~~m' (1T12) can be expressed in the 
form 

d lJ) ,(.!!...) = (_1 )2j(U + m')!U - m')!)1I2I (_ I)' 
m,m 2 Ji U + m)!U - m)! , 

X Ij + m)! U - m)! . 
(j + m - t)!t! U - m' - t)!(t- m + m')! 

In this expression we note the following. 
The sum over t is a sum of products of binomial coeffi

cients and the resulting integer can be very large. 
The square root evaluates to 1 for diagonal matrix ele-

ments; if we take into account the Ji accompanyingRy in the 
formula giving the projectors for half-integer values ofj, the 

power of.J2 is even in all cases, and the final value of diagonal 
elements of projectors is an integer divided by a power of 2 
and maybe by 3. 

Under the square root there is no prime factor greater 
than 2j. 
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Determination of point group harmonics for arbitrary j by a projection 
method. II. Icosahedral group, quantization along an axis of order 5 
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The method described in the previous paper to obtain cubic harmonics is applied to the similar 
problem for the icosahedral group. The projection operators are expressed in terms of rotation 
matrix elements of R (11",<p,0) andR (0,11" - <p,11") <p = arctan 2, acting on subspaces invariant under 

Ds· 

PACS numbers: 02.20. + b 

The method used for cubic harmonics I can be applied 
to the icosahedral group. The icosahedral group is one of the 
five finite rotation groups and it is the only one for which the 
problem of point group harmonics is not trivial or is not 
related to the one of the cubic group. Icosahedral harmonics 
were studied by Mc Lellan2 who tabulated them up toj = 8. 
They have some applications in molecular chemistry.3 

The method leads to explicit formula (5) ofMc Lellan in 
terms of reduced rotation matrix elements for each represen
tation of the icosahedral group. We discuss the structure of 
the coefficients but give no tables because we found simple 
relations between some representations. As these relations 
are very different from the ones of this work, their explana
tion is postponed to a further article in which tables will be 
given. 

I. THE ICOSAHEDRAL GROUP AND ITS 
REPRESENTATIONS 

The icosahedral group has six fivefold rotations around 
six axes with an angle <p = arctan 2 between them. We 
choose one of them as z-axis and another one in the x . z 

plane, with the direction of the unitary vector (z - 2x)l,j5. 
The Euler angles (a, P, r) describing a rotation of 211"/5 
around this second axis are, respectively, (311"/5, <p, 
- 211"/5). This rotation together with the rotation of 211"/5 

around z generate the 60 elements ofthis subgroup of 0(3) 
and the 120 elements of the double icosahedral group as a 
subgroup of SU(2). The 60 sets of Euler angles are 

211" 411" 611" 811" 
a = 0,-,-,-,-, P = 0,11", r = 0, 

5 5 5 5 
(Ia) 

_ 0 211" 411" 611" 811" 
r - '5'-5-'5'-5-' 

(Ib) 

a = 0 211" 411" 611" ~ {3 = 11" _ nJ, 

'5'5'5'5' T 

11" 311" 711" 911" 
(lc) 

r = 5'5,11"'-5-'5' 

and the 60 other ones of the double group are obtained by 
adding 211" to a. 

The action of an arbitrary element on a base vector lim) 
of an irreducible representation lPj ofSU(2) is given by the 
rotation matrix having the corresponding Euler angles. The 

only nontrivial matrices we will have to deal with are 
R (11",<p,0) and R (0,11" - <p,11"): these matrices are real for in
teger values ofj, purely imaginary for half-integer values ofj 
and they are always symmetric. They are related by the rota
tion of 11" around Oy which is also an element of the group. 

The 10 elements (la) define what is called the Ds group. 
It is suitable to introduce the subspaces of lPj which are 
invariant under Ds. 

For integer values ofj, there are 6: 

U6 ±) = (Ijm ±) = (1!~2(1 + 0m.o))(Um) 

± (- Iy-mu - m»),m)O, m=0(5)j, 

Ij ± 1) = (Um), m= ± 1(5)], (2) 

Ij ± 2) = (Um), m== ± 2(5)). 

For half-integer values ofj, there are five: 

Ij ±~) = (Um), m= ± !(5)), 

Ij ± I) = (Um), m= ± 3(5)), (3) 

Ijj) = (Ijm), m=~(5)J. 

For integer values ofj there are five irreducible repre
sentations of the group: r l to rs (Ref. 2) (A, T1, T2, U, and V, 
respectively, by other authors4

). The behavior of r l , r 2, and 
rs for all the rotations of the group is the same as the one of 
the irreducible representations ofSU(2) forj = 0, 1, and 2, 
respectively. We identify their components Ir; m) with the 
corresponding vectors lim). The irreducible representation 
ofSU(2) forj = 3 reduces to r3 and r4. We choose 

(4) 

and 

(5) 

1F4 ± 2) = Jfl3 ± 2) ± ~13 + 3). 
The behavior of these representations under a rotation of 
211"/5 around Oz and of 11" around Oy, allows us to determine 
each component of these representations in a subspace de
fined above relatively to Ds as shown in Table I. 
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Under the rotationR \ = R (1T,lp,O) and therotationR 2 = R (0,1T -lp,1T)(usingE = 1 for R\ andE = - 1 for R
2

) the laws of 
transformationS are 

$+E ---
2$ 

~ 
$-E ---
2$ 

$-E 
2$ 

E~ 
$+E ---
2$ 

$-E ---
2$ 

$-E E ---
2$ $ 

$+E E ---
2$ $ 

J6 
5 

l-E$ 
5 

3-E$ 
10 

1 +E$ 
5 

3-E$ 
10 

J6 
5 

3+E$ 
10 

l-E$ 

5 

$-E 
---

2$ 

-E~ 
$+E ---
2$ 

$+E 
2$ 

E~ 
$-E ---
2$ 

$+E ---
2$ $ 

$+E 
2$ 

$-E 
2$ 

$-E E 
2$ $ 

J6 
5 

J6 
5 

5 

J6 
5 

J6 
5 

l-E$ 
5 

3+E$ 
10 

J6 
5 

3-E$ 
10 

I+E$ 
5 

J6 
5 

1 +E$ 
5 

3+E$ 
10 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

For half-integer values ofj, there are four additional irreducible representations: r6 to r9 (E ',E ", U', and V', respectively, for 
other authors3

). Among them, r6, r g, and r9 transform likej = 1, i and~, respectively. The irreducible representation ofSU(2) 
withj = ~ includes a r7 and a r9. We choose 

(7) 

The correspondence between the components of each representation and the subspaces of Ds is given in Table II. As the matrix 
elements of the rotations (1T,lp,O) and (0,1T -lp,1T) are purely imaginary, we multiply the result by i. The transformations 
R\ = iR (1T,lp,O) and R2 = iR (0,1T -lp,1T) for these representations are 

~r, i>.\ -a(1 1 -2E$) (IF, i>. ) (8a) 

Ir6 -!» l-E$ -1 Ir6 -p' 
2 

1188 J. Math. Phys., Vol. 25, No.5, May 1984 Jacques Raynal 1188 



                                                                                                                                    

Ir7 J) 1-E../5 Ir? 1) 
2 (8b) ~a 

1-E../5 Ir7 -1) Ir7 -1) , 
2 

iFs ~) _ )5+E 
EJf 

Jf5 - E{3 )5 - 3E Irg 1) 
2$ 2)5 2$ 

iFg !) 
€Jf 

$-3E )5 +€ Jf5 -d3 Irs ~> ---
2)5 2)5 2$ 

(8c) ~a 

Jf5 - E{3 $+E $-3E 
EJf 

Irs - X> Irs - ~> ---
2)5 2)5 2)5 

iFs - ~> )5 - 3E Jf5 - E{3 
EJf 

)5 +E Irs -1) 
2)5 2$ 2$ 

Ir9 I) 3+E$ 1 +$E 

if 

1-$E 3-€$ 2-€$ Ir9 1) 
10 2,j5 ~ 2,j5 5 

[r9 1) 1 + E,j5 )5 -€ )5 -E 
-Eif 

E 3-E)5 Ir9 1) -..a -
2$ 2,j5 ~ $ 2,j5 

Ir9 !) 
if 

)5 -E E $-€ 
Eif 

1-E$ Ir9 ~) -- ---
~ ,j5 2)5 ~ , (8d) 

Ir9 -!> 1 - E,j5 
-Eif 

$-E E $-E -~ Irg - ~> --- -
10 2,j5 $ ~ 

iF9 -1) 3 - E,j5 E 
Eif 

,j5 - € $-E 1 + E)5 Irg -~) - ---
2,j5 ,j5 ~ 2,j5 2$ 

Ir9-D 2-E$ 3-€,j5 1- E)5 
-if 

1 +E$ 3+E)5 Ir9 -~) 
5 2$ ~ 2)5 10 

where a 2 = (../5 + Ej/(2,j5j, E = 1 for R) and € = - 1 for R 2• 

The reference frame chosen here is not the one used by Mc Lellan2 but has the advantage of giving only real coefficients. 
In our frame, the rotation of 1T around Oy is an element of the group, whereas there was a rotation of 1T around Ox in the Mc Lel
lan's frame. It is easy to relate these different results by substituting im[jm) for [jm) in Mc Lellan's results. 

We consider only the components Ir; fii> for nonnegative values offii because the other components are easily obtained 
by a rotation around Oy: 

R (O,1T,OjiF; fii) = (- (-"'Ir; - fii), 

R (O,1T,Oj[jm) = (- lj-mlJ - m). 

In the first of these equations,}; is ° for r) and rs; 1 for r 2 , r 3 , and r 4 ; ! for r6 and r 9 ; ~ for r7 and r g. 

(9al 

(9b) 

II. PROJECTION OF A VECTOR lim) ON AN IRREDUCIBLE REPRESENTATION OF THE DOUBLE ICOSAHEDRAL 
GROUP FOR HALF INTEGER VALUES OF J 

Among the five subspaces (3) of fiJj related to D s, I J - ~> and I J - I> can be obtained from [j ~> and Ii j> by a rotation 
of 1T around Oy. On the contrary I j 1> is invariant under this transformation. As shown in Table II, any vector of the subspaces 
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I j ~) and I j j) is the sum of at most three unnormalized vectors belonging to three of the four subspaces r 6 , r 7 , r s, r9 and 
any vector of the subspace Ij ~) is the sum of two unnormalized vectors belonging to the Ir9 ~) and the Ir9 - ~) subspaces. 
None of these two problems were encountered for the double cubic group. ' 

Let us consider a vector I jm) of the subspace I j ~): 

m - !(5) Um) = Ir6 ~)m + Irs ~)m + Ir9 !)m, (10) 

where the sUbscript m reminds us that the vector is unnormalized and depends on m. The action of R, = iR (1T,IP,O) on I jm) 
yields 

m = ~ (S) R,jjm) = I (- )1I2-m' d~)'m(1P )Ijm') 
2 m' 

= cos!£..{ I r 6 1) + fIlrs i) - 15 - 3 Irs 1) + 
22m \j S 2 m 215 2 m 

+ IT Ir 9 i) + 15 - I Ir 9 i) __ I Ir 9 1) + ... + 1- 151 r 9 _i) }, (11) 
\j S 2 m ~ 2 m J5 2 m ~ 2 m 

and the action of R z = iR (O,1T -1P,1T) on I jm) yields 

=sin!£..{lr6 1) _ fI Ir8i) - 15+3 Irs 1) + ... 
22m \j S 2 m 215 2 m 

+ IT Ir91) + J5 + 1 Ir 9 i ) +_1 I r 9 1) + ... + I +15l r9 - 5)}. (12) \j S 2 m ~ 2 m J5 2 m ~ 2 m 

A simple linear combination of (11) and (12) eliminates Ir9 ~)m and leads to 

m J..(S) Ir i) =$ '" [(_)lIZ-m'COS!£..d U), (1P)-(-)1I2-m sin!£..d(j), (1T- IP )]jjm'), (13) 
2 8 2 3 ~ 2 mm 2 mm 

m m'==~(5) 

1 
m=-(S) 

2 

(14) 

(IS) 

Taking into account the three equations (10)-(12), we get 

m=J..(S) Ir 1) =~ '" {D +(_)1I2-m'Scos!£..d U), (1P)+(-)1I2- mS sin!£..d U), (1T-IP)}jjm'), 
2 6 2 6 ~ mm' 2 m m 2 m m 

m m' == liS) 

- ( - )112 - m(315 + S)sin i d ~l'm (1T - IP)} I jm'), 

1 m--(S) 
2 

(16) 

(17) 

+ ( - )1/2 - m15 sin i d~)'m (1T -IP)} Ijm'). (18) 

In a similar way, projections of r 7 , r s' and r9 representations can be obtained from any vector of the subspace I j 1). To 
project from an arbitrary vector I jm) of the subspace I j ~), we have to consider together 

S ) ~) . A m-T(S) lim =lr9~m-(-y-mIF9-~)_m' 

Ij-m)=(-y- mlr9 -Vm+lr9 1)_m, (19) 
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i.e., two vectors related by a rotation of 1T around the Oy axis. The representations jr9) m and Ir9) _ mare differ:.nt: IF9) m is 
the one for which the vector IF9 I) m can be projected from Vm) and IF9 ) _ m the one for which the vector IF 9 -~) _ m can be 

projected from the same vector I jm). 
As far as the subspace I j 1) is concerned, only the first equation (19) is needed. In this subspace, the action of R I and R2 

yields, respectively, 

=cos!E.{3+$(jF91) +(_)j-mjF9 _1) ) 
2 10 2 m 2 -m 

2-$(j 5) .-mj 5)) } + -5- F9 -"2 m - ( - )1 F9"2 _ m + ... , (20a) 

(20b) 

From these equations, we get 

5 
m -(5) 

2 

+ ( _ )112 -m 3 - $ sin !E.d(ji, (1T - ip)} Um'). 
22m m 

(21) 

The two equations (19) and the symmetry properties of reduced matrix elements are needed to obtain the other components of 
a representation F9 from a vector of the subspace I j 1)· 

Equations (13)-(18) and (21) are simpler when the reduced rotation matrix elements are expressed with the matrices: 

A (j) = ~{( - )112 - m' cos!E. d (j), (m) + ( - )1/2 - m sin £ d (j), (1T - ip I}, 
m'm 22m m T 2 m m 

Bill = $ {( _ )112- m' cos !E.d1J1, (m) _ ( _ )1/2- m sin!£... d Ui, (1T _ ip I}. 
m'm 22m m T 2 m m 

With these notations, the projectors on F 6 , F 7 , F R, and F9 are, respectively, 

P6=IF+jAI U!), 
P7 = IF-gA +iBI Ij ~), 

V-jA-!B (2/fJ)B Ij f) 
P8 = 

(2IfJ)B Ij ~)' lJ_5A+B 
3 j 

F+~A+!B - ($12)(A + B ) /lOA 

P9 = - ($12)(A + B ) F+~A-~B (1!~)(5A -B) 

/lOA (1!~)(5A - B) F-B 

Ij ~) 
Ij 1) . 
Ij 1) 

(22a) 

(22b) 

(23a) 

(23b) 

(23c) 

(23d) 

The first column of P9 deals with the IF9 1) vector. The zero matrix elements are not indicated and the subspaces of D5 are 
written on the right. 

III. PROJECTION OF A VECTOR I jm) ON AN IRREDUCIBLE REPRESENTATION OF THE ICOSAHEDRAL GROUP FOR 
INTEGER VALUES OF j 

As seen in Table I, any vector of the subspaces 10 + ) and 10 - ) can be projected on two irreducible representations of 
the icosahedral group and any vector of the other subspaces can be projected on three irreducible representations. It seems 
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that only one of the two transformations R I = R (1T,tp,O) or R z = R (0,1T - tp,1T) is needed in the first case and the two of them 
are needed in the second case. However, the matrix elements of both matrices are involved, due to the symmetry 

Let us consider a vector lim> of the subspace Ii 0 + > as defined by (2). It can be written 

m = O(S) Ijm + > = Irl O>m + Irs O>m· 

The action of R I gives 

m=O(S) Rllim+>= 1 ! I 2 [(-t'd~)'m(tp)+(-td~)'m(1T-tp)]lim'+> 
~2(1 + 8mo ) m'=aO(5) ~2(1 + 8m,o) 

m'>O 

+ I [( - )m'd~l'm(tp) + ( - )md~)'m(1T - tp)] lim'>] 
m'r'0(5) 

Therefore, for M #0, 

By linear combination of (2S) and (26), we get 

m=O(S) 

and 

m=O(S) 

(24) 

(2S) 

(27) 

The projection ofa vector of the subspace Ii i> on the representations r;p r 4 , rs or of a vector of the subspace Ii 2> on 
the representations F 3, F 4 , rs is similar to what was done in the subspace Ii p. 

In order to simplify the equations, we introduce the matrices 

C~)'m = ~ 1 {( - )m'd~)'m(tp) + (- td~)'m(1T - tp I}, 
2 ~(l + 8mo Hl + 8m ,o) 

D~)'m = $ 1 {( - )m'd~)'m(tp) - (- )md~)'m(7T - tp)}. 
2 ~(l + 8mo Hl + 8m ,o) 

With them, the projectors are 

1192 

PI = IF + j C I U 0 +), 

P = IF-iC-aD D I 
z D F+D 

P = \F-i C + D 
D I 

3 D F-D 

Ij 1> 
Ij 6 -)' 

U2) 
IjO- )' 

J. Math. Phys., Vol. 25, No.5, May 1984 
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(30b) 

(31a) 

(3tb) 

(31c) 
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p-i F-~D -~(SC-D)ilj2) 
4- -j(SC-D) F+~D Ij 1>' (31d) 

-& I + i C + -& D - i (C + D) (S/vIJ)C U 2) 
Ij 1> P5 = - ~ (C + D) -& I + i C - -& D (S/vIJ)C (31e) 

(S/vIJ)C (S/vIJ)C F - j C Ii 0+) 

The components Ir; - 1) and Ir; - 2) are obtained by the relation (9a). 
Orthogonalization and normalization of the representations are discussed in detail in Ref. 1. 

IV. STRUCTURE OF COEFFICIENTS 

Reduced rotation matrix elements are 

dif:m'(CP) = ~U + m)!U - m)!U + m')!U - m')! 

X I ( - )' (cos !!?..)2j + m - m' - 2t (Sin !!?..)21 - m + m' 

t (j + m - t )!t!(j - m' - t )!(t - m + m')! 2 2' 
(32) 

and the angle cP is such that 

cos2 !!?.. = ~(1 + _1_) 
2 2 $' 

(33) 

Therefore, 

A III _ ( )m 1 U + m)!(j - m)! (-),U + m')!(j - m')! 

U + m')!(j - m')! ~ U + m - t)!t!U - m' - t)!(t - m + m')! mm' - - 2j+ 3/2 

X 1+- 1--{( 
1 )12j +m-m'-21+ 1112( 1 )(2t-m+m'I/2 

$ $ 
(34) 

+(-t- m 1-- 1+- . 
'( 1 )(2j + m - m' - 21 + 11/2( 1 )(21- m + m'I/2} 

$ $ 

When m - m' is even, all the powers in the expression 
between brackets are integers, the square roots cancel and 
the result of the sum is a rational number, the denominator 
of which is some power of S. When m - m' is odd, 

cos(cp/2)sin(cp/2) = 11$ can be factorized out and, with the 

sign ( - )m - m', the result of the bracket is still a rational 
number. 

A similar analysis can be performed on the matrix B 
given by (22b) as well as on the matrices C and D given by 
(30). As a result, a matrix element ofa projector (23) or (31) is 
the square root which appears in (34) mUltiplying the ratio of 
two integers, the one of the denominator being essentially 
some power of S because the powers of 2 usually cancel. The 
square root reduces to unity for the diagonal matrix ele
ments; the numerator can be a very large number for a large 
value ofj, quicker than for cubic harmonics. 

TABLE I. Number of components of each representation ofthe icosahedral 
group in each subspace of D5 for integer values of). 

K r, r2 r3 r. r5 
D5 A T, T2 U V 

19+ ) 
19- ) 
IP 
12) 
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Any recursion relation for the reduced rotation matrix 
elements can be cast into a coupled recursion relation for the 
A and B or the C and D matrix elements. 

After orthogonalization and normalization as ex
plained in Ref. I, each coefficient is the product of a rational 
number by the square root of a product of prime numbers. If 
the ratio of the coefficients of some Ijm) for two representa
tions of the same type is written in this manner, the square 
root is independent of the choice of Ijm). If the ratio of the 
coefficients of Ijm l ) and Ijm2) for some representation is 
written in this manner, the prime numbers of the square root 
are those which appear with an odd power in the product 
(j + ml)!(j - ml)!U + m2 )!U - m 2 )! 

The first degeneracy of r l representations happens for 
i = 30. Up to this. value, the coefficients are very simple but 
we could find no linear combination of the two r I fori = 30 

TABLE II. Number of components of each representation of the icosahe
dral group in each subspace of D5 for half-integer values of}. 

K r7 
E" 

rs 
U' 

Jacques Raynal 

r. 
V' 

2 
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with simple coefficients. 
Some other representations can be obtained from r I' If 

rl(/) is a representation for a given value of 

I, ~(2s + 1)(21 + I)X {rl(l)lsu) )/~2j + 1, where { L 
means coupling by a Clebsch-Gordan coefficient I with s toj 
is the u component of another representation. In this man
ner, wecanobtainr6 withs = ~,r2 withs = l,rs withs =~, 
rs with s = 2, and r9 with s = ~. These representations are 
orthonormalized. As their coefficients can be expressed by 
multiplying the coefficient of some r l representation by a 
Clebsch-Gordan coefficient, we consider that tables of r 2, 

r s, r 6, r s, and r9 are not needed. Similarly r 4 can be ex
pressed in terms of r7 representations. More details and ta
bles of r l , r7, and r3 representations will be given in a forth
coming article. 
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The reduction of the irreducible representations [v,O, ... ,O,l] ofSO(2n + 1) with respect to 
SU(2) ® SU(2) ® SO(2n - 3) is considered. For the n = 3 case all the reduced matrix elements of 
the SO(7) generators in the [SU (2 W ® SO(3) basis are calculated with the use of recursion relations. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

In previous papers l
,2 the symmetric representations of 

SO(2n + 1) and ofSO(7) in particular have been investigated 
in detail. A method originally due to Kemmer et al.3 has 
been applied to SO(7) in order to calculate reduced matrix 
elements of the generators in a [SU(2W ® SO(3) basis. 

There exists a second class of SO(2n + 1) irreps, i.e., 
[v,O, ... ,O,l] (v;>O) which decompose without degeneracy into 
SO(2n - 3) ® SU(2) ® SU(2) irreps. In Sec. 2 the correspond
ing branching rule is given. A set of recursion relations 
between the reduced matrix elements of the SO(7) generators 
in established. In Sec. 3 a complete solution is derived. 

2. RECURSION RELATIONS FOR THE REDUCED 
MATRIX ELEMENTS 

Apart from the symmetric representations [u,O, ... ,O] of 
SO(2n + 1) one more class of representations labeled by 
[u,O, ... ,O,l] (u;>O) reduces without degeneracy into SU(2) 
® SU(2) ® SO(2n - 3) irreps. Indeed, it can be easily shown, 
for instance by using the method outlined in De Meyer et 
al., I that the corresponding branching rule reads with the 
same notation 

[u,O, ... ,O,l]-I(s,t,[u,O, ... ,O,l])' 
s.t,u 

with u = V,v - 1, ... ,1,0, 

s + t = U - U + !, v - u - !, ... ,!, 

Is - t I =! (n > 3). (2.1a) 

Due to the specific labeling ofSO(3) irreps, we have to re
place (2.1a) for n = 3 by 

[v,O,1]-I (s,t,u)', 
s,t,u 

with 

alResearch Assistant I.W.O.N.L. (Belgium). 
blResearch Associate N.F.W.O. (Belgium). 
clResearch Assistant N.F.W.O. (Belgium). 

u = v +!, v - !, ... ,!, 
s + t = v + 1 - u,v - u, ... ,!, 
Is - t I=!. (2.1b) 

For a verification of the rules (2.1) for particular v-values we 
refer the reader to branching rule tables such as the one of 
McKay and Patera.4 Let us recall that for SO(7) s, t and u are 
the SO(3) labels which allow us to denote the SO(7) states by 
IstuAjl v),wheres(s+ l),t(t+ l),u(u + l),A,jl,andvare 
the eigenvalues of S2, t 2, u2, so, to. uo, respectively. Clearly the 
three commuting subgroups are generated by the sets 
{s+l,so,s_d, {t+l,to,t_d, and {u+l,uo,u_d. The reduced 
matrix elements of these generators in the [SU(2jp basis 
{ Is t u) I are standard. The remaining SO(7) generators 
which are combined into a bispinor vector TI IJ2 1J2 11 are 
defined in Vanden Berghe et al. 2 We denote a set of indepen
dent reduced matrix elements of TI IJ2 1J2 11 in the 
[SU(2W ® SO(3) basis as follows: 

A (s,u) = (s +! s + I u + 1 IIT[1J2 1J2 1[11 s s +! u), 
(2.2) 

B (s,u) = (s +! s + I u IITII/2 112 1111 s s +! u), 
(2.3) 

C(s,u) = (s+! s+ I u-1 IITI IJ2 1121111 s s+! u), 
(2.4) 

D (s,u) = (s +! s 

E (s,u) = (s +! s 

u + 1 IITIIJ2 1J2 [111 s s +! u), 
(2.5) 

u IIT[1J2 1/2 1]11 s s +! u), 
(2.6) 

where the other reduced matrix elements of TI IJ2 1J2 11 can 
be related to the preceding ones on account of symmetry 
operations with respect to the first two labels and of the 
property 

(s't'u'IIT[1J2 1J2 I]lIstu)* 

= (- 1j"-s+t'-t+u'-U(s t u1lT[1/2 1J21)lls' t' u'). 

(2.7) 
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Equations (3.3)-(3.7) of Vanden Berghe et af.2 remain valid and we can apply again Eq. (15.23) of De Shalit and Talmi5 to 
each of them. Using the well-known reduced marix elements ofs, t, and u and the explict analytical formulas for the occurring 
6j-symbols, we obtain the following set of 24 nonlinear recursion relations between the reduced matrix elements (2.2)-(2.6): 

2s[IA (s,uW + IB(s,uW + IC(s,uW] - (2s + 2)[IA (s - ~,u - IW + IB(s - ~,uW + IC(s - ~,u + IW] 

+ 2s[ID(s,uW + ID(s,u - IW + IE(s,uW] = - ps(2s + 1)(2s + 2f(2u + I), (2.8) 

(2s + I)[IA (s,uW + IB (s,uW + IC(s,uW] - (2s + 3)[IA (s - ~,u - IW + IB (s - !,uW + IC(s - !,u + IW] 

-(2s+3)[ID(s,uW + ID(s,u-IW+ IE (s,uW] = -~(2s+ If(2s + 2)(2s+ 3)(2u + I), (2.9) 

ulA (s,uW -IB(s,uW - (u + 1)IC(s,uW - (u + I)IA (s - !,u - IW -IB(s - ~,uW + ulC(s - !,u + IW 

+ uID(s,uW - (u + 1)ID(s,u - IW -IE(s,uW = - 2(2s + 1)(2s + 2)u(u + 1)(2u + I), (2.10) 

2s(2s + 1)[uIA (s,uW - IB (s,uW - (u + 1)IC(s,uW] 

+ (2s + 2)(2s + 3)[ - (u + I)IA (s - !,u - IW -IB(s - !,uW + ulC(s - !,u + IW] 

- 2s(2s + 3)[uID(s,uW - (u + 1)ID(s,u - IW -IE(s,uW] = 0, (2.11) 

2s[u(2u - I)IA (s,uW - (2u - 1)(2u + 3)IB(s,uW + (u + 1)(2u + 3)IC(s,uW] 

- (2s + 2)[(u + 1)(2u + 3)IA (s - ~,u - IW - (2u - 1)(2u + 3)IB (s - !,uW + u(2u - 1)IC(s - ~,u + IW] 

+ 2s[u(2u - 1)ID(s,uW + (u + 1)(2u + 3)ID(s,u - IW - (2u - 1)(2u + 3)IE(s,uW] = 0, (2.12) 

(2s + 1)[u(2u - I)IA (s,uW - (2u - 1)(2u + 3)IB (s,uW + (u + 1)(2u + 3)IC(s,uW] 

- (2s + 3)[(u + 1)(2u + 3)IA (s - !,u - IW - (2u - 1)(2u + 3)IB(s - !,uW + u(2u - 1)IC(s - !,u + IW] 

- (2s + 3)[u(2u - 1)ID(s,uW + (u + 1)(2u + 3)ID(s,u - IW - (2u - 1)(2u + 3)IE(s,uW] = 0, (2.13) 

- D *(s + !,u)A (s,u) - E(s + !,u)B (s,u) + D (s + !,u - I)C(s,u) 

= C(s,u + I)D(s,u)-B(s,u)E(s,u)-A(s,u-I)D*(s,u-I), (2.14) 

- u(2u - I)D *(s + !,u)A (s,u) + (2u - 1)(2u + 3)E(s + !,u)B (s,u) + (u + 1)(2u + 3)D (s + !,u - I)C(s,u) 

= u(2u - I)C(s,u + I)D (s,u) + (2u - 1)(2u + 3)B (s,u)E(s,u) - (u + 1)(2u + 3)A (s,u - I)D *(s,u - I), (2.15) 

(2s + 1)[ - uD *(s + !,u)A (s,u) + E(s + !,u)B (s,u) - (u + I)D (s + !,u - I)C(s,u)] 

= - (2s + 3)[uC(s,u + I)D (s,u) + B (s,u)E(s,u) + (u + I)A (s,u - I)D *(s,u - I)], (2.16) 

[(u + 2)(2u + IW 12B *(s,u + I)A (s,u) + [u(2u + 3)]I!2C*(s,u + I)B (s,u) 

- [(u + 2)(2u + IW/2C*(s - !,u + I)B(s - !,u + I) - [u(2u + 3)]I!2B *(s - !,u)A (s - !,u) 

+ [(u + 2)(2u + IW/2E(s,u + I)D(s,u) - [u(2u + 3)]1/2D(s,u)E(s,u) = 0, (2.17) 

2s(2s + 1)1 [(u + 2)(2u + 1)]1!2B *(s,u + I)A (s,u) + [u(2u + 3W 12C *(s,u + I)B (s,u) 1 
- (2s + 2)(2s + 3)1 [(u + 2)(2u + IW 12C*(s - ~,u + I)B (s - !,u + I) + [u(2u + 3W/2B *(s - !,u)A (s - !,u)} 

- 2s(2s + 3)1 [(u + 2)(2u + IW/ 2E (s,u + I)D (s,u) - [u(2u + 3W/2D (s,u)E (s,u)} = 0, (2.18) 

2s![u(2u + IW/ 2B*(s,u + I)A (s,u) - [(u + 2)(2u + 3)]1/2C*(S,U + I)B(s,u)} 

+ (2s + 2)1 [u(2u + 1)]1!2C*(s - !,u + I)B (s - !,u + I) - [(u + 2)(2u + 3W/ 2B *(s - !,u)A (s - !,u)} 

+ 2s![u(2u + 1)]I! 2E(s,u + I)D(s,u) + [(u + 2)(2u + 3)j1/2D(s,u)E(s,u)} = 0, (2.19) 

(2s + 1)1 [u(2u + 1)]1/2B *(s,u + I)A (s,u) - [(u + 2)(2u + 3)]1!2C *(s,u + I)B (s,u)} 

+ (2s + 3)1 [u(2u + l)j112C *(s - !,u + I)B (s - !,u + I) - [(u + 2)(2u + 3)]1!2B *(s - !,u)A (s - !,u)} 

- (2s + 3)1 [u(2u + IW/ 2E(s,u + I)D (s,u) + [(u + 2)(2u + 3)]1I2D (s,u)E(s,u)) = 0, (2.20) 

[u(2u + 1)]1/2E (s + !,u + I)A (s,u) + [(u + 2)(2u + 3)]1I2D (s + !,u)B (s,u) 

= [u(2u + IW/2B(s,u + I)D(s,u) + [(u + 2)(2u + 3)]1/2A (s,u)E(s,u), (2.21) 

(2s + I){ [(u + 2)(2u + 1)]1IZE (s + ~,u + I)A (s,u) - [u(2u + 3)]1/2D (s + !,u)B (s,u)} 

= - (2s + 3)1[(u + 2)(2u + 1)]1/2B(s,u + I)D(s,u) - [u(2u + 3)]1/2A (s,u)E(s,u)}, (2.22) 

- [(u - 1)(2u - 1)]1/2D *(s + !,u - I)B(s,u) + [(u + 1)(2u + IW/2E(s + ~,u - I)C(s,u) 

= [(u - 1)(2u - IW 12C (s,u)E (s,u) - [(u + 1)(2u + IW/2B(s,u - I)D*(s,u - I), (2.23) 

(2s + I){ [(u + 1)(2u - 1)]1I2D *(s + ~,u - I)B (s,u) + [(u - 1)(2u + IW/2E(s + ~,u - I)C(s,u)} 

= (2s + 3)1 [(u + 1)(2u - 1)]1I2C(s,u)E(s,u) + [(u - 1)(2u + IW/2B (s,u - I)D *(s,u - I)}, (2.24) 

uA (s,u)C(s + ~,u + I) + B(s,u)B(s + !,u) - (u + 1)A (s + !,u - I)C(s,u) = 0, (2.25) 
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[(u + 2)(2u + I)]1/2A (s,u)B (s + ~,u + 1) = [u(2u + 3jp/2A (s + ~,u)B (s,u), 

[(u + I)(2u - Ijp/2B(s,u)C(s + ~,u) = [(u - I)(2u + Ijp/2B(s + !,u - I)C(s,u), 

A (s,u)D (s + ~,u + 1) = D (s,u)A (s,u + 1), 

C(s,u)D *(s + !,u - 2) = D *(s,u - I)C(s,u - 1), 

2sA (s,u)C *(s,u + 2) - (2s + 2)A (s - !,u + I)C *(s - !,u + 1) - 2sD (s,u)D *(s,u + 1) = 0, 

(2s + l)A (s,u)C *(s,u + 2) - (2s + 3)A (s - !,u + I)C *(s - !,u + 1) + (2s + 3)D (s,u)D *(s,u + 1) = O. 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

We now consider the second order 80(7) Casimir invariant 12, From Eq. (5.1) of Vanden Berghe et al.2 it follows that 

[000] 
(stUA.,uvI12IstuA.,uv) = -2V3(stuA.,uvl(T[I12 112 I]T[1I2 112 II) 000 IstuA.,uv) 

- sIs + 1) - tIt + 1) - !u(u + 1). (2.32) 

For [v,O,I] representations the expectation value of 12 is6 

(s t u A.,u vl12 1s t u A.,u v) = - §(4v2 + 24v + 21). (2.33) 

We next apply the Wigner-Eckart theorem and Eq. (15.23) of De Shalit and Talmi5 to the matrix element on the right-hand 
side of(2.32). After making the choice t = s + ~ and taking into account (2.33), we obtain the following equation that can be 
added to the set (2.8H2.3I): 

IA (s,uW + IB(s,uW + IC(s,uW 

+ IA (s - ~,u - IW + IB(s - !,uW + IC(s - ~,u + IW + ID(s,uW + IE (s,uW + ID(s,u - IW 

= (2s + I)(2s + 2)(2u + IlU(4v2 + 24v + 21) - 2s2 - 3s - a - !u(u + 1)]. (2.34) 

3. SOLUTION OF THE RECURSION RELATIONS 

Equations (2.8H2. 13) and (2.34) can be combined into 

[(2s + 3)(2u + 3) + 2s + I](2u + IliA (s,uW + (2s + 2l2u(2u + 3)IB(s,uW 

+ (2s + 3)(2u + I)(2u + 2)ID(s,uW + (2s + 3)(2u + I)(2u + 2)IC(s - !,u + IW 

= (2s + I)(2s + 2)(2s + 3)(2u + I)(u + I)(2u + 3)U(4v2 + 24v + 21) - 2s2 
- 4s - i - !u(u + 5)]. (3.1) 

This equation can be applied to states with maximum s-value, i.e., 2s = 2sM = V - U + !. As a consequence of the definitions 
(2.2), (2.3), and (2.5), A (SM'U) = B (SM'U) = D(SM'U) = O. Hence 

IC(SM - ~,u + IW = !(2u + I)(2u + 3)(v - u + !)(v - u + ~)(v - u + ~). (3.2) 

EliminationofIB(s,uW, IC(s,uW, IB (s - !,uW, ID(s,uW, ID(s,u - IW,andIE(s,uWfromEqs.(2.8)-(2.13)and(2.34)gives 

(2s + I)(2s + 3)u(2u + 3)IA (s - !,u - lW - 2s(2s + 2)(u + I)(2u + I)IA (s,uW - (2s + I)(2s + 3)(2u + 2)IC(s - !,u + IW 

= - s(2s + 1)(2s + 2)(2s + 3)(2u + 1)(2u + 3)[M4v2 + 24v + 21) - 2s2 
- 2s + a - 2su - ~u(u + 2)]. (3.3) 

Equations (2.30) and (2.31) can be combined into 

IC(s _ !,u + lW = [ 2s(2s + 2) ]2 IA (s,uWIC(s,u + 2W , 
(2s + I)(2s + 3) IA (s - !,u + IW 

(3.4) 

which together with (3.3) and the boundary condition (3.2) allows one to solve IA (s,u W and I C (s,u W for s- and u-values which 
are subject to the condition that v - 2s - u + ! be even. Therefore we will mark these solutions by a subscript E. On the other 
hand, for v - 2s - u + ! odd, an index 0 will be added. Omission of a subscript will refer to the independency upon a precise 
subscript. The solutions are 

IAE(s,uW = _1_ (2s + I)(2s + 3) (2u + 1)(2u + 3) (v + 2s + u + ~)(v - 2s _ u + J..), 
16 u + 1 2 2 

(3.5) 

ICE (s,uW = _1_ (2s + 1)(2s + 3) (2u - 1)(2u + 1) (v + 2s - u + ~)(v _ 2s + u + J..). 
16 u 2 2 

(3.6) 

Obviously Eqs. (3.3) and (3.4) remain valid when v - 2s - u + ! is odd, but other boundary conditions on A and C must be 
invoked before solving them. To that aim we will proceed in an indirect way by first eliminating IB (s,uW, IC(s,uW, 
IA (s - !,u - lW, ID(s,u - lW, and IE (s,uW from Eqs. (2.8H2.13) and (2.34), i.e., 

2s(u + 1)(2u + l)[IA (s,uW - ID (s,uW] + (2s + l)u(2u + 3)IB (s - !,uW + [s(2u + 3) + s + 1]IC(s - !,u + lW 

= s(2s + 1)(2s + 2)(2u + l)(u + 1)(2u + 3)W4v2 + 24v + 21) - 2r - 2s + a - !u(u + 5)]. (3.7) 

1197 J. Math. Phys .. Vol. 25. No.5, May 1984 De Wilde (It sf. 1197 



                                                                                                                                    

Since IAE(SM'UW and ICE(SM - !,u + lW are known and IDE (SM'UW = 0, Eq. (3.7) produces an expression for 
IBo(SM - !,uW·Furthermore, theeliminationoflA (s - !,u - lW, IB (s - !,u)j2, IC(s - !,u + lW, ID (s,uW, ID (s,u - lW,and 
IE (s,uW from Eqs. (2.8), (2.9), and (2.34) leads to 

2[ IA (s,uW + IB (s,uW + IC(s,uWJ = (2s + 1)(2s + 3)(2u + 1) [A(4v2 + 24v + 21) - 2s2 
- 6s - ~ - !u(u + 1)]. (3.8) 

From Eg. (3.8), an expression for ICO(SM - !,uW follows 
because IAo(SM - !,uW = 0, and IBo(SM - !,uW is already 
known. By the aid of(3.3) and (3.4) it is then straightforward 
to derive 

lAo (s,uW = _1_ (2s + 1)(2s + 3) (2u + 1)(2u + 3) 
16 u + 1 

X(V+2s+U+-¥- )(V-2s-U- ~). 
(3.9) 

ICo(s,uW = _1_ (2s + 1)(2s + 3) (2u - 1)(2u + 1) 
16 u 

X(V+2S-U+-¥- )(V-2S+U+ ~). 
(3.10) 

Having now the complete results for IA (s,uWand I C (s,u W at 
our disposition we learn from (3.8) that 

IBE(s,uW = _1_ (2s + 1)(2s + 3) 2u + 1 
16 u(u+l) 

X (v + 2s - u + ~ )(v - 2s - u + + ). 
(3.11) 

IBo(s,uW = _1_ (2s + 1)(2s + 3) 2u + 1 
16 u(u+l) 

X(V+2s+U+-¥- )(V-2s+U+ ~). 

Similarly (3.7) allows us to calculate 

ID (s uW = _1_ (2u + 1)(2u + 3) 
E , 16 u + 1 

(3.12) 

X(V-2s+U+ ~)(V-2S-U+ ~). 
(3.13) 

ID (s uW = _1_ (2u + 1)(2u + 3) 
o , 16 u + 1 

x(v + 2s - u + ~ )(v + 2s + u + -¥- ). 
(3.14) 

Finally, Eq. (2.8) leads to 
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lEE (s,uW = _1_ 2u + 1 (v + 2s + 4su + 3u + 1.. )2, 
16 u(u+1) 2 

(3.15) 

lEo (s,uW = _1_ 2u + 1 (v _ 2s _ 4su _ 3u + 2. )2. 
16 u(u+l) 2 

(3.16) 

Clearly, in order to derive general expressions for the 
squares of the absolute values of the reduced matrix ele
ments, we have only used a restricted part out of the set of 
relations established in Sec. 2. The relations (2.14)-(2.31) 
provide us the means for fixing the relative phase factors of 
the reduced matrix elements themselves. In particular, if we 
choose 

BE (s,u) = ei{3IBE(s,u)l, f3ER, 

DE(s,u) = eiDIDE(s,u)l, 8ER, 

then it follows that 

A (s,u) = ei({3 +.5 +atT)IA (s,u)l, aEI 0,1), 

Bo(s,u) = ei({3+ btT)IBo(s,u)l, bEIO,ll, 

C(s,u) = ei[I{3-.5)+(a-b+ l)tT J IC(s,u)l, 

Do(s,u) = ei
(.5 + btT)IDo(s,u)j, 

E(s,u) = ei(a - b)tTlE (s,u)l. 
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The generators of the rotation groups SO(N) (N = 2n, 2n + 1) have been realized using a 
restriction of the unitary group U(2n) defined on the 2n-dimensional fundamental representation 
space of spinors. These generators have been used to subduce multispinor representations of 
SO(N) from those ofU(2n). The procedure has been illustrated for the two-spinor vector 
representations (10) and (1000) of SO(5) and SO(8), respectively. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

The tensor (integral) representations of the rotation 
groups SO(N) (N = 2n, 2n + 1) have been extensively stud
ied over the past few years. Gel'fand and Zetlin I were the 
first to display explicitly the canonical basis states spanning 
the irreducible representations (IR's) (A )=(A IA2" • ..1, n ) of 
SO(N). These basis states were studied in detail by Pang and 

Heche and Wong3 using skew-Hermitian generators Jij of 
the Lie algebra of SO(N). An alternative approach based on 
the unitary group restriction U(N) I SO(N) was considered by 
Chacon4 and Moshinsky5 and was found also to lead to the 
canonical basis set. Though these procedures are not direct 
enough to be programmed readily, they are, nonetheless, 
well understood and lead to the required IR's ofSO(N). 

The spinor representations of SO(N) are, on the other 
hand, relatively less well studied, though they have applica
tions in a number of areas of nuclear and particle physics. 
Examples of such applications are the multispinor represen
tations ofSO(5),6.7 SO(6),8 SO(8),9 and SO(IO).1O Spinor re
presentations ofSO(N) with N<6 can be studied readily us
ing isomorphisms with unitary and symplectic groups (cf. 
Ref. 10, p. 360). The procedures for generating the spinor 
representations become relatively more complicated for 
N> 6. It is, therefore, worth investigating whether a direct 
scheme could be worked out for generating the muItispinor 
states of SO(N). 

In the present note we have tried to generalize the U(N) 
.l.SO(N) restriction used for the tensor representations4

,5 to 
obtain the spinor representations of SO(N). Since the basic 
spinor space of both SO(2n + 1) and SO(2n) is of2n dimen
sions, this required the restriction U(2n)!SO(N). As such, 
more complicated relations are expected between the gener
ators of SO(N) and the shift operators of U(2n) than in the 
tensor case. We have guessed at the form of these relation
ships using as guidelines the Lie algebra of SO(N). These 
generators have been defined in Sec. 2 and used to obtain the 
basis states of the (10) representations ofSO(7) and SO(8). A 
brief discussion has been presented in Sec. 3. 

2. SPINOR BASIS FOR SO(N) 

As pointed out in Sec. 1, the present procedure is a gen
eralization ofthe U(NpSO(n) restriction. In view of this, we 
summarize briefly this technique for obtaining the tensor 

representations before considering the spinor representa
tions. 

Given an ordered orthonormal set of single particle ba
sis states, 

(1 ) 

spanning the fundamental representation space VN of the 
unitary group U(N), it is possible to define a set of rth rank 
tensors spanning the reducible space VN ® r of the group. A 
reduction of this space yieldS a set of irreducible subspaces 
VIA I ofU(N), each of which is stable under the generators Eij 
(i,j = 1, ... ,N) of the group. These generators define the Lie 
algebra of U(N), 

(2) 

and 

(3) 

The generatorsApq ofSO(N) can be defined using the Eij as 
[cf. Ref. 5, p, 36, Eq, (5.18)] 

Apq = Epq - EN+ l-q,N+ I_p' 

Such a realization implies that 

A p; =Aqp 

and 

Apq = - AN+ l-q,N+ I_p' 

(4) 

(5) 

(6) 

Thus there exist only n(2n + 1) independent generators for 
SO(2n + 1) and n(2n - 1) for SO(2n). Using Eq. (2) it can be 
readily shown that the Apq define a Lie algebra ofSO(N) as 

[Apq,ArsJ = A ps 8 rq -Arq 8 ps -AN+I-qs8N+I_pr 

+ArN+I_p8N+I_qs' (7) 

The weights of the basis states spanning an irrep 
(A )=(A I..1,2" • ..1, n > are defined as the eigenvalues of the com
muting set of generators, 

App = Epp - EN+ l-pN+ I-p (p = 1,2, ... ,N). (8) 

The weights are assumed to be ordered such that (w)=(w; , 
wi , ... ,w~) > (w')=(w;, wi , ... ,w~) if the first nonzero differ
ence WI - w;, W2 - wi '''''Wn - w~ is positive. On the basis 
of this, the generators Apq (p¥q) can be classified as weight 
raising (p < q) and weight lowering (p > q) ones. 

The highest weight state (HWS) of any irrep (A ) of 
SO(N) follows readily using these generators. The other low-
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er weight states can be generated from this using lowering 
operator polynomials of the generators [cf. Ref. 4, p. 45, for 
SO(5) and p. 46 for SO(6)]. Thus a direct procedure for gener
ating the tensor representations results from the defining re
lation in Eq. (4). This has prompted us to examine whether 
one or more relations exist between the generators ofU(r). 

Consider the 2n-dimensional space V
2

" spanned by an 
ordered orthonormal set of spinors 

V2": {luk)-I(mnk)lk= 1,2, ... ,2n 

Imik I =! for all i = 1,2, ... ,n}. (9) 

An ordering is defined over the basis states Uk by assuming 
that j < k implies that the first nonzero difference m Ij 
- m lk , m 2j - m 2k , ... ,mnj - mnk is positive. This space is 

the fundamental representation space ofU(2n) on which a set 
of generators, 

{Ejk =E(ml
j
m2j"m")(mlkm,. ... m"k) I j,k = 1, ... ,2

n
}, (10) 

satisfying Eqs. (2) and (3) can be defined. For N = 2n + 1, 
this space V2" is also the carrier space for the fundamental 
representation (Boo'!> ofSO(2n + 1). If N = 2n, on the other 
hand, V

2
" breaks up into two subspaces defining the none

quivalent IR's <H"'~) and q~". -!> ofSO(2n). In view of 
this, it is convenient to consider the two groups separately. 

A. SO{2n) 

Generalizing the SO(5) study by Ichimura/ we define 
the set of n commuting generators App of both SO(2n) and 
SO(2n + 1) as 

2" 

App = L mpkEkk · 
k~1 

(11) 

We can readily establish the correspondence between the 
choice of Eq. (11) and that of Ref. 7 by using the basis set 

Elk, mpk ~ +, mqk ~ ~ Ilk, mpk ~ ~, mqp ~ + I 

defined as in Eq. (9): 

U I = I( + + ), u3 = I( - + ), 

u2 =1(+ -), u4 =1(- -), 
(12) 

where we have replaced the weights ± ~ by their signs. Us
ing this set in Eq. (11), we obtain 

A II = !EII + !E22 - !E33 - !E44 
= !(HI + H 2) (13) 

and 

An = !EII - !E22 + !E33 - !E44 

=!(H] -H2)' (14) 

where the Hi (i = 1,2) are in the notation ofEq. (4.3), Ref. 7. 
The major problem arises in defining the shift genera

tors A pq (p # q). For SO(2n) there are 2n(n - 1) generators of 
this type, of which half are weight raising and the remaining 
half weight lowering ones. Representing the weight raising 
generators asApq (p < q), we require that the weight lowering 
generators are A p; and can be represented as Aqp (p < q). 
Any definition of the generators Apq (p < q) should then be 
consistent with this. Further, among these weight raising 
generators n(n - 1)12 are of the formApq (l..;;p..;;q..;;n) and 
the remaining n(n -I)12areApq (n + l..;;p<q..;;2n). Thus 
essentially we need only these two categories on each of 
which we impose the condition 

Apq = -AN+I~qN+I~P' (15) 

Subject to these conditions, we can define A pq as 
q - 1 

2"'- 2 I (mak + 112) 

l..;;p <q";;n: Apq = L ( _ )a~p+ 1 

k~1 

X Elk, mpk ~ +, mqk = ~ Ilk, mpk ~ ~. mqk ~ +), (16) 

where 

= E(rnlkm2k· .. mp _ 1 kmpk( = + t/2)mp + I J,;.'··mq _ I J,;.mqd = - 1/2)mq + I k··'mn~J(mlJ,.···mp _ I 1..mpJ,J = - llZ)mp + I k .. ·mq _ 1 kmql.,( = + 1/2)mq + I k'··m"J.:I' (17) 

and the summation is over all the 2n ~ 2 states arising from all possible weights mik = ± W #P, q). Using the ordering of the ba
sis states as in Eq. (9), we note that the generator ofU(2n) defined in Eq. (17) is a weight raising one. Thus A pq (p < q) ofEq. (16), 
which is a linear combination of such generators, is also a weight raising one. Since, from Eq. (3), we have 

(18) 

and the right side ofEq. (18) defines a weight lowering generator ofU(2n), we find that 

l..;;p<q..;;n: Aqp=Ap; (19) 

is a weight lowering generator. As pointed out earlier, we need to define one more class of weight raising generators, A p N + I ~ q 

(l..;;p <q..;;n), which we assume to be subject to 

AqN+ I ~p = - ApN+ I ~q' 

We define these generators as 
q-I 

2"-2 I Imak+ 1121 

1<p<q..;;n: ApN+I~q= L (- )a~p+1 E(k,mpk= +,mqk~ +lIkmpk~ ~,mqk= ~I' 
k~1 

where, as in Eq. (17), 

Elk mpk = +. mqk ~ + I(k mpk = -. mqk ~ ~ I 

= E(rnlkm2k •• ·mp _ I kmpk( = 1/2)mp + I k"'mq _ 1 k mqk( = 1/2)mq + I k,··m"k)(rnlkm2k,··mp _ J kmpk( = - 1/2)mp + I J,;.'··mq - I k mqk( = - 1/2)rnq + I k'··rn"k)· 
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Again since Eq. (22) defines a weight raising generator of 
U(r), the A p N + I _ q defined by Eq. (21) is also a weight rais
ing generator. Further, 

1<p<q<n+1: A/N+I_q=AN+I_qp (23) 

is as before a weight lowering generator. That the generators 
defined by Eqs. (16) and (21) define a Lie algebra can be 
verified using Eq. (2). This has been done in the Appendix, 
subsection 1. As an illustration of the form of these genera
tors, we consider the group SO(8). The 16 basis states of the 
fundamental spinor irrep of SO(8) are 

U I = I( + + + + ), U5 = I( + + + ), 
U 2 = I( + + + - ), U6 = I( + + - ), 

U 3 = I( + + + ), U7 = I( + + ), 
U4 = I( + + - ), U g = I( + - ), 

U9 = I (- + + +), U 13 = I( - - + + ), 
U IO = I( - + + - ), U 14 = 1(- + - ), 

U ll = I( - + + ), U 15 = 1(- + ), 
U 12 = I( - + - ), U 16 = 1(- - ). (24) 

Oftheseu l , U4, U6' U7, U IO, U ll ,U 13' t116span theIR <HH) and 
the rest <m - p. Using Eq. (11), we obtain the four weight 
generators as 

All = HEll + E22 + E33 + E44 + E55 + E66 + E77 + Egg 

- E99 - EIOIO - Ellll - E1212 - E1313 - EI414 

- El5l5 - E 1616], (25a) 

A22 = HEll + E22 + E33 + E44 - E55 - E66 - E77 - Egg 

+ E99 + EIOIO + Ellll + E1212 - E1312 - EI414 

(25b) 

A33 = HEll + En - E33 - E44 + E55 + E66 - E77 - Egg 

+ E99 + EIOIO - Ell' I I - E1212 + E1313 + EI414 

- E I515 - E 1616], (25c) 

A44 = HEll - E22 + E33 - E44 + E55 -: E66 + E77 - Egg 

+ E99 - EIOIO + Ellll - El2l2 + E1313 - EI414 

+ E I515 - E1616]' (25d) 

Using Eq. (16), we now obtain the six generators of this cate
gory as 

4 

A -" E 12 - L (112 - 112 m3km4k)( - 112 112 m3km4k) 
k~1 

=E(+ _ + +)(_ + + +) +E(+ _ + _)(_ + +_) 

+E(+ __ +)(_ + _ +) +E(+ ___ )(_ + __ ) 

= E59 + E610 + E7l1 + E g J2> (26a) 

4 
A -" ( )m2k+ IIZE 13 - L - (liZ m2k - liZ m4k)( - liZ m2k 112 m4k) 

k~1 

= -E(+ + _ +)(_ + + +) -E(+ + __ )(_ + +_) 

+E(+ __ +)( __ + +) +E(+ ___ )( __ +_) 

- E39 - E410 + E713 + E g14, (26b) 
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4 
A "( )m2k+m3k+IE 

14 = L - (112 m2km3k - IIZ)( - 112 m2km3kI/2) 
k~1 

=E(+ + + _)(_ + + +) -E(+ + __ )(_ + _ +) 

-EI + _ + _)( __ + +) +E(+ ___ )( ___ +) 

= E 29 - E411 - E613 + E g15, (26c) 
4 

A 23 = I E(m'k 1/2 - 112 m4k)(m'k - 112 - 112 m4k) 
k~1 

=E(+ + _ +)(+ _ + +) +EI + + __ )(+ _ +_) 

+EI _ + _ +)( __ + +) +EI _ + _ -)(- _ +-) 

= E35 + E46 + Elll3 + E 12W (26d) 
4 

A -" ( )m3k + 1I2E 
24 - L - Imlk 112 m" - 1I2)(m'k - 112 m3k 1121 

k~1 

- E 25 + E47 - ElO13 + E l2l5 , (26e) 
4 

A34 = I Elm'k m2k 112 - I12)(mlkm2k - 112 112/ 
k~1 

= E23 + E67 + ElOll + E 1415 · 

Similarly, using Eq. (21), we obtain 

4 
A - "( )m2k +I12E 16 - L - (1/2 m2k 1/2 m4k)(- 112 m2k - 112 m4k) 

k~1 

(26f) 

- EI1l - E212 + E 515 + E 616 , (27b) 
4 

AI7 = " E L (112112 m3k m4k)( - 112 - 112 m3km4.1 
k~1 

= EI13 + E214 + E 315 + E 416, (27c) 
4 

A - "( )m3k + I12E 
25 - L - Im'k 112 mJk 1/2)(m'k - 112 m2k - 112) 

k 

- EI6 + E 3g - E914 + Ell 16' (27d) 

4 

A35 = I E(m'k m2k 1I2112)lm'km2k -112 - 112) 
k~1 

(27e) 

= EI4 + E 5g + E912 + E 1316· (27f) 

In addition to checking the commutation relations of the 
generators in Appendix subsection 1, we can readily verify 
that the generators of Eqs. (25), (26), and (27) satisfy Eq. (7) 
on using Eq. (2). 

B. SO(2n + 1) 

The weight generators of SO(2n + 1) are the same as 
those defined by Eq. (11). The generators defined using Eqs. 
(16H22) also hold for this group on replacing Nby 2n + 1 
and range of values n + 1 <p < q<2n by 
n + 2<p <q<2n + 1. This just leaves one more set of n 

weight raising generators of the formApn + I (l<p<n) to be 
defined subject to 

(28) 
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These generators are now defined as 

2· - I ± (mak + 1121 
1 <p<;n: Apn+1 =(2)-1/2L(_)a~p+, 

k~1 

X E(k, mpk ~ 112)(k, mpk ~ - 1121' (29) 

where 

E(k mpk ~ 1/2)(k, m pk ~ - 1/21 

= E(mlkm2k···mp _ I kmpk( ~ 112)mp + I k···m .k)(m1km2k···mpk( ~ - 1121···m.k)· 

(30) 
We also use 

(31) 

as the corresponding weight lowering operator. This result 
follows as before from Eqs. (29) and (3) for the ordering as in 
Eq. (9). 

Using the basis set defined by Eq. (12), we now obtain as 
an illustration, the n(n + 1)12 = 3 shift generators ofSO(5). 
Equation (16) leads, as for SOtS), to 

A 12 = E( + _)(_ + I = E 23 • (32a) 

Similarly, Eq. (21) leads to 

A I4 =E(+ +11 __ I =E14" (32b) 

Finally, Eq. (2S) leads to n = 2 generators, 

2 

A23 = (2)-1/
2 L E(m'k I12)(m1k - 1121 
k~1 

= (2)-1/2[E(+ +)(+ _I +E(_ +)(--11 

= (2)-1/2(EI2 + E 34 ). (32d) 

The results of Eq. (32) again compare with those of earlier 
studies 7 except for relative sign changes and multiplicative 
factors which at best affect the overall phases and normaliza
tion of the basis states generated. 

An illustration of the use of the generators defined by 
Eqs. (11), (16), (21), and (29) is now provided for the vector 
(two-spin or) representations (10) and (1000) ofSO(5) and 
SOtS) respectively. The representation (10) of SO(5) is sub
duced from the one defined by the Weyl shape B ofU(4). 
The highest weight state of ( 10) of SOt 5) corresponds to the 
weights (10) of A II' A22 defined in Eqs. (13) and (14). This 
state is unique, 

1(10)(10) = ~=OJ, 
~W 

(33a) 

where the basis states are as defined by Eq. (12). Applying 
A21 = A L to the above, we obtain 

1(10)(01) = ttl (33b) 

Applying A31 = A 13 to the state in Eq. (31a), we get 

1(10)(00) = (2)-1/
2

( - ttl + fID 
= (2)-1/2(Hj + tiD. (33c) 
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Applying A41 = A 14 to Eq. (31a), we have 

I (10)(0 - I) = ttl = - fE· (33d) 

Finally, applyingA54 = - A21 = - A 12 to Eq. (33d) yields 

1(10)( - 10) =A541(1O)(0 - 1) 

(33e) 

The basis states defined in Eq. (24) and the generators ofEqs. 
(25)-(27) can similarly be used to obtain the eight basis states 
spanning the vector representation (1000) of SotS) sub
ducedfrom rn ofU(16). The state with weights (1000) 
follows from Eqs. (24) and (25) as 

I (1000)(1000) = a[ffi + b [TIl + c~ + d~, 
where the unknowns are determined using the condition that 
this is an HWS. Using the weight raising generators of Eqs. 
(26) and (27) and equating the results to zero, we readily 
obtain 

-d=c= -b=a, 

where a can only be fixed by normalization using an arbi
trary phase + 1 leading to 

I (1000)( 1000) = U[m - [TIl + ~ - ~]. (34a) 

Applying the weight lowering generators as in the SO(5) 
case, we readily obtain 

1(1000)(0100) = u[ill- [TI!] + 13101- §I], 
1(1000)(0010) = H[ffi] -12131 + 15101- J§2]], 

1(1000)(0001) = Hl1151-13131 +[ill]- [121], 

1(1000)(000 - 1) 

= - H~ -14141 + 16121-lsl/], 

1(1000)(00 - 1 0) 

= u1 3161-14151 + 17121- [TIIj], 
1(1000)(0 - 100) 

= - H15161- @!II + 17141-IS13I], 

1(1000)( - 1 000) 

= H19161- P0l51 + [IIB] - 1121311, 

where Eqs. (34g) and (34h) follow readily on using 

(34b) 

(34c) 

(34d) 

(34e) 

(34f) 

(34g) 

(34h) 

A76 = - A32 = - A i3 and A87 = - A21 = - A 12 on 
1(1000)(00 - 10) and 1(1000)(0 - 100), respectively, 
with Eqs. (34b-f) being obtained from the HWS using Ail 
= A t (i = 2,3,4,5,6). It is to be noted that these basis states 

occur as a reduction of (HH) X (m -~) ofSO(S),asexpect
ed. 

3. DISCUSSION 

Basically there are four defining relations [cf. Eqs. (11), 
(16), (21) and (29)] between the generators ofSO(N) and those 
ofU(r) defined by us. These relations have been presented in 
a closed algebraic form so that the required A pq of any 
SO(2n) or SO(2n + 1) can be immediately written down. The 
ease with which they generate the multispinor basis, as illus
trated for SOtS) and SO(5), means that they can be readily 
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used for any application of the rotation groups to physical 
problems. Such applications are further facilitated by the 
fact that programs exist for determining the matrix elements 
of generators of unitary groups over the basis spanning any 
IR. II In spite of these obvious advantages there are some 
drawbacks which need to be emphasized. First, the phase 
factor associated with the HWS of any IR has to be arbitrar
ily assigned since the basis states are realized only to within 
an overall normalization factor. This choice is, however, 
consistent within the set of states spanning the given repre
sentation. Second, there is a proliferation of definitions for 
the generators unlike the one, Eq. (4), used for the tensor 
basis. This is related to the much larger restriction U(r) 
!SO(N) studied in the present note in comparison to U(N) 
! SO(N) used for the tensor basis. Third, the basis generated is 

not the canonical Gel'fand-Zetlin I half-integral basis, 
though it is equivalent to it. This aspect will be considered in 
a forthcoming note. Finally, though some of the definitions 
such as that ofEq. (20) could be eliminated by redefining Eq. 
(16), etc., we have not done so and sacrificed elegance for the 
sake of clarity and utility. 

APPENDIX 

In this appendix some typical commutators of opera
tors defined by Eqs. (11), (16), (21), and (28) have been ob
tained and found to satisfy Eq. (7) for the generators of 
SO(N). 

1. [App, A,s] for 1 <"p<f<s<n 

The definitions of Eqs. (11) and (16) lead to 

,-I 

2" 2" - 2 I (mak + 1/2) 

[App' A,s] = L L mpj ( - )a~'T 1 [ Eii' E(k: m,k ~ 112. m,k ~ - I12)(k: m,k ~ - 1/2. m,k ~ 112) ] 
j~ Ik~ I 

.~ - 1 

2" - 2 I (mak + 1/2) 2" 

= ~ (- )a~'+1 ~ m .8(m . m = 1){8(m. m = -l)E ~ ~ Pl rJ' rk 2 SJ' sk 2 (··.mrr-msro)( ... mrk = - 1/2···m ... k = 1/2···) 
k~ I j~ I 

/I 

- 8(m'j,m,k = - !)8(msj ' msk = !)E( ... m,k ~ 1/2 ... m,k ~ - 112 ... )( ... m,j".m,j")} II 8(mij,m ik ) 

,-I 

2" - 2 I (mak + 1/2) 

i=1 

Ii"".s) 

= ~(_)a~'+1 m {E £.. pk ( ... m'k ~ 1/2 ... m,k ~ - 1/2 ... )( ... m,k ~ - 1/2 .. ·m,k ~ - 1/2· .. ) 
k~1 

- E( ... m'k ~ 112"'m,k ~ - 1/2 ... )( ... m,k ~ - 112 ... m,k ~ - 1/2 ... )} = 0, 

where the second equality follows from the explicit display of the 8 functions ofEq. (2) in the present case. 

2. [App, Apq] for 1 <"P < q<n 

Proceeding as in subsection 1 but puttingp = r s = q, 
we obtain the result 

q-I 
2" 2" - 2 I (mak + 112) 

= ~ ~ m .( - )a~p+ 1 {8(m . m = 1)8(m . m = - l)E £.. £.. Pl Pl' pk 2 q;' qk 2 ( .. ·m • .. m • .. )( .. ·m k~ -112 .. ·m k~ -1/2 .. ·) 
j=lk=l PI q] P q 

n 

- 8(mpj,mpk = - !)8(m qj ,mqk = !)E( ... mpk ~ 112 ... mqk ~ - 112 ... )( ... mpj'.m",,,.)} II "8(mij,m ik ) 

q-I 

i= 1 

Ii~ "'P.q) 

2" - 2 I (mak + 112) {( 1 ) = _ a=p+l _ E k? I ( ) 2 ( ... mpk = 1/2 ... m qk ~ - 112 ... )( ... mpk ~ - 112 ... m qk ~ 1/2 .. ·) 

- - - E ( 1) } 2 ( ... mpk ~ 1/2 ... m qk ~ - 1/2 ... )( ... mpk ~ - 112 ... m qk ~ 1/2 .. ·) 

3. [Apq, Ars] for 1<p<q<f<s<n 

Before determining the value of this commutator, we 
express A pq , A,s of Eq. (16) in a more convenient expanded 
form as follows: 

q-I 
2"-2 I (mak+ 112) 

Apq = L (- )a~p+1 
j~ I 
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XE( ... mpj~ 112 ... mqj~ - 1/2 ... )( ... mpj~ - 112 ... m qj = 1/2 ... ) 

q-I 
2"-4 I (maj + 112) 

= L (- )a~p+1 

j=1 

X {E( ... 1/2 ... - 112 ... 1/2 ... 1/2 ... )( ... - 1/2 ... 112 ... 1/2 ... 112 ... ) 

+ E( ... 1I2 ... - 112· .. 112 ... - 112)( .. · - 112· .. 112 .. ·\/2· .. - \/2 ... ) 
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+ Ej ••• I12 ... - 1/2 ... - I/z···I/Z···H··· - I/Z···I/Z··· - I/Z.·.1/2 ... ) 

+ E( ... lIz ... - 112.·· - I/Z··· - 112···)(··· - 112···112··· - I/Z··· - I/Z ... )} 

(A3) 

where we have indicated explicitly the weights at the p, q, r, 
and s positions, and there is no summation over the indicated 
weights. Similarly, 

, I 

z" - 4 I (mbk + 112) 

A rs = I ( - )b ~ , + I 

k~1 

X {E( ... 1/2 ... 1/2 ... 1/2 ... - 112)(··.1/2 ... 1/2··· - 112··.112 .. ) 

+ E( ... 1I2 ... - 1/2···112··· - I 12···j{··· 112··· - 112··· - 1/2···1/2···) 

+ E( ... _ 1/2 ... 112 ... 112 ... - 112···H··· - 112···112··· - 112···112···) 

+ E1••• _ 112 ... - 112 ... 112.·· - 1/2···H··· - 112··· - 112··. - 1/2 ... 112 ... )}· 

(A4) 
Forming the commutator of(A3) and (A4) and using Eq. (2) 
as in (A 1) and (A2), we obtain the result 

[Apq,Ars] 
q - 1 s I 

2"-4 I I (maj+mbk+ I) I (- )a~p+lb~'+l 

k~1 

X {E( ... I/2 ... - 1/2···112··· - 1/2···H··· - 112···1/2··· - 1/2···1/2···) 

- E( ... II2 ... - 112 ... 1/2 . - I12···H··· - 1/2···112··· - II2 ... I/2 ... 1/2 ... )} 

=0. (AS) 

4. [Apq, Aqr] for 1<p<q<r<n 

As in obtaining (AS), we first express A pq ' Aqr in an 
expanded form as follows: 

q-I 
2" - 3 I (m aj + 112) 

A pq = I ( - )a ~ p + I 

j~ I 

X {E1 ••• I/2 ... _ 112 .. ·112 ... )(·-· - 1/2···1/2···I/Z···) 

+ E( ... 1/2 ... _ 1/2 ... - 112 .. ·)(··· - 112 ... 112··· - I12 ... )}' (A6) 
, - I 

2" - 3 I (mbk + 112) 

Aqr = I ( - )h q + I 
k~1 

X {E( ... I12 ... 112 ... - 112 .. ·)( ··IIZ··· - 112 .. ·112 .. ·) 

+ E( ... _ 1/2 ... 112 ... _ 112 ... )( ... _ 112 ... _ 112 ... 112 _)}. (A 7) 
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Using Eqs. (A6) and (A 7) 

2"-3 (qf + 'f )(mak+1/2) 

[ A pq' A qr] = I ( - ) a ~ p + I b ~ q + I 

k~1 

X { - EI· .. II2 ... 1/2 ... - 112 .. ·)(· .. - 112· .. 112 .. 1f2. .. ) 

+ E1··· 1I2 ... - 1/2· .. - 112 .. ·)(··· - liZ .. · - I/Z-.. - I12 ... )} 

,-I 

2" 1 I (mak + 112) 
= I (- )a~p+I 

k~1 

XE( ... 1/2 ... m qk·" - 1/2 ... )( ... - IIZ ... mqk .. ·IIZ ... ) = Apr' 
(AS) 

Some of the other nonzero results of Eq. (7) may be verified 
readily from Eq. (AS) on using the definitions of Eqs. (16)
(2S) as follows: 

(A9) 

[Apq,AN+I_pr] = -[Apq,AN+I_rp] 

= [AN+-I_rp,Apq] =A N+ I _ rq - -AN+I __ kr> 

[Apq,ArN+I .. q] = 

= ArN + I·-p· 

(AlO) 

(All) 

Equations (AS)-(AII) along with Eq. (AS) verify Eq. (7) for 
commutation relations of SO(N). 
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A group G of symmetry transformations of the rays of an indefinite metric space V with metric 
operator 1] leads to a projective representation U of Gin Vin terms of 1]-unitary, 1]-antiunitary, 1]
pseudounitary, and 1]-pseudoantiunitary operators. We investigate the restrictions which are put 
on the irreducible components of Uby the metric, and examine to what extent it is possible to 
decompose V into a direct sum of indefinite metric spaces, each carrying a projective 
representation of G. Attention is restricted to the cases where the subgroup of G which is 
represented by 1]-unitary operators is of index 1 or 2. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

Our main motivation for studying group representa
tions in indefinite metric spaces is the fact that twistor space 
is an indefinite metric space which carries in a natural way a 
(generalized) representation of the conformal group. 1.2 How
ever, our results may be of interest in any field where indefi
nite metric spaces are used and symmetry arguments do play 
a role (Ref. 3 for references). 

Let Vbe a n-dimensional complex vector space, n;;;.3, 
with a scalar product denoted by ( , ) and let 1] be a Hermitian 
nonsingular linear operator on V. The indefinite metric of V 
is given by 

(l/J,I/J) = (l/J,1]I/J), (1.1) 

and 1] is called the metric operator. 
The rays of Vare the one-dimensional linear subspaces 

of V. If I/JE Vand I/J =f. 0, then", denotes the ray which contains 
I/J. 

The rays'" and eI- are said to be orthogonal (denoted by 
("'.eI-) = 0) if and only if (I/J,l/J ) = 0 for each I/JE'" and each 
l/JEeI-. 

The rays of V form the projective space V. Let Tbe a 
bijective mapping of V onto V which has the property 

(1.2) 

Then we have the following theorem: 
Theorem 1: There exists a operator U on V such that 
(i) 1/JE1\I=? U I/JE T"" ( 1.3 ) 
(ii) Either U is linear and satisfies 

(Ul/J,UI/J) = (l/J,I/J) 'rJl/J,I/JEV, (1.4) 

or U is linear and satisfies 

(Ul/J,UI/J) = - (l/J,I/J) 'rJl/J,I/JEV, (1.5) 

or U is antilinear and satisfies 

(Ul/J,UI/J) = (I/J,l/J) 'rJl/J,I/JEv, (1.6) 

or U is antilinear and satisfies 

(Ul/J,UI/J) = - (I/J,l/J) 'rJl/J,I/JEV. (1.7) 

Moreover, U is determined uniquely by T up to a factor of 
modulus 1. 

This theorem, first given in Ref. 4, is a generalization of 
a theorem in Ref. 3, which in turn is the generalization of 
Wigner's theorem to indefinite spaces. The set of operators 

enumerated under (ii) of the theorem are called 1]-unitary, 1]
pseudo unitary, 1]-antiunitary, and 1]-pseudoantiunitary, re
spectively. 

Let G be a finite group and suppose that for each gEG 
there is a bijective mapping T(g) of V onto V such that Eq. 
(1.2) holds. Then the theorem above gives us for eachgEG an 
operator U(g) on V which is either 1]-unitary, or 1]-antiuni
tary, or 1]-pseudounitary, or 1]-pseudoantiunitary. Since U (g) 
is determined by T(g) up to a factor of modulus 1, we have 

U(g)U(g') = u(g,g')U(gg') 'rJg,g'EG, (1.8) 

where the mapping (J' of G X G into the complex numbers of 
modulus 1 is called a factor system of G. 

Let Go be the normal subgroup of G consisting of those 
elementsg of G for which U (g) is 1]-unitary. Let a, b, and e be 
elements ofG (if any exist) such that Uta) is 1]-antiunitary, 
U(b) is 1]-pseudounitary, and Ute) is 1]-pseudoantiunitary. 
Then aGo, bGo, and eGo denote the cosets of G with respect to 
Go which consist of the elements g of G for which U (g) is 1]
anti unitary, 1]-pseudounitary, and 1]-pseudoanitunitary, re
spectively. For the coset decomposition of G with respect to 
Go there are the following five possibilities: 

(I) G= Go, 
(II) G = Go + aGo, 
(III) G = Go + bGo, 
(IV) G = Go + eGo, 
(V) G = Go + aGo + bGo + eGo. 

From Eqs. (1.3)-(1.6), it follows that 

(U(g)l/J, U(g)I/J) = (- )g(l/J,I/J)g, 

where ( - )g is defined by 

( _ )g = { +_ 11 if gEGo + aGo 
if geGo + aGo 

and, if AEe, A g is defined by 

A g = {A if gEGo + bGo 
A * if geGo + bGo, 

the asterisk denoting complex conjugation. 

(1.9a) 
(1.9b) 
(1.9c) 
(1.9d) 
(1.ge) 

(1.10) 

(1.11) 

(1.12) 

Now choose a basis {e 1,e2 , ... ,e n J of V which is orthonor
mal with respect to the ordinary scalar product and form the 
matrices of U (g) and 1] via 

n 

U(g)e; = I U(g)jiej (1.13) 
j= 1 
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and 
n 

1]e; = I 1]jiej • 

j~ 1 

(1.14) 

These matrices are again denoted by U (g) and 1]; they satisfy 

U(g)U(g,)g = O"(g,g')U(gg'), (1.15) 

where the upper indexg is defined as in Eq. (1.12), and 

ut(g)1]U(g) = (- )g1]g, (1.16) 

where ut denotes the Hermitian conjugate of U. 
Matrices U (g) satisfying Eq. (1.15) form a projective lin

ear-antilinear (PLA) representation of G. If all the matrices 
are unitary, they form a projective unitary-antiunitary 
(PUA) representation of G. For simplicity we call such repre
sentations PLA (resp. PUA) representations even if all oper
ators are linear. 

Two PLA representations U and U' of G are equivalent 
if there exists a nonsingular matrix A such that 

(1.17) 

If U satisfies Eq. (1.16), then U', defined by Eq. (1.17) for 
some nonsingular matrix A, satisfies 

U 't(g)1]' U '(g) = ( - )g 1],g, 

where 

1]' = A t1]A. 

(1.18) 

(1.19) 

So the equivalence transformation given by A transforms the 
Hermitian matrix 1] into the Hermitian matrix 1]', which has 
the same signature as 1]. U is said to be decomposable if there 
exists an equivalent PLA representation U' such that 

U'(g) = (U
o
; (g) 0) 

U;(g) 
(1.20) 

and 

, (1]; 1]= o 
(1.21) 

Equation (1.18) then becomes 

U ;t(g)1]; U ; (g) = ( - )g 1]? (i = 1,2). (1.22) 

The aim of this paper is twofold. Our first objective is to 
examine to what extent it is possible to decompose a PLA 
representation of G which satisfies Eq. (1.16). A decompos
able PLA representation of G is reducible, but the reverse is 
not generally true, due to the restriction made in Eq. (1.21). 
Our second objective is to examine which restrictions are put 
on the irreducible components of Uby Eq. (1.16). We will 
restrict ourselves to the case where Go is a subgroup of index 
1 or 2 of G; i.e., we consider the cases I, II, III, and IV ofEq. 
(1.9). The study of case V is left to a later paper. 

2. GENERAL REDUCTION 

Due to a result of Murthy,5 Uis equivalent to a PLA 
representation whose matrices are all unitary, i.e., there ex
ists a nonsingular matrix A such that the matrices U '(g) given 
by 

(2.1) 

form a PUA representation ofG. Equation (1.16) then be-
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comes 

1]' U'(g) = ( - )g U'(g)1],g, 

where 

(2.2) 

(2.3) 
There exists a unitary matrix X such that 1]", defined by 

1]" = X t 1]'X, 

is a real diagonal matrix. If 

U"(g) =X-1U'(g)Xg, 

then U" is a PU A representation of G which satisfies 

1]" U " (g) = ( - )g U"(g)1]". 

Writing out matrix elements gives 

1];;U"(g)ij = (- )gU"(g)ij1];;. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Now consider the cases I and II [Eqs. (1.9a) and (1.9b)]. In 
these cases ( - )g = + 1 for each gEG. Then U" (g)ij = 0 
whenever 1];; =1-1];;. So by a suitable renumbering of rows and 
columns we have 

U"(g) = I ffi U;'(g) (2.8) 

and 

" '"' " 1] = L. ffi 1];i> (2.9) 

where each 1];' is a multiple of the unit matrix. 
So we have decomposed U" as a direct sum ofPUA 

representations U;' of G and 1]" in a corresponding direct 
sum of real multiples of the unit matrix. Each U;' can now be 
reduced to a direct sum of irreducible PUA representations 
of G, and this equivalence transformation does not change 
1];'. So in the cases I and II our goal has been achieved; we 
have proved the following theorem. 

Theorem 2: In the cases I and II there are no restrictions 
put by the metric on the irreducible components of a PLA 
representation U of G, and U is decomposable into irreduci
ble PUA representations. 

Now consider the cases where gEG exist with ( - )g 
= - 1. Then we have from Eq. (2.7) that U "(g)ij = 0 when

ever 11];; 1 =1-11];; I· SO by a suitable renumbering of rows and 
columns we have the decomposition ofEqs. (2.8) and (2.9); 
but here each 1];' is a real diagonal matrix with all diagonal 
elements equal up to a sign. 

Each U;' can now be studied separately; it satisfies 

(2.lO) 

Let the diagonal elements of 1];' be 0; and - 0; with 0; > O. 
SincegEG exists with ( - )g = - 1, it follows from Eq. (2.lO) 
that Tr 1];' = o. So 0; and - 0; have equal mUltiplicity. 

The equivalence transformation on U;' and 1];' by the 
matrix A; which is equal to 0;- 1/2 times the unit matrix 
leaves U;' unchanged, but turns 1];' into a diagonal matrix 
with diagonal elements + 1 and - 1 with equal multipli
city. So, without loss of generality, we may assume that 1];' 
has eigenvalues + 1 and - 1. In the next section we study 
case III and in Sec. 4 we treat case IV. 
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3. 77-UNITARY AND 77-PSEUDOUNITARY OPERATORS 

In this section we consider case III [Eq. (1.9c)], i.e., the 
case where G is represented by 77-unitary and 77-pseudouni
tary operators. Go, the subgroup of G which is represented by 
77-unitary operators, has index 2. According to the theory of 
induced PUA representations, which in its most general 
form is given in Ref. 6, each irreducible PUA representation 
of G is either of type A or of type B. 

A PUA representation of type A is equivalent to a PUA 
representation D, which can be written as 

(
.1 (g) 0) 

D (g) = 0 Li (g) "iIgEGo, (3.1) 

D (b ) = (~d u(b,b ~.1 (b 2)). (3.2) 

Here.1 is an irreducible PUA representation of Go; Li is an 
irreducible PUA representation of Go which is related to .1 
by 

Li (g) = u(g,b )CT*(b,b -1gb ).1 (b -1gb) (3.3) 

and which is not equivalent to.1. The dimension of.1 is d. ld 
denotes the unit matrix of dimension d. D is determined up 
to equivalence by the equivale~ce classes ofPUA representa
tions of Go containing.1 and.1. A PUA representation D of 
type B has the property that its restriction.1 = D ~ Go to G is 
. . • _ 0 
IrreducIble. In thIS case.1 and.1 are equivalent. D is not 
uniquely determined by .1 : The PU A representation D / of G, 
given by 

D /(g) = {D (g) if gEGo (3.4) 
- D (g) if giGo, 

has the same restriction to Go, but is not equivalent to D. 
However, the pair (D,D /) is determined up to equivalence by 
the equivalence class of .1. A pair of PU A representations of 
G of type B which are not equivalent, but whose restrictions 
to Go are equivalent, are said to be related. Let Ube a PUA 
representation of G with 

(3.5) 

Due to the results of the previous section, we may assume 
that the Hermitian matrix 77 has eigenvalues + 1 and - 1 
only, with equal multiplicity. We may now perform a uni
tary equivalence transformation 

U/(g) = W-IU(g)W, (3.6) 

77/ = wt1JW (3.7) 

such th~t the PUA representation U / of G has the following 
propertIes: 

(i) U / is a direct sum of irreducible PUA representations 
D,. 

(ii) The components D, of this direct sum are pairwise 
either equal or inequivalent. 

(iii) Components of type A have the form of Eqs. (3.1) 
and (3.2). 

(iv) Components of type B which are related satisfy Eq. 
(3.4). 

(v) The components are arranged into blocks U,~: 

U/(g) = I Ell U;(g) (3.8) , 
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according to the following rules: 
(1) irreducible components of type A are in the same 

block if and only if they are equivalent (and thus equal); 
(2) irreducible components of type B are in the same 

block if and only if they are either equal or related. 
Note that 77 can be chosen to be a diagonal matrix due to 

the results of the previous section, but this property is not 
inherited by 77/. If the Hermitian matrix 77/ is divided into 
blocks in the same way as U/, 

/ = (77/11,1 J"'1J' [l.p J) 
77 , / ' 

77 [p,1 J"'77 [p,p J 
(3.9) 

we find 

(3.10) 

If i i= k, the blocks U ~ and U;, when restricted to Go, 
are PUA representations of Go which have no irreducible 
components in common. Due to Schur's lemma, we thus 
have 

77/[i.k J = 0 (3.11) 

if i i= k. This means that we have found a decomposition of U' 
into blocks U;; each block U; can now be studied further 
separately. Let Vbe some block U;, and let b be the Hermi
tian matrix 77'[l.'J' Then 

bV(g) = (-)g V(g)b· (3.12) 

b is Hermitian and has eigenvalues + 1 and - I with equal 
multiplicity. Consider first the case that V consists ofirredu
cible PU A representations D of G type A. We may then write 

(3.13) 

(3.14) 

Here n is the multiplicity of Din V. Divide b into blocks in 
the same way as V: 

b = (b[I.1 Jb[1.2 J"'b[I,n J). (3.15) 
b[n,1 j"'b[n,n I 

From Eqs. (3.12)-(3.14) and Schur's lemma it follows that 
each b[ij I satisfies 

b[ijJ = (aijold 0) 
-aij1d 

(3.16) 

for some aijEC. So we can write 

(3.17) 

where A is a Hermitian n X n matrix. There exists a unitary 
matrix X such that A " defined by 

A '=XtAX (3.18) 

is a diagonal matrix; its diagonal elements are equal to + I 
or - 1. Define the unitary matrix Yby 

(
ld 

Y=X® 0 (3.19) 

and perform the equivalence transformation on Vand b by 
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Y. Then V is left unchanged, but t turns into t', where 

t'=A'®(~ _OIJ. (3.20) 

So t ' is a diagonal matrix with diagonal elements + 1 and 
- 1 with equal multiplicity. This means that V has been 

decomposed to a direct sum of irreducible PUA representa
tions ofG. 

Now consider the case that V consists of irreducible 
PU A representations of G of type B; suppose the multiplicity 
of D in V is n and the multiplicity of D ' in V is m. With a 
suitable numbering of rows and columns we have 

and 

(
In ®D(b) 

V(b)= 

° Let t be divided accordingly: 

t = (tll t12). 
t21 t22 

(3.21) 

(3.22) 

(3.23) 

From Eqs. (3.12) and (3.21) and Schur's lemma it follows that 
til = ° and t 22 = 0. Since det t =1= 0, the dimension oft II and 
t 22 must be equal. Thus n = m, and we arrive at the follow
ing restriction put on the irreducible components of Uby the 
metric: 

Theorem 3: In a PLA representation of G belonging to 
case III related irreducible PUA representations have the 
same multiplicity. 

From Eq. (3.12), Schur's lemma, and the Hermiticity of 
t, it follows that 

(3.24) 

and 

(3.25) 

for some n X n matrix X. Since t is Hermitian and has eigen
values + 1 and - 1 only, the matrix t 2 equals In' This 
implies that X is unitary. Define the unitary matrix Yby 

(
I nd 0) 

Y= ° xt® Id 
(3.26) 

and perform the equivalence transformation on Vand t by 
Y. Then V is left unchanged, but t turns into t " where 

(3.27) 

By a suitable reordering of rows and columns, we may now 
write Vand t ' as follows: 

V(g) = In ®(D~g) D~g)) VgEGo' (3.28) 

(
D(b) 0) 

V(b)= In ® ° -D(b) , (3.29) 

t'=In®(~d ~). (3.30) 

So V has been decomposed into components which are pairs 
of an irreducible PUA representation and its related PUA 
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representation. A further decomposition of these compo
nents is not possible. This follows from the fact that if V is an 
irreducible PU A representation of G of type B, there exists 
no Hermitian matrix t which satisfies Eq. (3.12). So we have 
derived the following theorem: 

Theorem 4: Any PLA representation of G belonging to 
case III is decomposable into irreducible PUA representa
tions of type A and pairs of related irreducible PU A repre
sentations of type B. 

4. 17-UNITARY AND 17-PSEUDOANTIUNITARY 
OPERATORS 

In this section we consider case IV [Eq. (1.9d)], i.e., the 
case where G is represented by 1]-unitary and 1]-pseudoan
tiunitary operators. Go, the subgroup of G which is repre
sented by 1]-unitary operators had index 2. Each irreducible 
PU A representation of Gis ei ther of type A, or of type B or of 
type C. 

A PUA representation D of type A has the property 
that its restriction.:::1 = D~Go to Go is irreducible. D is deter
mined up to equivalence by the equivalence class of .:::1. A 
PUA representation of type B is equivalent to a PUA repre
sentation D, which can be written as 

(4.1) 

(4.2) 

D is determined up to equivalence by the equivalence class of 
.:::1. A PUA representation of type C is equivalent to a PUA 
representation D, which can be written as 

(
.:::1 (g) 0) 

D(g) = 0 Li (g) VgEGo, (4.3) 

( ° C7(e,e).:::1 (e2)) 
D(e) = Id 0 . (4.4) 

..::1 and Li are irreducible d-dimensional PUA representations 
of Go, which are not equivalent to each other and are related 
by 

(4.5) 

D is determined up to equivalence by the equivalence classes 
of..::1 and Li. Let U be a PU A representation of G with 

(4.6) 

Due to the results of Sec. 2, we may assume that the Hermi
tian matrix 17 has eigenvalues + 1 and - 1 only, with equal 
multiplicity. We may now perform a unitary equivalence 
transformation 

U'(g) = W- I U(g)W8, 

17' = W t 
1]W 

(4.7) 

(4.8) 

such that the PUA representation U' ofG has the following 
properties: 

(i) U' is a direct sum of irreducible PUA representations 

(ii) The components D j of this direct sum are pairwise 
either equal or inequivalent. 

(iii) Components of type B have the form of Eqs. (4.1) 
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and (4.2). 
(iv) Components of type C have the form ofEqs. (4.3) 

and (4.4). 
(v) The components are arranged into blocks U;: 

U'(g) = I E9 U;(g) (4.9) 

such that irreducible components of U' are in the same block 
if and only if they are equivalent (and thus equal). 

Equation (4.9) is a decomposition of U'. This is proved 
in the same way as the corresponding decomposition in the 
previous section. So each block U; can now be studied sepa
rately. 

Let Vbe some block U;, and let {; be the corresponding 
block of rJ'. Then 

(4.10) 

(; is Hermitian and has eigenvalues + 1 and - 1 with equal 
multiplicity. Consider first the case that V consists ofirredu
cible PU A representations D of G of type A. Then we may 
write 

(4.11) 

and 

VIc) = In ®D(c). (4.12) 

Here n is the multiplicity of D in V. Divide {; into blocks in 
the same way as V [Eq. (3.15)]. Then it follows from Eqs. 
(4.10) and (4.11) and Schur's lemma that 

{;(iJ 1 = aij ld (4.13) 

for some aijEC. We thus have 

(;=A ® Id (4.14) 

for some Hermitian n X n matrix A. From Eqs. (4.10) and 
(4.12) it now follows that 

A= -A·. (4.15) 

Thus the dimension of A is even, and thus we have arrived at 
the following restriction put by the metric on the irreducible 
components of U: 

Theorem 5: In a PLA representation of G belonging to 
case IV the irreducible PUA representations of type A have 
even multiplicity. 

Now there exists an orthogonal matrix B such that 

t (0 i) B AB = Inl2 ® . • -/ ° (4.16) 

This follows from §13 of Chap. IX of Ref. 7, since iA is real, 
skew-symmetric, and has eigenvalues + i and - i with 
equal multiplicity. Define 

C=B® ld (4.17) 

and perform the equivalence transformation on Vand {; by 
C. Then V is left unchanged, and {; is transformed into 

( ° i10d). (;'=lqI2® '1 (4.18) 
-/ d 

It is seen that we have decomposed V into blocks containing 
two equal irreducible PUA representations of type A. 
Further decomposition is not possible, due to Theorem 5. 

Next consider the case where V consists of irreducible 
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PU A representations D of type B. With a suitable numbering 
of rows and columns, we may write 

V(g) = (In ®0.::1 (g) 0) 'rJgEGo In ®.::1 (g) (4.19) 

and 

( ° In ®O !iJ). VIc) = -In ®!iJ (4.20) 

From Eqs. (4.10), (4.19), and (4.20) and Schur's lemma it 
follows that 

(4.21) 

where X is a Hermitian 2n X 2n matrix which is partitioned 
into square blocks as follows: 

X2.). 
-XI 

(4.22) 

Due to a lemma, which we prove in the Appendix, there 
exists a unitary 2n X 2n matrix U which is partitioned into 
square blocks as follows: 

U=( UI 

- UT 
and which satisfies 

utXU=(~ _OIJ. 
Define the unitary matrix Y by 

Y= U®I d 

(4.23) 

(4.24) 

(4.25) 

and perform the equivalence transformation on Vand {; by 
Y. Then V is left unchanged and {; is transformed into 

{;' = utxu ® ld = (I nd 0). (4.26) ° -lnd 

This means that V has been decomposed to a direct sum of 
irreducible PUA representations of G. 

Finally consider the case that V consists of irreducible 
PUA representations D of type C. With a suitable number
ing of rows and columns, we may write 

V(g) = (In ®.::1 (g) 0_) 'rJgEGo (4.27) ° In®.::1(g) 
and 

(4.28) 

From Eqs. (4.10), (4.27), and (4.28) and Schur's lemma it 
follows that 

(4.29) 

where X is a Hermitian 2n X 2n matrix which is partitioned 
into square blocks as follows: 

(4.30) 

Let U be a unitary n X n matrix such that U tx I U is on diag
onal form. Define the unitary matrix Yby 

Y_ (U 0) 
- 0 U· ® ld (4.31) 
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and perform the equivalence transformation on Vand; by 
Y. Then V is left unchanged and; is transformed into 

!-' = (UtXOIU 0 ) 
~ _ (utx1U)* ® Id' (4.32) 

which is on diagonal form. This means that V has been de
composed into a direct sum of irreducible PUA representa
tions of G. So we have derived the following theorem: 

Theorem 6: Any PLA representation of G belonging to 
case IV is decomposable into a direct sum of irreducible 
PUA representations of type B, irreducible PUA representa
tions of type C, and pairs of irreducible PUA representations 
of type A. 

APPENDIX 

This appendix is devoted to the proof of the following 
lemma: 

Lemma: Let H be a 2n X 2n Hermitian matrix which is 
partitioned into square blocks as follows: 

(AI) 

and which has only eigenvalues 
fined by 

+ 1 and - 1. Let Ibe de-

(
In 

1= o 
(A2) 

There exists a unitary matrix U which is partitioned into 
square blocks as follows: 

- UT). 
u* I 

and which has the property that 

UtHU=I. 

(A3) 

(A4) 

Proof Since Tr H = 0 the eigenvalues + 1 and - 1 
have equal multiplicity. Thus there exists a unitary matrix V 
such that 

This implies that 

HV= VI. 

If V is partitioned into square blocks as follows, 
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(A5) 

(A6) 

(A7) 

then Eq. (A6) can be written as 

HI VI + H 2 VZ = VI' 

HI V3+ H Z V4= - V3, 

HTVI - HTV2 = V2 , 

HzVT - HTV4 = - V4 • 

Now define the matrix Uby 

U = (UI U3
) = (VI 

U2 U4 V2 

- VT). 
V* I 

(A8) 

(A9) 

(AID) 

(All) 

(AI2) 

Then U satisfies equations (A8)-(A 11) if Vi in these equa
tions is replaced by Ui' Consequently, 

HU= Uf. (AI3) 

Since U has the form prescribed by Eq. (A3), the lemma is 
proved if we show that U is unitary. Since V is unitary, we 
have 

vI VI + Vi V2 = 1. (AI4) 

Expressing ut U in terms of VI and V2 gives, with Eq. (AI4), 

t _ ( 1 
U U - _ V*tv + V*tv 

2 I I 2 

Equation (AI3) implies 

UtHU= UtUf. 

- V
t V* + vt V*) I 2 2 I 

I 
(AI5) 

(AI6) 

Taking the Hermitian adjoint of equation (A13) and multi
plying with U from the right gives 

UtHU = IUtU. (AI7) 

From Eqs. (AI6) and (AI7), it follows that utu commutes 
with I. This fact, together with Eq. (AI5), implies that UtU 
is the unit matrix. Thus U is unitary, which proves the 
lemma. 
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Work done by many authors indicates that important tools for calculations in microscopic 
collective models are the matrix elements of the generators ofthe symplectic group Sp(6) in an 
Sp(6)::lU(3) basis. Rosensteel has derived recursion relations for these matrix elements while 
Filippov has determined them using generating function technique, but it would also be 
convenient to have explicit and analytic formulas for them. This is what we do in this paper for the 
case of closed shells, i.e., when the irreducible representation (irrep) of Sp(6) is characterized by 
equal values for the three weight generators in the lowest weight state. We also indicate how our 
results can be extended to the case of arbitrary irreps of Sp(6), i.e., when we have open shells. 

PACS numbers: 02.20. + b, 03.65.Fd, 21.60.Ev, 21.60.Fw 

1. INTRODUCTION 

Work done in the last few years by Rosensteel and 
Rowel and Filippov2 and others, on the microscopic origin 
of nuclear collective models, has indicated that an important 
tool for calculations is the determination of the matrix ele
ments of the generators of the symplectic group Sp(6) in an 
Sp(6P U(3) basis. 

Rosensteel3 has derived recursion relations for these 
matrix elements, while Filippov has used generating func
tion techniques,2 but it would also be convenient to have 
explicit and simple analytic formulas for them. This is what 
we shall proceed to do here for the case of closed shells, i.e., 
when the irreducible representation (irrep) ofSp(6) is charac
terized by equal values for the three weight generators in the 
lowest weight state. The general case when the three weights 
have different values, corresponding to open shells, will be 
discussed in a future publication. 

It is convenient to express the generators ofSp(6) in 
terms of coordinates Xis and momenta Pis for a system of 
particles in three-dimensional space, i.e., i = 1,2,3, s = 1,2, 
... , n. Taking units in which fl, the mass of the particles, and 
frequency of an oscillator are 1, we get for the creation and 
annihilation operators the expressions 

17is = (IN2)(xis - i PiS)' Sis = (l/V2)(XiS + i PiS)' (Ll) 

The 21 generators of the Sp(6) group can then be written 
as l •3•4 

n 

B ij+ = I 17is 17js' 
s= 1 

n 

Bij = I Sis5js' 
s= 1 

(1.2a) 

(1.2b) 

(1.2c) 

which, from [Sj" 17is] = out)s" satisfy the commutation re
lations 

[Bij,B(rl = [B:,Bitl =0, (Ua,b) 

0) Member of the Instituto Nacional de Investigaciones Nucleares and EI 
Colegio Nacional. 

[Cij,Bitl =B;}Oji' +Bi;ojf' (1.3c) 

[Cij,Bi'j'] = -Bjj.oii' -Bji,oij" (1.3d) 

[Bij' B i1] = CfjOii' + Ci'jOij' + Cj'iOji' + Cu'Ojf' (1.3e) 

(Ut) 

corresponding to the Lie algebra ofSp(6). From (Ut) the Cij 
are the generators of the U(3) subgroup ofSp(6) that was 
introduced by Elliott. 5 From a physical standpoint we will 
also be interested in classifying our basis states by an 0(3) 
subgroup ofU(3) whose generators are 

3 

Li = - i I CijkCjk , i = 1,2,3, (1.4) 
j.k~ 1 

where the Cijk is the antisymmetric tensor in the three in
dices. 

We need now to discuss the states that are basis for the 
irreps Sp(6PU(3), with respect to which we would like to 
get the matrix elements of the generators (1.2). It is known 1,2 

that these states can be constructed by applying polynomial 
functions of the B ij+ of (1.2) to Slater determinants for the 
many-body systems in which the levels of an oscillator po
tential are filled compactly by nucleons subject to the restric
tions of the Pauli principle. Both the polynomials and the 
Slater determinants are characterized by definite irreps of 
U(3), which are coupled with a Wigner coefficient of this 
group, 1,3 to give for the full state also a definite irrep ofU(3). 
In the case of closed shells the Slater determinant corre
sponds to the irrep (A.,,u) = (0,0) ofSU(3) so that the irrep of 
U(3), characterized by the eigenvalues of CII' Cn> C33 of 
(1.2), can be denoted by (n12 + w, nl2 + w, nl2 + w), where 
3w is the total number of quanta for the particles in an har
monic oscillator potential. Denoting by 

Iw)=lnI2 + w, nl2 + w, nl2 + w), (1.5) 

the Slater determinant for closed shells, we see from its con
struction that it satisfies 

Bijlw) = 0, 

Cijlw)=O ifi:f.j, 

Culw) = (n12 + w)lw). 

(1.6) 
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The first relation stems from the fact that as B ij is symmetric 
under permutation of the particles, Bij jw) #0 would imply 
that we can construct a state of two quanta less that still 
satisfies the Pauli principle. This is in contradiction with our 
assumption that all levels of the oscillator are compactly 
filled. The second relation stems from the fact that C ij j w), 
i # j, implies diminishing by I the number of quanta in the 
directionj for some single particle states in the Slater deter
minant and increasing it by I in the direction i; but as all 
states have been filled this leads to Cij Iw) = 0 ifi #J. Finally 
the last relation in (1.6) was already derived above. 

As B :: ' CIZ' C13, C23 are raising, CII , C2Z' C33 are 
weight, and Bij, CZl> C3Z' C31 are lowering generators of 
Sp(6), we see from (1.6) that jw) is the lowest weight state of 
Sp(6) and thus 

( w I =(nI2 + w, n/2 + w, nl2 + w) (1. 7) 
gives also the irrep of this group. Furthermore, as we indicat
ed above, Iw) belongs to the irrep (0,0) ofSU(3). Thus we can 
get all the states characterized by the irreps of the chain 
Sp(6):)U(3) if we consider 

P(B nlw) (1.8) 

and the polynomial P is characterized by a definite irrep of 
U(3) and its subgroups. In the next section we proceed to 
discuss this polynomial. 

2. THE POLYNOMIAL IN 8/ AND THE STATES OF THE 
PROBLEM 

From the commutation relations (1.3c) the six raising 
operators B it correspond to the irrep (A,u) = (2,0) ofSU(3). 
If we take an homogeneous polynomial of degree N in the 
Bit, it will be part of a reducible representation ofU(3) asso
ciated with the direct product of N irreps (20). To get a polyn
omial of highest weight corresponding to a definite irrep of 
U(3), the polynomial P in the B :: must satisfy the commuta
tion relations6 

[Cij'P] =0 ifi<j, i,j=1,2,3, 

[Cjj - n12, P] = 2h iP, i = 1,2,3, 

(2.1a) 

(2.1b) 

where it is clear that eigenvalues of Cjj - n/2 are even as the 
B ij+ are second-order polynomials in the creation operators 
'YIis' Furthermore, the operator 

A 3 3n 
2N-I Cjj - -, (2.2) 

i= I 2 
is associated with the quantum number 2N given by 

hi + hz + h3 = N, hl>hz>h3>0. (2.3) 

It can be immediately seen that the polynomials satisfy
ing (2.1), which we denote by Ph,h,h" have the form 

Ph,.h"h, = (B Ii )h, - h2(B Ii B 2i - B liB 21 )h, - h'(Ll +)h" 
(2.4) 

where 

BI1 Bli B I"3 

Ll + = det B 21 B 2i B 2"3 (2.5) 

B31 B3i B3"3 

The commutation relations (2.la) are satisfied as from (1.3c) 
we see that for i <j we get 

1212 J. Math. Phys., Vol. 25, No.5, May 1984 

[Cij , BIt] = [Cij' B Ii B 2i - B liB z1 ] 
= [Cij,Ll+] =0. (2.6) 

From the commutation relations [Sis> 'YIjt] = Dils, we no
tice that we can interpret Sis = JIJ'Tfis so that application of 
Cjj - nl2 to Ph,h,h, provides immediately the eigenvalues on 
the right-hand side of(2.lb). 

The fact that Ph,h,h, (B ::) satisfies the commutation 
rules (2.1) implies that it can be represented by a Gel'fand 
pattern 7 

(

2hl 2h2 2h3) 
P 2h l 2hz =N(w;h 1hzh3)Ph,h,h,(B::), 

2hl 

(2.7) 

corresponding to a highest weight state,6 where the weights 
are given by the eigenvalues of Cii - n12. We have intro
duced in the definition of this Gel'fand pattern polynomial a 
normalization constant N (w; h Ih2h3) determined by the re
quirement that 

NZ(w; h lhzh3 )(wIPh,h,h, (Bij) 

XPh,h,h,(B,tllw) = 1, (2.8) 

where jw) is defined by (1. 5). This normalization constant is 
obtained in Appendix A using the commutation relations 
(1.3), and with its help, and of well-known Wigner coeffi
cients ofSU(3) and transformation brackets, we shall deter
mine the matrix elements of the generators ofSp(6) for the 
irrep ! w) in the Sp(6):) U(3) basis. 

The most general polynomial associated with the group 
chain U(3):) U(2):) U(1) can then be represented by 

(

2hl 2h2 2h 3) 

P ql q2 , 

r l 

(2.9) 

where the irreps of the three groups in the chain are given by 

[2hl' 2hz, 2h3], [ql' q2]' [r1], (2.10) 

which satisfy the inequalities 

(2.11) 

As indicated on p. 24 of Ref. 6, the polynomial (2.9) can 
be obtained from (2.7), (2.4), when we apply lowering opera
tors that are functions of Cii and C ij' i > j, i,j = 1, 2, 3. We do 
not give here the explicit procedure as we shall only need the 
highest weight polynomial (2.7) for the calculation, in the 
next section, of the matrix elements of B ij+ . We note, 
though, that, from a physical standpoint, we require polyno
mials characterized by irreps of the 0(3) subgroup ofU(3) 
whose generators Li are given by (1.4). This implies the need 
of the transformation brackets relating polynomials in the 
U(3):) U(2):) U(l) chain with those in U(3):) 0(3):) 0(2), i.e., 

(2.12) 

where Land M characterize the irrep of 0(3) and 0(2) (i.e., 
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the total angular momentum of the state and its projection) 
and f1 is a multiplicity index that distinguishes between re
peated irrepsL of 0(3) in a given irrep [2hl' 2hz, 2h3] ofU(3). 
The transformation brackets in (2.12) have been explicitly 
determined in other publications. 8.9 

The above discussion indicates that we have at our dis
posal the states that we require, i.e., 

P (
2hl 2hz 2h3) 

IliJ; N(A,u)f1 LM) = f1 LM IliJ), (2.13) 

where N is given by (2.3) and (A,,u) are 

,1,= 2hl - 2hz, ,u = 2hz - 2h3 • (2.14) 

Our objective then is to find the matrix elements of the 
generators (1.2) of Sp(6) with respect to the states (2.13), 
which we shal1 implement in the next section. 

3. THE MATRIX ELEMENTS OF THE GENERATORS OF 
Sp(6) 

We start with the gener~ors Cij of the subgroup U(3) of 
Sp(6), which we separate in N given by (2.2) and a traceless 
part C ij defined by 

Cij = Cij - ~ N8ij' (3.1) 

The matrix element ofNwith respect to the states (2.13) is, of 
course, of value N and diagonal in all the quantum numbers 
appearing there if f1 is chosen as the eigenvalue of an appro
priate Hermitian operator. 10 For the Cij we get the matrix 
elements 

(3.2) 

where we made use of the fact that the transformation brack
ets in (2.12) are real and so we can invert the order of bra and 
keto 

The matrix element ofCij for kets in the basis 
U(3)::J U(2)::J U( 1) are given explicitly, and in a very simple 
form, on p. 26 of Ref. 6. The transformation brackets from 
the U(3PU(2PU(I) to U(3PO(3PO(2) chain are, as was 
mentioned above, also available explicitly. Thus we can 
elaborate tables for all the matrices ofCij in the basis (2.13), 
which we may require in explicit calculations. 

Turning now our attention to the generators B;; and 
Bij ofSp(6) in (1.2), we notice thatBij is the Hermitian conju
gate of B ;/ . Thus we need only the matrix elements of B ;/ 
with respect to the states (2.13). We can make then the same 
development as in (3.2), keeping in mind that now in the bra 
we have N + 1 (A ',u') so that what remains to be determined 
are the matrix elements 
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2hl 2hz 2h3) 

ql qz , 

'I 
(3.3) 

where the ket is defined by 

(3.4) 

and similarly for the bra. 
As was mentioned before, B;; is associated with the 

irrep [200] ofU(3) or, equivalently, (A,u) = (2, 0) ofSU(3). 
The bra and ket are associated with the irreps 
[2h; 2h ~2h i] and [2hl' 2hz, 2h3] ofU(3) in the 
U(3PU(2PU(I) chain, and thus we see that in the bra we 
have only the irreps6 

[2h;, 2h~, 2h i] = [2h l + 2,2hz,2h3 ]. 

[2h l,2hz + 2,2h3 ], [2h l,2hz,2h3 + 2]. (3.5) 

Furthermore, with the help of the Wigner-Eckart theorem, 
the matrix element (3.3) can be written as 

\

2h; :h;, 2h i + 2hl 2hz 2h3) 

ql q2 /3 s t ql q2 

r; r l 

= (2h; 2h ~ 2h; liB +lI2hl 2hz 2h3 ) 

\

2h 12hz 2h3 2 0 0 2h; :h ~, 2h i) 
X ql qz ; S 0 ql qz , 

r l [ r; 
(3.6) 

where the last term of the right-hand side is a well-known 
Wigner coefficient ll •

lz ofU(3) in Gel'fand-Zetlin notation, 
which is discussed in Appendix B. In (3.6) the notation /3 si 
implies that we are using a Gel'fand-Zetlin pattern, associat
ed with the irrep [200] ofU(3), for the Bit, i.e., 

(

200) 
/3 si =p s[o , (3.7) 

where s, [ = 2, 1, 0 with [<So The explicit relation between 
B ij+ and /3 si is the following6: 

/3 It = V2B 3t, /316 =vLB 31, /3~ =B3-t;· 
(3.8) 

Thus for determining the matrix element (3.3) we need only 
to have the reduced matrix element of B + indicated on the 
right-hand side of (3.6). 

To obtain the reduced matrix element of B ;; , we can 
take for the ket on the right-hand side ofEq. (3.6) the highest 
weight state, i.e., q I = rl = 2h l' qz = 2hz. Ifwe then consider 
/3 z1 = B It and take for the bra the highest weight state cor
responding to the irrep [2h ;, 2h~, 2h i ] with h ; = hi + 1, 
h 2 = hz• h i = h3 we get the relation 
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(3.9) 

But from the expressions (3.4), (2.7), (2.4) for bra and ket on 
the left-hand side of (3.9), we see that the matrix element 
indicated there takes the value 

(3.10) 

where the normalization coefficients are given explicitly in Appendix A. As the Wigner coefficient ofU(3) on the right-hand 
side of (3.9), discussed in Appendix B, is a stretched one of value 1, we obtain that 

(2h l +2 2h2 2h311B+112hl 2h2 2h3) = [(2hl+4)(2hl-2h3+3)(2hl-2h2+2)(2hl+2liJ+n)]II2. (3.11a) 
(2hl - 2h3 + 4)(2hl - 2h2 + 3) 

A similar analysis, but now with B zi , B 31 , which is carried out explicitly in Appendix C, gives us then 

(2h 2h 2 2h liB +112h 2h 2h) = [(2h2 + 3)(2h2 - 2h3 + 2)(2hl - 2h2)(2h2 + 2£iJ + n - 1) ]1/2 
I 2+ 3 I 2 3 (2h 2-2h3+3)(2h l -2h2-1) , (3.11b) 

(2h 2h 2h 211B +112h 2h 2h) = [(2h3 + 2)(2h2 - 2h3)(2hl - 2h3 + 1)(2h3 + 2liJ + n - 2) ]112. 
I 2 3 + I 2 3 (2h I _ 2h3)(2h2 _ 2h3 _ 1) (3.11c) 

Having the explicit expressions (3.11) of the reduced 
matrix elements, the Wigner coefficients ofU(3) discussed in 
Appendix B, and the transformation brackets from the 
U(3PU(2PU(1) to the U(3PO(3PO(2) chain of groups 
discussed in Refs. 8 and 9, we can then write the matrix 
elements of the generators ofSp(6) with respect to the states 
(2.13). More practically, we plan to use these results to elabo
rate computer programs for the matrix elements of all the 
generators ofSp(6) for states in an Sp(6PU(3PO(3) basis. 

We note that so far we have only given an analytic pro
cedure for calculating the matrix elements of the generators 
B;;- ofSp(6) in the Sp(6) ~ U(3) basis when the irrep ofSp(6) is 
the {liJ l of (1. 7). We would like to obtain these matrix ele
ments for the general irrep of Sp(6) 

(n!2 + liJ3, nl2 + liJ2, nl2 + liJI)' (3.12) 

which, as we indicated in Sec. 1, are obtained from polyno
mials of the type (2.9) coupled with U(3) Wigner coefficients 
to Slater determinant associated with open shells, i.e., char
acterized by an irrep [liJI' liJ2, liJ3] ofU(3). The problem of 
normalizing these states [i.e., the equivalent of the N (liJ, 
hlh2h3) for closed shells discussed in Appendix A] becomes 
then much more difficult. Ifit could be solved analytically, 
then the matrix elements of B ;;- in the Sp(6) ~ U(3) basis can 
be obtained with the help ofSU(3) Racah coefficients as dis
cussed by Rosensteel. 3 We plan to look into this problem of 
normalization in a future pUblication. 

We would like to indicate that Klimyk l3 has also ob
tained the matrix elements of the generators ofSp(6) but in 
representations that are not the ones required in the nuclear 
structure problems discussed in this note l4. An alternative 
derivation of our results can also be obtained through the 
analysis in which Deenen and Quesne l5 consider the boson 
representation of the dynamical group of microscopic collec
tive states. Finally we stress that our discussion concerns the 
noncompact symplectic group Sp(6), which is frequently de
noted in the literature by Sp(6, R ) or Sp(3, R ), and not the 
compact one for which sometimes the notation Sp(6, C )nU(6) 
is used. 
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APPENDIX A: THE NORMALIZATION COEFFICIENTS 
N(liJ; hlh2h3) 

In this appendix we shall determine the value of the 
normalization coefficient N (liJ; h Ih2h3) appearing in Eq. (2.7). 

with 

First of all we use two facts: 
(i) The determinant of the B ij can be written as 

.:1 k3 =I €ijkB il Bj2' 
iJ 

where €ijk is the completely antisymmetric tensor. 
(ii) The relation 

(Ala) 

(Alb) 

Bk3 Ph ,h,h, (B ;j)lliJ) = a(h3).:1 k+3Ph, _ I,h, _ I,h, _ dB ;j)lliJ), 
(A2a) 

where 

(A2b) 

and.:1 kj is the Hermitian conjugate ofthe.:1 k 3 ofEq. (Alb). 
Relation (A2a) can be obtained straightforwardly first for 
k = 3 using the commutation relations (1.3), and then for 
k= 1,2usingBk3 = -~[Ck3,B33]' 

With these two results Eq. (2.8) can be written in the 
form 

3 

= L a(h3)(liJIPh,_I,h,_I,h,_dBij ) 
k~1 

x.:1k3.:1 k+3 Ph, - I,h, - l.h, _ I (B ij+ )lliJ). (A3) 

Using (1.3), we find the following relations: 

[ C3k , .:1 31 ] = - 2.:1 k+3, k = 1, 2, (A4a) 

[Ck3 ,.:1 k+d = -.:13~' k= 1,2. (A4b) 

It follows then from (A4a) that.:1 k+3 acting on the state 
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{j C31 P (B·+)leu) 
- k I 2(h2 _ h3 + 1) h,.h,.h, - I I) 

Ph, _ I.h, _ I,h, -I (B ij )Ieu) transforms it into the combination 

A k+3Ph, _ I,h, _ I,h, _ I (B ij+ )Ieu) 

= {jk3Ph,.h,.h, _ I (B nleu) 
{j (h l -h2) B+P (B+)leu). 

+ kl (h2- h3+ 1) 13 h,-I,h"h,-I I] 

_ {j C32 P (B .+ )Ieu) 
k2 2(h2 _ h3 + 1) h"h"h, - I lj 

(A5) 

as is obvious if we take separately the cases k = 1.2.3. 

Substituting the Hermitian conjugate ofEq. (A5) in (A3). we get 

N -2(eu; hlh2h3) = a(h3)(euIPh,h,.h, _ I (Bij) 

{
A + _ C23A 2j _ C\3.1 lj }p (B·+)leu) 

X 33 2(h2- h3+ 1) 2(h2- h3+ 1) h,-I.h,-I.h,-I I) 

+ a(h3) h h I ~ h2 1 (euIPh, _ I.h"h, _ dBij)B 13.1 11 Ph, _ I.h, _ I.h, _ dB ij) leu). (A6) 
2 - 3 + 

Now on the right-hand side of (A6) we can replace CkJA t3' k = 1.2 by the commutator [Ck3 • .1 kj] given in (A4b). thus 
obtaining 

N- 2(eu;hlh2h3)=a(h3)[1 + 1 ]N-2(eu;h ,h2.h3-I) 
(h2 - h3 + 1) 

+ a(h3)(eu IPh, _ I,h"h, _ I (Bij)Bl3Ll I1 Ph, _ I,h, _ I,h, _ I (B ij+ )Ieu). 

In the last term of (A7) we use now Eq. (A5) with k = 1 and the Hermitian conjugate of the expression 

C\3B Ii Ph, _ I,h,.h, _ I (B ij )Ieu) = Ph,h"h, _ I (B ij )Ieu). 

In this way we obtain 

N -2(eu; hlh2h3) = a(h3)[ 1 - hi - hz 2 + 1 ]N -2(eu; h"hz. h3 - 1) 
2(h2 - h3 + 1) h2 - h3 + 1 

+ a(h3l(h2h~ ~3h~ IY (euIPh, - I,h,.h, - dBij )Bl3B 11 Ph, - I.h"h, - dB ij )Ieu). 

(A7) 

(AS) 

(A9) 

In the last term of(A9) the action of B lion the state Ph, _ I,h"h, _ I (B ij ) leu) can be related to the action of the lowering op
eratorofthe unitary group U(3), L31=C31(Cll - Cn + 1) + e21 C 32 on the statePh,h,.h, _ dB ij+ )Ieu). Thus we have the result 

( 
h - h )2 

a(h3) h
z 
~ h3 ~ 1 (eu IPh, - I,h"h, - I (Bij)B l3B 11 Ph, - I,hz.h, - I (B ij ) leu) 

a(h3) (euir L P (B+)]+L P (B+)leu). ( 1) 
4(2hl _ 2h3 + 3)z(h2 _ h3 + 1)2 31 h,h"h, -I I] 31 h,h,.h, -I I] A 0 

The normalization coefficient for the raising and lowering operators ofU(3) were obtained in Ref. 6. and for L31 appearing in 
(AlO) it is given by 

[(2hl - 2h2 + I)(2hl - 2h2 + 3)(2h j - 2hz)]-1I2. (All) 

Substituting (AlO) and (All) in (A9). we finally arrive at the recurrence relation 

N- 2(eu' h h h ) = a(h ) (hi - h3 + 2)(2hz - 2h3 + 3)N-2(eu' h h h _ 1). 
• 123 3 (2h,-2h3+3)(h2-h3+I) ,12' 3 

This is satisfied by 

N-2(eu; h,h2h3) = (2h3Jl! (2h3 + 2cu + n - 4)l! (2h2 + I)l! (h, + 1)1 
(2cu + n - 4)l! (2h2 - 2h3 + I)l! (hi - h3 + 1)1 

Then it remains to find the normalization coefficient N (eu; h Ih20) for the polynomial 

Ph,h,O(B ij )Ieu) = (B It )h, - h'(Ll 31 )h'leu). 

(AI2) 

(AI4) 

which is the highest weight state of the irrep [h" h2] of the unitary group U(2). To this end. we begin considering the relation 
analogous to (A2). i.e., 

1215 

B22Ph,h,O (B ij ) leu) = P (h2)B It Ph, _ I,h, _ ',0 (B ij ) leu). 

BlzPh,hzO(B itll eu ) = - P(h2)B iiPh, _ I.h, _ ,.0(B ij )Ieu). 

where 
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f3(h z) = 2h2(2h z + 2eu + n - 3). (AI5c) 

These results can be established by a method similar to that followed to obtain (A2). 
In order to obtain N -z(eu; h lh20), we start by writing Ph,h,O(Bij) as 

A 33Ph, -I.h, _1,0(Bij)=(B IIB 2Z - B 12B 21 )Ph, -I,h, _ 1,0 (Bij) 

and apply B22 and one of the BI2 on the state Ph,h,O(B nleu) using Eqs. (AI5a) and (AI5b). In this way we arrive at 

N -z(UI; h lh20) = f3 (hzH N -2(UI; hi' hz - 1,0) + (euIB12Ph, _ I,h, _ 1,0 (Bij)B ii Ph, _ I,h, _ l,o(B .J)leu) ), (AI6) 

In the last term, we again relate the action of B Ii on the state Ph, _ I,h, _ 1,0 (B ij+ ) leu) with the action of the lowering operator 
C21 ofSU(2) on the state Ph"h, _ l,o(B:: )IUI), 

Thus Eq. (AI6) can be written as follows: 

N-
2
(eu;h lh20) =f3(h2){N-

Z
(UI; hi, h2 -1, 0) + 4(h

l 
_ ~z + 1)2 (euIPh"h,_I,o(Bij)CI2CZIPh"h,_I,o(B nleu)}, (AI7) 

from which we can immediately deduce that 

N-z(UI' h h 0) =f3(h ) 2hl - 2hz + 3 N-z(UI' h h - 1 0). 
, I 2 2 2(h I _ h2 + 1) , (l 2 , 

(AI8) 

This recurrence relation implies that 

N- 2(UI; h lh2
0) = (2h2)!!(2h2 + 2eu + n - 3)!! (2hl + I)!! (2hl _ 2hz)!!N- 2(eu; hi' DO). 

(2h l)!!(2UJ + n - 3)!! (2hl - 2hz + I)!! (AI9) 

Now we have to find the constant N (UI; h IDO) which corresponds to the normalization coefficient of a highest weight state 
of the unitary group U( 1), i.e., 

N-z(eu; hlDO) = (UlI(Bllt'(B Ij)h'IUI). (A20) 

It is straightforward to see that 

N -2(UI; hlDO) = (2hd ll (2hl + 2U1 + n - 2)!! , (A2I) 
(2eu + n - 2)!! 

where we define N -2(eu; 000) = (euleu) = 1. 
Putting together the expressions (AI3), (AI9), and (A2I), we obtain the normalization coefficient of the state (2.7) with 

highest weight in the unitary group U(3), namely, 

N -2(UI; hlh2h3) = (2h3 + 2U1 + n - 4)!!(2h2 + 2UJ + n - 3)!! 
(2UJ + n - 4)!!(2cu + n - 3)!! 

X (2hl + 2cu + n - 2)1l(h 1 + 1)!(2hl - 2h3 + I)!!(2hl - 2hz)!!(2h3)!! (2h2 + I)!(h z - h3)! (A22) 
(2UJ + n - 2)!!(h 1 - h3 + 1)!(2h2 - 2h3 + I)!!(2hl - 2hz + I)!! h2! 

APPENDIX B: WIGNER COEFFICIENTS FOR U(3) IN THE GEL'FAND-ZETLIN NOTATION 

It is well known that the U(3) Wigner coefficients needed in our analysis can be factorized as follows: 

(

2hl 2h2 2h3 200 2h; 2h; 2h;) 

ql qz ; q 0 q; q; 
r l r r/ 

x/2hl 2hz 2h3? 0 01 1
2h ; :h;,2h;) 

\ ql q2 q 0 ql q2 

= q(ql - qz), rl - !(ql + qz); q/2, r - q/21!(q; - q;), r; - !(q; + qi), (BI) 

where the first factor on the right-hand side is a U(3) reduced 
Wigner coefficient or isoscalar factor and the second one is a 
standard SU(2) Wigner coefficient. 

The coefficient < II ) can be obtained from the work of 
Hecht, II taking into account that he uses basis states classi
fied by the quantum numbers associated with the chain of 
groups 

SU(3) ~ Uri) X SU(2) ~ 0(2), (B2) 
(A, 1'1 < A Iv 
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I 
where underneath each group we write down the quantum 
numbers characterizing its irreducible representation (ir
reps). For U(3) we have the partition [2h l, 2hz, 2h3], where 
2h I + 2hz + 2h3 = 2N is the number of quanta; 
A = 2h I - 2hz, J-l = 2hz - 2h3 gives the irrep of SU(3), E the 
irrep ofU(I), and A, ~v the irreps ofSU(2) and 0(2), respec
tively. 

Fixing the irrep (A, J-l) of SU(3) the possible values of E 

and A are given by 

E = U + J-l - 3(t + s), (B3a) 

Castai'\os, ChacOn, and Moshinsky 1216 



                                                                                                                                    

(B3b) 

where the integers t and s range over the values t = 0, 1, ... , A 
and s = 0, 1, ... , /-l. 

We need the relations between the quantum numbers in 
the Elliott IN(A, /-l)€Av) and Gel'fand 

2h\ 2hz 2h3) 
q\ qz 

r 

basis states. These are 

€ = 4h\ + 4hz - 4h3 - 3(q\ + qz), (B4a) 

(B4b) 

t = q] - 2hz, (B4c) 

s = q2 - 2h3 . (B4d) 

From Eq. (3.5) we know that the possible values of the 
partition [2h ; , 2h ;, 2h 3 ] are 

[2h] + 2, 2hb 2h3], 

[2h p 2hz + 2, 2h3], (B5) 

[2h p 2h2, 2h3 + 2], 

and from Table 3 of Ref. 11, using the notation (B4), we 
obtain the V(3) reduced Wigner coefficients in the Gel'fand
Zetlin notation. 

We want to remark that according to Ref. 12 the re
duced Wigner coefficients tabulated by Hecht were estab
lished with a phase convention for the V(3) basis states which 
is different from the one adopted for the standard Gel'fand 
states. As a consequence, the values of the SU(3) reduced 
Wigner coefficients tabulated by Hecht should be multiplied 
by ( - 1 t' + q; before using them in Eq. (3.6). 

APPENDIX C: REDUCED MATRIX ELEMENTS OF Bt 
In this appendix we calculate explicitly the reduced ma

trix elements 

and 
(2h\, 2h2, 2h3 + 211B +l/2h J 2hz 2h3)' (Clb) 

To evaluate (CIa), we apply B it to the highest weight 
state (3.4), so that 

2h\ 2hz 2h3) 
B2i 2h J 2hz =B2iN(OJ;hlh2h3JPh,h,h,(Bi/l10J),(C2) 

2h\ 
where IOJ) is defined by (1.5), Ph,h,h, is given by the Eq. (2.4), 
and N (OJ; h \hZh3) is their normalization constant determined 
in Appendix A, Eq. (A22). 

From the explicit form of the polynomial Ph,h,h" Eq. 
(2.4), it is easy to get 

B ziN(OJ; h]h2h3)Ph,h,h, (B it )IOJ) = N(OJ; hlh2h3) 

X [Ph,.h, + l,h,(B;; )IOJ) + (B Ii )2Ph, _\.h"h,(B;; )IOJ)]. 
(C3) 

In the following we use the relation 

(B + )2p (B+ )IOJ) 12 hi - 1,h2.h l lj 

(C2d
2 

P (B +)1 ) 
4(h l - h2)(h\ _ h2 + 1) h, + \,h"h, ij OJ 
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1 B + P (B + )IOJ) 2(h\ _ h
2

) 22 h,h,h, ij , (C4) 

which is obtained through the commutation relations of CZI 
with each factor of the polynomial (2.4). 

Substituting (C4) in (C3) and taking the scalar product 

2hl 2h2 + l 2h3) 
with the Gel'fand state 2h I 2h2 + 2 , we obtain 

2hl 

(

2h I 2h2 + 2 2h3 2h 12hz 2h3) 
2h\ 2h2 + 2 B 2i 2hl 2h2 

2h! 2h J 

_ 2(h! - h2) N(OJ; h\h2h3) 
- 2hl - 2h2 + 1 N(OJ; hI' h2 + 1, h3) , 

(C5) 

where it is clear the term containing (C2Jf does not contri
bute to the result. 

Furthermore, with the help of the Wigner-Eckart 
theorem, we get the reduced matrix element (CIa), namely, 

(2h l 2h2+2 2h311B+II2h] 2h2 2h3) 

2(h I - h2) N (OJ; h Ih2h3) 

2h] - 2h2 + 1 N(OJ; hI hz + 1, h3) 

[(

2h\ 2h2 2h3 2 0 0 2h\ 2h2 + 2 2h3)]-\ 

X 2h] 2h2 ; 2 0 2h] 2hz + 2 

2h J 0 2h J 

(C6) 
Finally the relation (3.IIb) is obtained substituting ex

plicitly the values of the U(3) Wigner coefficients and the 
normalization constants. 

To evaluate (Clb), we consider the matrix element 

(

2hJ 2h2 2h3 + 2 2h\ 2h2 2h3) 
2hl 2hz B~ 2h J 2h z 

2h J 2h J 
= N(OJ; hJhz' h3 + I)N(OJ; hJhzh3) 

X (OJIPh,h,h, (Bij)B33Ph,h,h, + J (B ;; )IOJ). (C7) 

Vsing the commutation relation between B33 and.J +, 
the operator given in (2.5), it is straightforward to prove that 

B33Ph,h,h, + J (B;; )IOJ) 

= 2h3(2h3 + 20J + n - 4)Ph,h,h, (B i/lIOJ). (C8) 

Introducing (C8) in the Eq. (C7), we obtain 

(

2hl 2h2 2h3 + 2 2h J 2h2 2h3) 
2h J 2h2 B31 2h J 2h2 

2hl 2h J 

= N(OJ; hI' h2' h3 + I) 2h3(2h3 + 20J + n _ 4), (C9) 
N (OJ; h P h2' h3) 

where the N's can be taken from Eq. (A22). 
As in the previous case, using the Wigner-Eckart 

theorem in (C9), the reduced matrix element can be written 
as 

(2hJ 2hz 2h3 + 2//B +//2h J 2hz 2h3) 

= 2h3(2h3 + 20J + n - 4)N(OJ; hI h2 h3 + 1) 

N(OJ; hJh2h3) 
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[(

2hl 2h2 2h3 2 0 0 2hl 2h2 2h3 + 2)]- I 

X 2hl 2h2 ; 0 0 2hl 2h2 

2hl 0 2hl 
(ClO) 

At last, the expression (3.11c) is obtained if we put the 
explicit values of the U(3) Wigner coefficients and the nor
malization constants. 
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A pair of commuting missing label operators for G::) [SU(2)t 
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A general procedure, which can lead to a pair of commuting subgroup scalars in the enveloping 
algebra of a Lie group G, decomposed in [SU(2)Y, is discussed. The technique is illustrated by 
means of three explicit examples. 

PACS numbers: 02.20.Qs 

1. INTRODUCTION 

The complete classification or labeling of the basis 
states of an irreducible representation (irrep) of a classical 
Lie group G, decomposed into irreps of some subgroup H, 
very often leads to a missing label problem. One of the var
ious ways of solving this problem consists of obtaining, with
in the enveloping algebra of G, a complete set of commuting 
Hermitian operators by adding to the Casimir operators of 
the group G, of the subgroup H, and of appropriate sub
groups of H, scalar operators with respect to H. 1.2 The com
mon eigenstates of this complete set are then chosen as the 
basis states of an irrep of G, and the eigenvalues of the addi
tional operators provide the missing labels. 

The study of the subgroup scalars leads to the construc
tion of an integrity basis. 2

,3 In cases where there is one miss
ing label, any polynomial in the elements of the integrity 
basis may be chosen as missing label operator. When the 
number of missing labels is greater than one, there is a sup
plementary problem: the missing label operators, construct
ed out of the elements of the integrity basis, have to commute 
mutually. The only group-subgroup chain for which the lat
ter problem has been solved explicitly, is the case SU(4) 
::J SU(2) ® SU(2): Moshinsky and Nagel have constructed 
the pair nand cfJ,4 and Quesne,5 Partensky, and Maguin6 the 
pair C I20;2) and CI02;2), 

In the present paper we exhibit a possible procedure for 
finding a pair of mutually commuting subgroup scalars in 
the case G::J [SU(2)Y = SU(2) ® ... ® SU(2) (n products) if 
n:;.2. Section 2 contains some sufficient conditions which 
must be fulfilled in order to apply our technique. In Sec. 3, a 
few examples are listed. 

2. GENERAL TECHNIQUE 

If a Lie group G contains [SU(2)Y, its generators may be 
chosen as the generators of the subgroup, namely iSO• ± 1 

(i = 1,2, ... ,n), and the components Q l::::::~:1 ofsomeirreduci
ble tensor operators with respect to [SU(2)Y. The following 
commutation relations are valid: 

(2.1) 

')Research Assistant N.F.W.O., Belgium. 

[
i i ] +i • [j i ] j so,s ± 1 = _ S ± 1 , S _ l' S + 1 = So, (2.2) 

(2.3) 

where,u, v = - 1,0, + 1 and Ai = -Ii' -/j + I, ... ,1;. 
Suppose that the generator basis contains a tensor Q [/""''/n] 

such that the commutators between its components produce 
only is/l- -generators 

[Q t::~:l,Q l';:::::;~ ]E(algebra of [SU(2)r). (2.4) 

This is the first condition we require. Note that in the case of 

(2.4), the [SU(2)]" generators, together with the Q [/".1.] 

components generate a Lie algebra themselves; therefore we 
assume that in the following the Lie algebra of G decomposes 
into the [SU(2)]" subalgebra and one tensor Q [/, ... ln

]. By 

means of the tensor Q [/ ..... ,l n 1, a series of coupled-tensor oper

ators (Q X Q ) [k".k n
] may be defined as follows: 

A 1 •... ,..1. ~ 

X (l A I A' Ik K )Q [/" .. ,ln 1Q [/;"ln ). 
n n n n n n A ••... ,A" A 1 •.•• '..1." 

(2.5) 

The symbol ("'1"')' denotes an SU(2) Clebsch-Gordan coef
ficient. Symmetry relations between Clebsch-Gordan coef
ficients show that expression (2.5) is of second degree in the 
Q-components if and only if 

" L (2/j + k;) (2.6) 
i= 1 

is even, 
Define, for K = - k, - k + 1, ... ,k, 

'$ ~k I = 1 if k = 0, 

iS~kl = iSK if k = 1, 

iS~kl = L (1Kl1K212K~)(2K~lK313K3)'" 

X (k - lKk_llKk IkK)isK, iSK, .. .iSKk if k:;'2. 
(2.7) 
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Then, for (kl, ... ,kn ) satisfying (2.6), there exists a subgroup 
scalar C (k, •...• k,,;2) of second degree in the Q-tensor, 

(2,8) 

The operator (2.8) is homogeneous of degree k I' k2' ... , kn and 

2 · th t I I n dQ[/, ... ,1,,] t' m e genera ors sl'" sl'" .. " sl'" an ,1, .... ,,1,,' respec lve-
ly. Obviously, every homogeneous subgroup scalar of second 
degree in the Q-components must be equal to one of the oper
ators (2.8), to a product of an operator C(k" ... ,k,,;2) with SU(2), 

Casimir operators (which are quadratic in the iSI' genera
tors), or to a linear combination of such operators, 

Let us now consider two operators C (k",k,,;2) 

(l:7 ~ I k i #0) and C (k ;,.k ~;2) (l:7 ~ I k ; # 0) such that 

n 

Ik,k; =0. 
i= 1 

,Then the commutator of these operators reduces to 

[C(k" ... ,k,,;2),C (k ;, ... ,k ~;2)] 

KI····,Kn 

x [ (Q X Q )~~:':~~:,,] ,(Q X Q )lr;',;t ~l ] 
X1S[k']ISlk,1 ... ns[k~}ns[k"l. 

-KI -K1 -Kn -Kn 

(2.9) 

(2.10) 

Because of (2.4) and (2.5), the commutator appearing in the 
rhs of (2.10) consists of terms of second degree in the Q
components and of first degree in one of the is,, -generators. 
Hence (2.10) decomposes into homogeneous operators of de
gree 

(k; +k) + 1, k~ +k2, ... ,k~ +kn ;2), 

(k; +k p k~ +k2+ l, ... ,k~ +kn ;2), 

(k; + k p k ~ + k2, ... ,k ~ + k n + 1;2), (2.11) 

. th t I 2 n dQ[/, .... I,,] t' I m e genera ors SI',' SI',' ... , SI'" an ,1" .... ,1" ,respec lve y. 
But since C (k" .... k,,;2) and C (k ; ... k ~;2) are subgroup scalars, the 

commutator (2.10) is a subgroup scalar too. Because of the 
homogeneity property,2,7 every homogeneous operator ap
pearing in the rhs of (2.10) must be a subgroup scalar itself. 
Consequently, if there doesn't correspond a subgroup scalar 
with any of the degrees (2.11), in other words, if none of the 
rows (2.11) satisfies property (2.6), we may conclude 

[C (k, .... k,,;2),C(k ; ... k ~;2)] = O. 

Note that C (0 .... ,0;2) is proportional to the G second-order Ca
simir operator (up to an additional invariant in the [SU(2W 
subalgebra) and commutes with any other subgroup invar
iant. Of course, this Casimir operator cannot serve as miss
ing label operator, and is therefore excluded in the following 
examples. 
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3. EXAMPLES 

3.1. SU(4) :::>SU(2) ® SU(2) (2 missing label problem) 

The SU(4) basis generators are so. ± I , to. ± I and the ten
sor of rank (1,1) with respect to SU(2) ® SU(2): Q~\IJ. The 
tensor components satisfy (2.4).7 According to (2.6), the sub. 
group scalars of second degree in the Q-components are 

(3.1 ) 

On account of(2.9) we consider the commutator 
[C(20;21,CI02;21]. The discussion in Sec. 2 implies that this 
commutator equals a linear combination of two scalars of 
degree (3,2;2) and (2,3;2) in sl" tv' and Q ~\l J, respectively. 
But the only scalars of second degree in the Q ~~~I J-generators 
are linear combinations of operators (3.1) or of products of 
an operator (3.1) with the SU(2) ® SU(2) Casimiroperatorss2 

and t 2. Consequently, no scalars of degree (3,2;2) and (2,3;2) 
exist, and 

[CI20;21,CI02;2)] = O. (3.2) 

This affirms the result of Quesne5 and Partensky and Ma
guin.6 

3.2. SO(7) :::>SU(2) ® SU(2) ® SO(3) (3 miSSing label 
problem) 

The basis generators of SO(7) are so. ± I , to. t 1 , uo. ± I , 

and a tensor Q 11/2 1/2 I I of rank (1 1 I) The commutators of ..1..,11 ,0' 2'2' . 

the tensor components satisfy (2.4). R The subgroup scalars of 
second degree in the tensor components are 

C 111O;2),C IlOl;2),C IOII;2),C IIJ02;2),C(l12;2). (3.3) 

The only pair for which (2.9) is valid, is (C
11IO

;21, C
1OO2

;21). 

Formula (2.10) would lead to scalars of degree (2,1,2;2), 
(1,2,2;2) and (1,1,3;2), which do not exist. Consequently, 

(3.4) 

3.3. SO(8):::> [SU(2)]4 (4 missing label problem) 

According to the decomposition of the adjoint repre
sentation of D 4,

9 the SOt 8) generator basis consists of so. ± I , 

to, ± I' uo. ± l' Va. ± 1 and of the components of the [SU(2W 
tensor Q 11/2 1/2 1/2 1/21, Because of the half-odd integers in 
the rank of the tensor, the commutator [Q 11/2 i,/2 ~,/2 ,1/2), 

Q W2 il 2 ;;2 ~21] cannot contain a tensor component, and 
certainly (2.4) is satisfied. The [SU(2)]4 scalars of second de
gree in the Q-components, in the enveloping algebra of 
SO(8), are 

CIIIOO;ll,C 1101O;2),C IIOO1;2),C 10110;21, 

CI0IOl;21,CIOOI1;2), and CI IIII ;21. (3.5) 

An analogous discussion as in the previous cases leads to 

[ClllOO;2),C 1OOl1;2)] = 0, 

[CI IOIO;2),C I010 1;2)] = 0, 

[CIIOOI;2),CI0I1O;21] =0. (3.6) 

Note that the technique does not always provide a pair of 
commuting operators. For instance, in the case of 
G2 :::> SU(2) ® SU(2), the generator basis is given by So ± I , 
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to, ± 1 , and Q ~:~2, 112]. Condition (2.4) is satisfied, and the sca
lars of second degree in the tensor components are 

C I2,O;21,C 1l,1;21, and C I3,1;21, (3.7) 

Obviously, this set does not contain a pair of operators such 
that (2.9) is satisfied. 

4. CONCLUSION 

A certain amount of progress is made towards the solu
tion of the complete labeling of states transforming irreduci
bly under a Lie group G and a subgroup [SU(2W C G, How
ever, it must be emphasized that some serious restrictions 
had to be imposed in order to make our construction applica
ble. There are three conditions required: (1) the validity of 
(2.4) (which implies that [SU(2)]" generators, together with 
the tensor components generate a Lie algebra themselves; 
the assumption that the Lie algebra of G decomposes into the 
[SU(2W subalgebra and one tensor is then only a matter of 
convenience); (2) the condition (2.9), which is a nontrivial 
restriction; (3) the condition that none of the rows (2.11) sa
tisfy (2,6), 

The proposed technique, when applicable, solves the 
missing label problem, if exactly two labels are missing. If 
more are missing, the construction leads to a pair of com
muting-labeling operators and solves the problem only par
tially. However, it is not excluded that, if n;;.3, three (or 
more) operators can be found such that each pair of this set 
satisfies the conditions (2,9) and (2,11). Then this would lead 
to a set of mutually commuting scalars. 

We are fully aware of the fact that the results achieved 
in this paper are only a step in the right direction. The con-
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struction of a complete set of missing label operators for a 
group-subgroup chain is, and remains a very difficult prob
lem. Obviously, still a great amount of research can be done 
in this domain. For instance, in Sec. 3 we have only given a 
few examples of our technique. It would be very interesting 
(but difficult) if a classification were made of the groups satis
fying the imposed conditions. It is also clear that the paper 
only d~als with operators of second degree in the tensor com
ponents. Perhaps progress could be made if a similar (but 
more complicated) technique were constructed for operators 
of higher degree in the tensor components, 
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An orthogonal basis in root space, related to the weights of the smallest representation, is used to 
provide a list of the algebraic conditions which the structure constants Nal3 must satisfy for all 
simple Lie algebras. A particular explicit set of solutions for all the N al3 is given. 

PACS numbers: 02.20.Sv 

I. INTRODUCTION 

The present paper is concerned with exhibiting particu
lar consistent sets of structure constants, N al3' which appear 
in the subset of commutation relations 

[E""EI3] =Nal3 Ea+ 13 , 

where Ea , etc. are elements of a Lie algebra, a, 13 are roots, 
and Nal3 does not vanish if, and only if, a + 13 is a root. 

The structure constants play important roles in the 
analysis 1 of Lie groups and in the application of these groups 
to physical problems. 2 General conditions satisfied by N al3 ' 
which are based on Jacobi identities involving generators 
associated with suitably chosen roots,3 are well known. Sim
ple expressions for the number of possible independently de
terminable structure constants, and the particular structure 
constants which can be independently chosen, have also 
been given.4 In addition, particular choices of structure con
stants for specific groups have been derived. 5 More recent
ly,2 specific simple choices of structure constants were deter
mined in a unified way for classical groups of arbitrary rank 
and for the exceptional group G (2). 

The purpose of the present work is to simplify further 
the method of Ref. 2 for choosing a consistent set of structure 
constants, and to extend the method to the remaining excep
tional groups. Indeed, the focus of our paper is principally on 
the latter. We wish to present as compact a scheme as possi
ble, in the sense that the rules for choosing the N al3 are essen
tially in the form of mnemonics. There is no difficulty in the 
choice of the magnitude of the N al3' and we have nothing 
new to contribute on this point. Our analysis is devoted en
tirely to the proper choice of a consistent set of phases for 
N al3' The choice of such phases is, of course, not unique. 

Our approach is based on the specification of roots and 
weights in an orthogonal basis related to the weights of the 
representation of the smallest dimension (quarks), an ap
proach which we have exploited previously? We find that 
our approach, as contrasted with the use by Dynkin6 of a 
nonorthogonal basis for root and weight space based on sim
ple roots, greatly simplifies our work. Though our point of 
view is different from that of Dynkin,6 our method is based 
on the work of that reference. We also make extensive use of 
the tables developed by McKay and Patera/ also based on 
the work of Dynkin.6 

,,) Supported in part by the National Science Foundation. 

In Sec. II we write down the well-known linear and 
quadratic relations among the Nal3 in the Dynkin basis. We 
also tabulate the roots of all simple Lie algebras in an orthog
onal basis (discussed in Appendix A) and determine the mag
nitudes of the structure constants. 

In Sec. III, we give a simple possible choice of phases of 
N al3' consistent with the above relations. These are ex
pressed as constraints on the phases, using the orthogonal 
bases, in Appendix B. 

II. SPECIFICATION OF ROOTS OF LIE GROUPS AND 
GENERAL RELATIONS BETWEEN STRUCTURE 
CONSTANTS 

We will consider commutation relations for Lie alge
bras in the Dynkin basis6

,2: 

[H,H] =0, 

[ H, E ± a] = ± aE ± a , 

[Ea,E a] =a·H=Ha, 

and the previously given relation 

(2,1) 

(2.2) 

(2,3) 

[Eu' E 13 ] = Nal3 E"+I3' (2.4) 

with a, 13 roots and Nal3 vanishing unless a + 13 is a root. 
Comparison ofthis basis with the Chevalley basis 1,3 immedi
ately gives, for nonzero N al3 ' 

INul31 = (x + 1)lal IJ3I/~la + 131, (2.5) 

where I a I is the length of the root a and x is the maximum 
positive integer such that 13 - xa is a root. 

We conclude this section by giving a list of general rela
tions for structure constants in the Dynkin basis. 1.3 We have 
first 

Nal3 = - N13a , (2.6) 

which follows directly from the properties of commutators. 
We also have, for 

a + 13 + Y = 0, Nal3 = N13y = N ya ' 

and for 

a + 13 + y + b = 0, 

Nul3 Nyb + N13y Nub + Nyu Nl3b = O. 

Finally, we have 

NaP N_ a ,-13 = -INup I2. 

(2.7) 

(2.8) 

(2.9) 

1222 J. Math. Phys. 25 (5), May 1984 0022-2488/84/051222-08$02.50 © 1984 American Institute of Physics 1222 



                                                                                                                                    

TABLE I. The quarks and roots for the classical Lie algebras. n is the rank of the algebra. L ~ and L ~ are the squares oflengths for nonzero quark weights 

and of roots. DQ and D", are the dimensions of the quark and adjoint representations and N ~ is the number of independent phases of NaP [see Eq. (A6)]. See 
Eqs. (2.13) and (A I HA5) in the text for the definitions and properties of Ap and 'Xp. 

Index 
labels QUARKS 

Algebra. G P.q Weights DQ L~/A2 

A (n):=SU(n + 1) 1 ..... n+ 1 Xp n+l nln + I 
D(n):=SO(2n) 1, .. " n ±Ap 2n 

B(n):=SO(2n + I) I ..... n 
±Ap 

2n + I 
0 

C(n):=Sp(2n) 1, "0, n ±Ap 2n 

Equations (2.7)-(2.9) are consequences of Jacobi identities. 
Equation (2.9) is not generally noted. It arises from the Ja
cobi identity involving E a , E _ a' and E p , where (2.7) is also 
used. The conventional choice for (2.9) is 

NaP real, 

and (2.10) 

NaP = -N -a,-p, 

and we will adopt it in what follows. However, clearly 

N i<PaPIN I ap = e ap , (2.11) 

with 

<PaP + <P _ a, _ p = (2n + 1 )1T, n = 1,2 .... (2.12) 

is also possible. 
The different Lie algebras are completely specified by 

the roots. These are given in Tables I and II in terms of an 
orthogonal base of vectors Ap ' 

Ap . Aq = Opq A 2. (2.13) 

As can be seen from Table I, for the classical algebras the 
base vectors Ap are very closely related to the weights of the 
quarks. Unless otherwise stated, we shall normalize 

ROOTS Dod L:"IA2 N~ 

± (Ap - A.).P#-q n(n +2) 2 !n(n - I) 

±Ap ±Aq.P#-q n(2n - I) 2 n(n-2) 

± Ap ± Aq.P#-q; ± Ap n(2n + I) 2. I n(n-I) 

± Ap ± Aq.P#-q; ± 2Ap n(2n + I) 2.4 n(n -I) 

(2.14) 

The derivation of these results is discussed in Appendix A. 
The lengths of the structure constan ts NaP are all deter

mined by Eq. (2.5). From the explicit expressions for the 
roots given in Tables I and II, it is easy to determine the 
values of a and f3 (and hence the values of p) which give rise 
to non vanishing structure constants. In this way, we arrive 
at the specific results given below. 

Roots of an algebra are classified as "short" if the alge
bra contains other roots which are longer. The structure con
stant NaP is called short, 

(2.15) 

if a, f3 and a + f3 are all short roots. Otherwise Nap is 
"long": 

(2.16) 

ForB A (n), B(n), D(n), E(6), E(7), E(8), F(4), and G(2), 

IN~dl =A. (2.17) 

B (n) has short roots but no short structure constants. 

TABLE II. The quarks and roots for the exceptional Lie algebras. See the caption of Table I for definition of symbols. 

Index 
Algebra Labeling labels QUARKS 
G subalgebra p Weights DQ L~/A2 ROOTS D", L~/A2N~ 

± Ap - (11,/3)}:6 ± Ap ± Aq, p#-q 
E(6) D(5)E!lU(I) I,· ·5 ![l:(ev=,( ± Ap) + (11,/3)}:6] 27 H l:(oddl ( ± Ap) + ,/3r6] 78 2 30 

(2/,/3)A:6 ! [l:(evenl ( ± Ap) - ,/3r6] 

± Ap ± (1Iv'2)A7 ± Ap ± Aq. p#-q 
E(7) D(6)E!lA(I) 1 .. ·6 !l:(odd,( ± Ap) 56 H l:(ev=,( ± Ap) ± v'2A7 ] 133 2 56 

± v'2A7 
± Ap ± Aq.P#-q ±Ap ±Aq• p#-q 

E(8) D(8) 1 .. ·8 !l:(oddl ( ± Ap) 248 2.0 !l:(odd,( ± Ap) 248 2 112 
Eight zeros 

±Ap ±Ap ± Aq. p#-q 
F(4) B(4) 1 .. ·4 !l:(alll ( ± Ap) 26 1.0 ±Ap 52 2.1 20 

Two zeros !l:(alll ( ± Ap) 

G(2) A(2) 1.2.3 ± Xp = ± [Ap - !l:!~ l Aq] 
±(Ap -Aq) 

7 j.O 14 2,j 4 

± Xp = ± [Ap - ~ l:!~ l Aq] 
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For F(4), 

IN~J 1= 1 1v'2. 

For G(2), 

IN~J 1= U 1.[3. 
For C(n), 

IN~LJI =~U, 
IN~JI =1. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

III. CLASSIFICATION OF COMMUTATION RELATIONS. 
SPECIFIC PHASES FOR DIFFERENT ALGEBRAS 

To simplify the notation, we introduce 

AI pl-(I pi), 

-Alpl=A_lpl =(-Ipl), 

2AI pi =(21 pi)· 

Then, for example, all the roots of D (n) can be written 

(3.1) 

(3.2) 

(3.3) 

(p-q), p,q= ±1,±2, ... ,±n, i.e., (±lpl±lql). 
(3.4) 

Finally, we introduce the notation for the raising and lower
ing operators: 

(3.5) 
Again, using Tables I and II, the nonvanishing commu

tation relations of the form (2.4) can be classified and the 
lengths of the structure constants explicitly included. It re
mains only to determine the phase factors, which we denote 
by symbols b, c, d, etc. As stated before, we choose the phase 
factors to be real and to satisfy Eq. (2.10). Hence they all have 
the values ± 1. These phases have to be chosen to satisfy the 
conditions (2.7) and (2.8), which are reexpressed in terms of 
the phase factors in Appendix B. A complete list of commu
tation relations of the form (2.4), together with a particular 
choice of phases satisfying (2.7) and (2.8), for all simple Lie 
algebras is given below. The phase factors are expressed in 
terms of 9 

E(X) = + 1, x>O, 
(3.6) 

E(X) = - 1, x<O, 

and we have used the normalization (2.14). We have chosen 
all of our phases to satisfy Eq. (2.10), as stated above. For 
classical algebras we have the following. 

D(n): 

[lp-qJ, !q-rJ]=d(p,q,rl!p-rJ, 

where 

p, q, r = ± 1, ... , ± n. (3.7) 

Here, and in all subsequent formulas for phase factors, if 
different labels such as p and q are used, their absolute values 
are always distinct. A simple expression satisfying the condi
tions (B6)-(B8) is 

d (p, q, r) = E( P + q)E(q + r)E(r + pl. (3.8) 

A (n - 1): As for D (n), except that p, q, r are all positive 
or all negative so that 
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d (p, q, r) = + 1 

for all positive p, q, r. 
B (n): Equation (3.7), together with 

[l p - q J, ! q J] = b (p, qj! p J, 

Up J, ! - q II = h (p, qj! p - q J, 
p,q,r= ±1, ... ,±n. 

(3.9) 

(3.10) 

To satisfy the conditions (BlO)-(BI2), d (p, q, r) can be taken 
as in (3.8) and 

b(p, q) = hlp, q) = E(p + q). (3.11) 

C(n): 

[lp-qJ, !q-rJ]=c(p,q,rl!p-rJ, (3.12) 

[! p - qJ, IlqJ 1 = v'2O'(p, qH p + q), (3.13) 

Up - q), !q + pjl = v'2i7(p, ql!2p), (3.14) 

p, q, r = ± 1, ... , ± n. 

To satisfy the conditions (B13)-(BI7), we can take IO 

c(p, q, r) = HE(p) + E(q) + E(r) - E(p)E(q)E(r)], (3.15) 

O'(p, q) = o-(p, q) = E(p), (3.16) 

The expressions given above for the phase factors are in a 
form in which it is relatively simple to check that they satisfy 
the necessary conditions summarized 11 in Appendix B. 
These expressions can be evaluated explicitly by making use 
of two other definitions in the phase factors such as d (p, q, r). 
If we have a specific sign in an index, the negative indices will 
be written as superscripts and the positive as subscripts. For 
example, 

d ( - 3,2,8)=:=d is. (3.17) 

Finally, we will define a phase which has its indices ordered. 
For example, 

d ( - 3,2,8) -+ d (2, - 3,8), (3.18) 

and 

(3.19) 

Using this notation, a consistent set of phases of all structure 
constants for the classical Lie algebras is given in Table III. 
In this table, we list numerical values of essential phases in 
the above algebraic relations. By essential phases, we mean 
the phases from which all other phases follow trivially. For 
example, h (p, q) and b ( - p, - q) follow trivially from 
b (p, q) [cf. Eq. (B 11)], therefore no b 's and not all b 's are 
listed in Table III. 

The first entry in line one of Table III suffices for A (n), 
the first four entries for D (n). All entries in line one are need
ed for B (n), and all in line two for C (n). 

We now turn to the exceptional algebras. 

TABLE III. Explicit numerical values of phase choices for classical alge
bras. Only essential phases are listed and ± == ± I. See Eqs. (3.17) and 
(3.19) for definition of notation and observe that, in the table, r> p > q> O. 

dpq, = + d q,= - d '- + d q = - hpq = + bp 
q= -

p pq - p , 

cpq,. = + cp 
qr= - cpq 

, 
= + cp 

q = + u pq = + up 
q= + , 
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E (8)[E (7), E(6)]: 

[{p-qJ, Iq-rl1=d(p,q,r)!p-rj, (3.20) 

[I p - q J, I ~( - p + q + r + s + f + u + v + w)J] 

= e(p, q; r, s, ... , w)!!(p - q + r +s + ... + w), (3.21) 

[{~(p - q + r + s + ... + w)j, I~(p - q - r - s - ... - w)J] 

= e(p, q; r, s, ... , w}\ p - qJ, (3.22) 

p, q, ... , w = ± 1, ... , ± 8, 

with an even number of negative indices in e (and e), so that 
for E (8) there is an odd number in the roots which arespinors 
in D (8) (see Table II). In order to satisfy the symmetry prop
erty of e [Eq. (B20)], it is convenient to identify explicitly the 
label 8. To satisfy all the conditions (B19)-(B22), we can take 

d(p, q, r) = €(p + q)€(q + r)€(r + p), 

e=e, 
and 

(3.23) 

(3.24) 

e(p,q;r,s,f,u,v,-8)= - II€(lpl +1)€(lql +/), 

(3.25) 

where 

p, q, ... , v = ± 1, ... , ± 7, 

and 

/ = r, s, t, u, v. 

By (B20), 

e( p, q; r, s, f, u, v,8) 

= - e(p, q; - r, - s, - f, - u, - v, - 8) 

= II €(I pi -l)€(lql -I). (3.26) 
I 

We also take 

e(p, - 8; r, s, f, u, v, w,) = e( - p,8; r, s, f, u, v, w) 

= II €(l + m), p > 0, (3.27) 
I.m 

111<lml 

e(p,8; r, s, f, u, v, w) = e( - p, - 8; r, s, f, u, v, w) 

= (- 1)1'+ 1 II €(I + m), p>O, 
I.m 

111<lml 
(3.28) 

where 

p = + 1, ... , + 7, r, s, f, u, v, w, = ± 1, ... , ± 7, 

and 

/, m = r, s, ... , w. 

These expressions can be greatly simplified if it is 
known how many of the labels take on negative values. For 
example, using the identities 

II €(lII-lpl)=(-IY'+t, 
I 

1I1",lpl 

one can show 
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(3.29) 

e(p, - 8; - r, s, f, u, v, w) = ( - 1)'+ l€(p - r), (3.30) 

e(p,8; - r, - s, f, u, v, w) 

= (_ I)P+r+s+ l€(p _ r)€(p - s), (3.31) 

e( p, - 8; - r, - s, - f, u, v, w) 

= (_l)'+s+t+l€(p _ r)€(p -s)€(p - f), etc., (3.32) 

where 

p, r, s, t, u, v, W > 0 

in Eqs. (3.30)-(3.32) above. 
Other useful relations are 

€(I pl( ± )q)E(lql( ±)P) = (± )€(p + q), (3.33) 

and 

( _ 1)l:Jm - I m = 1. (3.34) 

The commutation relations for E (7) and E (6) can be ob
tained from the above equations by the techniques described 
in Appendix A. Thus to obtain E (7), Eq. (3.20), which defines 
the d phases, is still valid if the labels are restricted to 

p, q, r = ± 1, ... , ± 6. 

Equations (3.21) and (3.22) apply if either v and w or p and 
- q appear in the combination 7, - 8 with the magnitudes 

of the remaining labels taking the values from 1 to 6. Possible 
e phases are given by 

Eq. (3.25) with 

v = 7, (3.35) 

Eq. (3.26) with 

V= -7, (3.36) 

and Eq. (3.27) with 

p=7. (3.37) 

In E (6), Eq. (3.20), defining the d phases, is still valid, 
but the labels are now restricted to 

p, q, r = ± 1, ... , ± 5. 

The subset of e phases does not include any of those 
given by Eqs. (3.27) and (3.28). Ofthe e phases given in Eqs. 
(3.25), only 

e(p, q; r, s, t,6,7, - 8) e(p, q; r, s, f, - 6) 
=e(r, s, f), 

and of those given in (3.26), only 

e(p, q; r, s, t, - 6, - 7,8)=e(p, q; r, s, t,6) 

= - e ( - r, - s, - f) 

(3.38) 

(3.39) 

appear [see Eq. (A12)]. The function e, defined in Eq. (3.38), 
is sufficient to describe the e phases. Given r, s, t, I p I and Iql 
are determined. Further, if the number of negative indices in 
r, s, f is odd (even), the number of negative indices inp and q 
is odd (even). For convenience, we simplify the rather cum
bersomeexpression, Eq. (3.25), for E(6). We obtain, using the 
convention of Eq. (3.17), 
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TABLE IV. Explicit numerical values of the phases e (r, s, t). 

r 

3 
2 
I 
2 
I 
2 

s BrM 

4 5 
4 5 
4 5 
3 5 
3 5 
3 4 
3 4 
2 5 
2 4 
2 3 

erst = - 1, 

e;, = - E(I pi - Irl)E(/ql - Irl), 

e~=( -1)P+QE(lpl-lrl)E(lql-lrl), 

erst = (_ I)P+Q. 

() "'Sl 

+ 

+ 

+ 

lJr
S

t 

+ 
+ 
+ 
+ 

(3.40) 

We give explicit numerical values of these additional 
essential phases for E (6) (besides those which already appear 
in Table III), in Table IV. 

F(4): B (4) relations, (3.7), (3.9), and (3.10), and 

[{ p - q 1, {!( - p + q + r + s)}] 
= f( p, q; r, s) [~( p - q + r + s)), (3.41) 

[ [ ~(p - q + r + s) ), [!( p - q - r - s) ) ] 

= f( p, q; r, s)! p - q I , 
[[ p J, [!( - p + q + r + s) ) ] 

(3.42) 

= (lI\r"2)tP (p; q, r, sH !(p + q + r + s)j, (3.43) 

[ [!( p + q + r + s) J, !!( p - q - r - s) I ] 
= (lI\r"2i¢(p; q, r, sH pJ, (3.44) 

p, q, r, s = ± 1, ... , ± 4. 

The spinors have all possible sign distributions. 
To satisfy the conditions (B23)-(B28), the phases d, b, 

and b are given in Eqs. (3.8) and (3.11). As for E(8), we here 
single out the index 4 to give solutions as follows: 

f=f, tP=(f, 

f(p, q; r, - 4) = - E(lpl + r)E(lql + r). (3.45) 

By the symmetry condition (B24), this implies 

f(p, q; r,4) = E(I pi - r)E(lql - r). (3.46) 

Also, 

1226 

f(p, - 4; r, s) f( - p,4; r, s) = E(r + s), p> 0 (3.47) 

f(p,4; r, s) =f( - p, - 4; r, s) 

=(-I)P+le(r+s), p>O (3.48) 

tP (p; q, r, - 4) = - E{/ pi + q)e(1 pi + r), (3.49) 

tP (p; q, r,4) = E(I pi - q)E{/ pi - r), (3.50) 

tP (± 4;p, q, r) = - E(p + q)E(q + r)E(r + pl· (3.51) 
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Or5 t ()/' 

+ 
+ 

+ 

+ 
+ 

+ 

G(2): We now have 

[ p)==Exp ' 

B~/ 

+ 

+ 

+ 

+ 

Or.l
t 

() n' 

+ + 

+ + 
+ 

+ 

+ 

(3.52) 

and not E>.p' where p = 1,2,3, and correspondingly for 
E _ x

p
' The definition, Eq. (3.5), still holds for the other gen

erators. Further, 

XI + X2 + X3 = 0 (3.53) 

so that 

r - r) = [p + qJ, p#q#r. (3.54) 

The commutation relations are given by Eq. (3.7) and 

[!p-qJ, !q)] =g(p,qHp), (3.55) 

U PI. ! - q)] =g(p, q)! p - qj, (3.56) 

[{ pI, [qlJ = (2/,j3)g(p, qjf - r), (3.57) 

where 

p, q, r = ± 1, ± 2, ± 3, 

taking either all positive or all negative signs. 
A convenient choice of independent phases is 

g=g, 

g(I,2) =g(2,3) =g(I,3) =g(2.1) = + 1, (3.58) 

the remaining phases being determined by (B29)-(B33). This 
solution agrees with that of Ref. 2. 

IV. SUMMARY AND DISCUSSION 

We have succeeded in obtaining sets of simple phase 
choices for the structure constants of all simple Lie algebras. 
We have used essentially the same method of construction 
for all the algebras and have obtained simple algebraic ex
pressions for the phases, which can be easily evaluated and 
which have closely related structures for all algebras. We 
have thus achieved our aim of providing a unified and syste
matic presentation for the NUI3 phases of all Lie algebras. 

Our approach takes advantage of an orthogonal basis in 
root space. Though it is a development of the Dynkin point 
ofview,6 it does not follow Dynkin in using simple roots as a 
(nonorthogonal) basis of root space. One can contrast our 
approach with that of Dynkin in different words, by saying 
that our focus is on all the quarks (actually the nonzero 
weights of the lowest-dimensional representations) of the 
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classical algebras, rather than directly on a subset of weights 
(the simple roots) of the adjoint representation of each parti
cular algebra. We can thus simply describe all weights and 
all phases by general formulas, rather than give only a selec
tion of them, with prescriptions which are easy to state but at 
times tedious to carry out in detail for the remaining ones. 

The above considerations are, most of the time, aesthet
ic ones and/or those of convenience. However, if we wish to 
relate the algebra to all (or even many) of its maximal nonre
gular subalgebras simultaneously, the simultaneous consis
tent choice of all phases is no longer just a matter of aesthe
tics or convenience, but one of necessity. Enough phases will 
appear in such cases, even if only the parts of the algebra 
associated with the simple roots are specified, that the linear 
and quadratic relations of the No.~ come into play to restrict 
our freedom in choosing them. These considerations are not 
purely formal ones, since the simultaneous study of all maxi
mal subgroups of a given group can be of physical interest, 
for example, in the symmetry breaking in grand unified the
ories. 2 ,12,13 

We have previously given phase solutions2 for the clas
sical algebras and for G (2) from this point of view. We further 
simplified our presentation of our previous results in the 
present paper. However, our main focus in the current work 
was on the N al'! phase for the remaining exceptional algebras 
E (6),E (7),E (S), andF(4), so as to complete the phase analysis 
of all Lie algebras. Because of our emphasis on the use of 
orthonormal bases, it is natural to describe the roots of these 
algebras in terms of the weights of representations of their 
regular B (n) and D (n) subalgebras, rather that in terms of 
representations of their regular A (n) subalgebras, as is often 
done. The representations needed for the description of roots 
for E(6,7,S) and F(4) are the adjoint and at least one of the 
spinor representations of the corresponding B (n) or D (n) su
balgebras but no other representation. 

APPENDIX A: THE ORTHOGONAL BASIS FOR QUARKS 
AND ROOTS 

In this Appendix we clarify the choice of orthogonal 
bases, 14 which is expressed in Tables I and II. 

For B (n), C (n), and D (n), the orthogonalA.p are given by 
the weights of the smallest representation (the quarks). 

In A (n), the quark weights, Xp ' are not orthogonal. 
However, they can be defined in terms of n + 1 linearly inde
pendent orthogonal Ap 's by 

(AI) 

implying 

X2 = (n/(n + I)lA 2, (A2) 

It follows that the n + 1 XP vectors satisfy the condition 

n+1 

I Xp =0, (A3) 
p=1 

i.e., the XP are linearly dependent, In addition, 

XP • Xq = - (I1n)x2. (A4) 

The roots of A (n) are 
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(AS) 

showing explicitly that they are a subset of the roots of 
D (n + 1). The discussion of Ref. 4 can be reduced to the 
following formula for the number, N~, of No.1'! phases, 
which can be chosen independently: 

N~ = !(D,nf' - 3n), (A6) 

where D.n' is the dimension of the adjoint representation of 
algebra G (the rank plus the number of roots). 

The roots of the exceptional algebras in Table II can be 
given in terms of the roots and weights of classical subalge
bras of these algebras. This means that various options for 
choices of classical algebras are available. A frequent 
choice6

,2 [except for F (4)] is a suitable A (n) subalgebra. How
ever, because of the simpler orthogonal basis which can be 
defined for the (rotation) algebras B (n) and D (n), we will find 
these latter to be a more convenient choice. 

We will illustrate our approach with E (6) and summa
rize the results for all exceptional algebras in Table II. 

We know that a maximal regular algebra6
,7 of E (6) is 

D(5). Indeed,E(6) :J D(5) ® UtI). We consider the quarks 
first and use Ref. 7 with its notation. We have 

[Quark 1 E 16) = [Quark + Spinor + Scalar 1 D 15) , 

(A7) 
(00001O)EI6) = [(10000) G1(OOO1O) G1 (OOOOO)b(5) , 
27 =10 + 16 + 1, (AS) 

where the numbers below the Dynkin-Patera labels are the 
dimensions of the representations in question. The nonzero 
weights of all quark representations of any Lie algebra are 
the same length. Also the vector sum of the weights of any 
given representation vanishes. We see from (AS) that the 
weights ofthe quark of E(6) must be 

5 _ 

~ I (± Ap) + b}.,6' C}.,6' P = 1, ... ,5, 
p=1 

(even) 

(A9) 

where Ap is associated with D(5) and X6 with UtI), and the 
(even) under the sum for the spinor of D (5) means that an 
even number of negative signs are taken. The conjugate re

presentation 16 or (0000I)D(5) has an odd number of minus 
signs in the sum. The symbol (all) in the entry for F (4) later on 
refers to both even and odd numbers of minus signs. All 
Ap ' X6 have length squares equal tOA 2. Use of the two condi
tions stated above Eq. (A9) serves to determine a, b, and c. 
The result is given in Table II. KnowingtheD (5) decomposi
tion of the adjoint representation/ we construct it from the 

decomposition of27 ® 27, recognizing that it must be self
conjugate and the nonzero weights must all have the same 
length. The result is once again given in Table II. A similar 
approach can serve for E (7), E (S), and F (4). 

Some further comments on Table II are in order. G (2) is 
rather a special case among the exceptional algebras, and is 
treated differently from the other exceptional algebras. This 
presents no problems, since it is of low rank and has an ad
joint of only 14 dimensions. It makes no difference whether 
theA (2) or B (1) G1 A (1) classical algebras of G (2) are used to 
define its roots. On the other hand, labeling E (6) with 
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A (S) (j1 A (1),E(7)withA (7), andE (8)withA (8) leads to very 
different labeling schemes than the ones given in Table II. 

Returning to E (6,7,8), we note that a simple relation 
exists among the roots and structure constants of these alge
bras since 

E(8) ::> E(7) (j1 A (1), E(7)::> E(6) (j1 U(l), (AIO) 

and the subalgebras are in each case maximal and regular. 
Comparison of the entries for the roots of E(6,7,8) immedi
ately shows that we can make the identifications 

(All) 

and 

(AI2) 

Note the minus sign on the lhs of Eq.1AI2) above. 
We must emphasize that 'i..7 and 'i..6 are vectors extran

eous to the bases for D (6) [labeling E (7)] and D (S) [labeling 
E (6)], respectively. 

The generators of E (7) are obtained from those of E (8) 
by dropping Hs and all the Eo. 's corresponding to the E (S) 
roots which depend on either A8 or A7 unless they occur in 
the combination ± (A7 - A8)' In the latter case, the Eu is 
retained using the substitution (All). 

Similarly, the generators of E (6) are obtained from 
those of E (7) by a further dropping of H7 and the Eu 's which 
depend on either A6 or A7 - As unless they occur in the com
bination ± (A6 + A7 - As), in which case they are retained 
in accordance with (AI2). 

The generators of E (7) are thus subsets of those of E (S), 
and the generators of E (6) are, in turn, subsets of those of 
E (7). It is thus easy to identify which structure constants of 
E (8) remain as structure constants of E (7) and, in turn, of 
E (6). We need, therefore, only to provide an explicit choice of 
structure constants for E (S) in order to give one for E (7) and 
E (6) as well. 

We conclude this Appendix by noting that, excluding 
G (2), the roots of the exceptional algebras are not only given 
by the roots of maximal orthogonal subalgebras, but also by 
the nonzero weights of at least one spinor representation of 
the corresponding orthogonal algebra. 

APPENDIX B: THE PHASE CONDITIONS 

In this Appendix, we use the general conditions (2.7) 
and (2.S) to determine the conditions which have to be satis
fied by the phase factors b, e, d, etc., introduced in Sec. III. 

Using the notation (3.4) we choose 

(1 13 y 
(p - q) (q - r) (r - p), 

(Bl) 

and obtain, from (2.7), 

dIp, q, r) = d(q, r,p). (B2) 

Additional use of (2.6) and (2.10) leads to the result that 
d (p, q, r) is a symmetric function of its three indices. 

It remains to apply the bilinear conditions (2.8). They 
lead to, at most, two additional independent sets of condi
tions and no more for the two sets of root choices 
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(1 13 y /) 

(p-q) (q - r) (r-s) (s-p), 
(B3) 

and 

(1 13 y /) 

(p-q) (q - r) (r+q) (-q-p). 
(B4) 

We follow an approach similar to that just outlined for 
D (n) for all other Lie algebrs. The resulting phase conditions 
are summarized below. 

For all phases, (/), ej<p = d, e, b, ... , and all Lie algebras, 

(/)(p,q ... )=O or Tr. (BS) 

For the classical algebras we have the following. 
D(n): 

d(p,q,r)= -d(-p,-q,-r)=d(p,q,r) (B6) 

[see Eqs. (3.IS) and (3.19)], and we have the four-index rela
tion 

d (q, r, s)d (p, r, s)d (p, q, sId (p, q, r) = 1, (B7) 

and the three-index relation 

dIp, q, rId ( - p, q, rId (p, - q, r)d(p, q, - r) = - 1. (BS) 

A(n): 

Equations (B6) and (B7) but not (BS), 

since p, q, r must all be of the same sign. 
B(n): 

[Equations (B6)-(B8)], 

and 

(B9) 

(B1O) 

b(p,q)=b(p,q)= -b(-p,-q)=h(p,q), (BII) 

d (p, q, rl = b (p, q)b (q, r)b (r,p). (BI2) 

We note that (BII) and (BI2) are consistent with (B6)-(BS) so 
that the latter equations are redundant. We have therefore 
put them in square brackets. We shall also do so with all 
redundant relations below. 

C(n): 

e(p, q, r) = - e( - p, - q, - r) = c(p, q, r), (B13) 

e(q, r, s)e(p, r, s)e(p, q, s)e(p, q, r) = 1, (BI4) 

[e(p, q, r)e( - p, q, r)e(p, - q, r)e(p, q, - r)] = + 1, (BIS) 

(Y(p, q) = (Y(p, - q) = a(q,p) = - (Y( - p, - q), (BI6) 

e(p, q, r)e(p, - q, - r) = - (Y(q,p)(Y(r,p). (BI7) 

Note that, while (B6) and (B7) for d are formally equivalent 
to (BI3) and (BI4) for e, (BS) and (BIS) differ by a minus sign 
on the right-hand side. Further, comparison of(BII) and 
(BI6) shows other important differences between B (n) and 
C(n): fJ(p, q) is not symmetric inp and q, while b (p, q) is: 

(Y(p, q)i=(Y(q,p). (BlS) 

Equation (BIS) is redundant, since it follows from (BI6) and 
(B 17). It is included only to provide a comparison with (BS). 
The need for defining e independently of d is now made ap
parent. This need exists in spite of the formal equivalence of 
the defining equations (3.7) and (3.12) for e and d, respective
ly, and of the identity of some of the constraint conditions on 
them [Eqs. (B6) and (BI3), (B7) and (BI4)]. 
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We turn next to the phase conditions for the exceptional 
algebras. 

E(8)[E(7), E(6)]: 

[Equations (B6)-(B8)], (BI9) 

and 

e(p, q; r, s, ... , w) = e(p, q; r, s, ... , w) 

=e( -p, -q; r,s, ... , w) 

= - e(p, q; - r, - s, ... , - w), (B20) 

d (p, q, r) = - e(p, q; r, s, ... , w)e(q, r;p, s, ... , w) 

Xe(p, r; q, s, ... , w), (B21) 

[e(p, q; r, s, t, ... , w)e(p, q; - r, - s, t, ... , w) 

= e(r, s; p, q, t, ... , w)e(r, s; - p, - q, t, ... , w)]. (B22) 

One can first show that (B20) and (B2I) imply (B6)-(B8). 
Hence, the latter equations are bracketed. Next, one can 
demonstrate that (B7) implies (B22) and so that equation is 
bracketed as well. 

F(4): 

[Equations (BII) and (BI2)], 

and 

~~~~~=~~~~~=~-~-~~~ 
= - I( p, q; - r, - s), 

tjJ (p; q, r, s) = ¢ (p; q, r, s) = tjJ ( - p; q, r, s) 

= - tjJ (p; - q, - r, - s), 

d (p, q, r) = - I( p, q; r, slf(q, r; p, slf( p, r; q, s), 

b (p, q) = - I(p, q; r, s)tjJ (p; q, r, s)tjJ (q;p, r, s), 

(B23) 

(B24) 

(B25) 

(B26) 

(B27) 

tjJ (p; q, r, s)tjJ (q;p, r, s) = - tjJ (p; - q, r, s)tjJ (q; - p, r, s). 
(B28) 

G(2): 

[Equations (B6), with p, q, r the same sign], (B29) 

g(p,q)=g(p,q)= -g(-p,-q)=g(q,p), (B30) 

g(p, q) =g(q, r) =g(r,p) = - g( - p, - q), (B3I) 

g(p, q) = -g(q,p), (B32) 

dip, q, r) =g(p, q)g(q, r)g(r,p). (B33) 

This completes the specification of all phase constraints 
for all simple Lie algebras. It must be emphasized that, while 
manifest redundant expressions have been noted above, this 
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is not to imply that all constraints in the lists above which 
appear outside of square brackets are independent. Indeed, 
this is far from the case in general. However, these remaining 
redundancies are more tedious to specify than the ones 
which have been eliminated. These constraints, of course, do 
not lead to unique solutions for the phases d,c,b, .... Indeed, 
as shown in Ref. 4, one can choose N ~ independent phases, 
where N ~ is given by (A6). The proof of this latter result can 
also be carried out using the constraint equations given in 
this Appendix. 

'B. G. Wybourne, Classical Groups/or Physicists (Wiley-Interscience, New 
York, 1974), pp. 90,91. 

2G. Feldman, T. Fulton, and P. T. Matthews, J. Phys. G: Nucl. Phys. 8, 295 
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3R. W. Carter, Simple Groupso/Lie Type (Wiley·Interscience, New York, 
1972), p. 55. 

'Reference 3, p. 58. The structure constants which can be independently 
chosen are associated in Ref. 3 with so-called "extra special" pairs of roots. 
The specification of these roots in Ref. 3 is far from trivial. 

'For example, Ref. 1, pp. 85, 86, 91; also B. Gruber and M. T. Samuel, in 
Group Theory and Its Applications, Vol. 3, edited by E. M. Loebl (Aca· 
demic, New York, 1974), p. 122. [The latter authors make an incorrect 
choice of phases for the C (3) structure constants, in embedding C (3) in 
A (5)]. 
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S Alternatively, if U L is a long root, for all groups 

INIL'12 =! a~, 

INISI
1
2 

= x ai, 

where 

x = ~ for C (n) and F(4), 

x =, for G(2). 

Thus INILII > INls11 for all groups, except G (2). 
9 A notation very similar to the present one was introduced in Ref. 2, pro
vided we identify the Ex. ~ y of Ref. 2 with the present form, €Ix + y). In
deed, the phase choices of Ref. 2 for A (n),B(n),D (n), and G (2) are identical 
with those made in the present paper. 

IOThis set of phases for C (n) differs from that given in Ref. 2, which do not 
satisfy all the required constraints. 

"The definitions for d (p, q, r) and c(p, q, r), Eqs. (3.7) and (3.12), are for
mally identical, but these phase factors are parts of different self-consis
tent sets of phases. That is, a solution for d (p, q, r) which satisfies all 
constraints in D(n), will not satisfy all constraints present in C(n). 

12G. Feldman and R. Holman, J. Phys. G: Nuc!. Phys. 9, 7 (1983). 
I3R. Holman, J. Phys. G: NucI. Phys. 9, 35 (1983). 
14Those for the classical algebras have been given in this form in Ref. 2. 
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Techniques for obtaining generators of non regular maximal subalgebras of Lie algebras, 
alternative to those of Dynkin, are developed. They exploit the use of orthogonal bases in weight 
space, which are related to quark weights. The projection from an algebra G to its nonregular 
subalgebras g is related to an orthogonal matrix. The roots of G which project onto roots of g can 
be simply specified in the orthogonal bases. The phases of the expansion coefficients of generators 
of g in terms of generators of G are specified in such a manner that, for a given G, the entire set ( g 1 
of maximal subalgebras have consistent phases. The condition e -Il = e~ is satisfied for all 
generators of g. The generators of all maximal nonregular subalgebras of all exceptional algebras 
are exhibited. 

PACS numbers: 02.20.Sv 

1. INTRODUCTION 

The subalgebras of Lie algebras have been discussed by 
Dynkin, 1.2 using his formalism of simple roots and employ
ing phase and normalization conventions, which are chosen 
in each particular context to simplify the problem in hand. 
In this paper we will develop alternative techniques for de
riving explicit expressions for the generators of nonregular 
maximal subalgebras, exploiting the use of the orthogonal 
base related to the weights of the representations of smallest 
dimension-which for the sake of brevity will be called 
"quarks" in what follows. 3

,4 This provides a geometrical 
view of the relationship between algebras and subalgebras 
which is more perspicuous to physicists accustomed to a 
quark-oriented approach to group theory. We will also es
tablish phase and reality conditions, related to our previous 
work.4 They will be used systematically throughout the dis
cussion. 

In the next section, Sec. 2, we review relevant aspects of 
Lie algebras, with the aim of introducing some notation. Sec
tion 3 is a brief excursion into the subject of regular subalge
bras, in particular maximal regular subalgebras. The maxi
mal regular subalgebras of all Lie algebras are listed. The 
convenience of using the maximal regular orthogonal subal
gebras of the exceptional algebras to express the roots of 
these algebras in terms of orthogonal basis vectors is pointed 
out. The special considerations needed to fit A (n) algebras 
and subalgebras into the orthogonal basis scheme are re
viewed and further discussed. The regular subalgebras are 
considered, in order to provide a contrast to the nonregular 
subalgebras, in particular, maximal nonregular (MNR) sub
algebras, which are the chief concern of the present paper. 
These latter algebras are considered in general in Sec. 4. The 
first part of this secton is devoted to exhibiting the scale 
factor associated with the projection of a larger dimensional 
weight and root space, associated with G, to the smaller di
mensional space, associated with one of its gMNR' The sec
ond part of the section deals with general properties of the 
projection matrix from G to g in the orthogonal basis, the 

"'Supported in part by the National Science Foundation. 

projection of the G basis, 5 Ai , to the basis fta , the correspond
ing projection a(r,l )-+(3(r) for the roots of G and g, respec
tively, and the relation of the generators ell!r) to E n1r,!). Con

ditions on the expansion coefficients of ell1r) in terms of 
En!r./!' which follow from the commutation relations of the 
subalgebra, are given. These conditions are obtained directly 
with the use of Dynkin-like diagrams and tables of scalar 
products of the a(r,!). 

Section 5 is a summary of our results in tabular form. (If 
a reader is not interested in a detailed discussion of the meth
ods used to obtain them, Sec. 4 and the specific illustrations 
on the methods of Sec. 4 in Appendices A and B may be 
omitted.) In particular, in Sec. 5, we list relevant properties 
of all MNR subalgebras of all exceptional Lie algebras, with
out providing any further details of calculations. Some of our 
results for the expansion of ell1r) in terms of Eu1r,') appear to 
differ significantly from those of Dynkin. Most of these dif
ferences are due either to different possible choices of phases 
of the structure constants of G or to the fact that the equa
tions for the expansion coefficients do not determine them 
uniquely. In Appendix A we discuss in detail two cases 
where our results differ significantly from those of Dynkin. 
These differences are due to errors in Dynkin's work. The 
twocasesareE(6pG(2)andE(8pA 104°(l)[A 52°(I)inDyn_ 
kin's notation]. They also serve to illustrate our techniques. 
In Appendix B we consider in detail the cases of D (4):JA (2) 
and E(8PA (2) EJ1A (1) as examples, in which, by a suitable 
choice of notation, one can easily find the expansion of all the 
generators ell1r) (not just the simple ones) in terms of E n1r./). 

The case E (8PA (2) EJ1A (1) also provides an example for 
which we derive an alternative solution to that given by Dyn
kin. In Sec. 6, we conclude with a brief discussion and, in 
particular, contrast our approach, which is a gloss on the 
approach of Dynkin and is firmly based upon it, with the 
original approach of Dynkin. 

2. SIMPLE LIE ALGEBRAS 

The simple Lie algebras, G, can all be expressed in the 
Dynkin basis 1-3 (FFM) as 
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[H,H] = 0, (2.1) 

[ a( p)·H, Ealq)] = a( p)·a(q)Ealq) ' (2.2) 

[EaIP)' E ~aIP)] = a(p)·H, (2,3) 

[Eal p)' Ealq)] = No.1 p),alq) Ealm) , (2.4) 

where NaIP),alq) is nonvanishing for6 

a(m)-a(p) + a(q) 

a root. The vector H has n components, where n is the rank 
of the algebra. The different algebras are distinguished by 
the N - n, n-dimensional vectors ± a( p), the roots of the 
algebra, and N is the number of its generators. The operator 
H behaves as the position operator in the space of the roots. 
Thus, if A is a position vector7-weight-in the space of the 
roots, 

HIA) =AIA). (2,5) 

The operators E ± 0.1 p) are step up (step down) operators in 
weight space, 

E ±alp) lA, CP) = C(A,a(p),CP )IA ± alp), CP), (2.6) 

The weights of the finite-dimensional representations of the 
algebra are regular finite lattices of points in weight space, 
which can be generated from each other by the successive 
action of the operators E ± 0.1 p). Thus, the roots ± a( p) are 
the lattice vectors of the representations, and the boundaries 
of the representation are determined by the vanishing of the 
factors C (A,a, ,p ), It is evident from Eqs. (2.2)-(2.6) that H, 

Eo. , N ~, and C, like a and A, have the dimension of 
"length" in weight space. Thus, for a single group, the scale 
oflength in weight space can be chosen arbitrarily. It is usual 
to express all quantities in terms of the length of the longest 
root. 8 Finite dimensional representations of Lie groups are 
unitary, and thus the operators H can be taken as Hermitian: 

H=Ht· (2.7) 

The roots a( p) are real, so it follows from (2.3) that the opera
tors EaIP) can be chosen to satisfy9 

E ~alp) = E~IP)' (2.8) 

One of the set of conditions for the structure constants 
which follow from Jacobi identities [see FFM Eq. (2.9)] is 

NaIP),alq)N ~alp).~alq) = -INaIP),alq)1
2

• (2.9) 

We will take NaIP),alq) to be real. It follows that lO 

N ~ 0.1 pI, ~ alq) = - N 0.( p),alq)' (2.10) 

3. REGULAR SUBALGEBRAS 

A subalgebra g of a Lie algebra G exists when a projec
tion of the lattice points of the representations in the weight 
space of G is identical to the weights of the representations of 
g for a particular choice of the relative length scales. Since 
some of the roots, a( p), of G project into the roots (3(r) of g, 
the length scale of g (in terms of the longest root I/h I) is 
determined by the projection in terms of la L I, the scale of G. 
The square of this ratio of scales, 

j=laL 12/l/h 1
2, (3.1) 

is a defining property of the subgroup, known as the index. I I 

In discussing the subalgebras of Lie algebras, it is clear-
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ly sufficient to consider only maximal subalgebrasg, namely, 
those which are not, themselves, subalgebras of other subal
gebras of G. Suppose that the subalgebra g has roots (3(r) and 
elements e ± 13(r)' Regular subalgebras are those for which 

e ± 13lr) = E ± air)' (3.2) 

where, the labels r are a subset of the labels p so that the set 
! e ± 13lr) J is a subset of ! E ± 0.1 p) J and the! ± (3(r) J is a subset 
of! ± a( p) J. The maximal regular subalgebras have the 
same rank as G and indexj equal to unity. Simple and power
ful methods have been developed by Dynkin2 for deriving 
these regular subalgebras from the algebra of G, by removal 
of vertices in his extended diagrams. 12 The rules apply to 
both classical and exceptional algebras and we have nothing 
to add on this topic. 

For our discussion of both regular and nonregular sub
algebras, it is convenient to set up an orthogonal basis in 
weight space. In the algebras B (n), C (n), and D (n), the posi
tive weights of the representation of smallest dimension
the quarks-formjust such a basis with weights 'Ai (see Table 
I of FFM), where 

(3.3) 

ForA (n), the weights Xi of then + 1 quarks are not orthogo
nal but we can set up an n + 1 dimensional orthogonal basis 
'Ai (see FFM) such that 

Xi = 'Ai - a, i = I, ... ,n + 1, 

where 

I n + I 

0'= -- L 'Aj • 
n + 1 j~ I 

Note that 

(3.4) 

(3.5) 

Xi·O' = O. (3.6) 

Equation (3.6) implies that the weight space of A (n) is the n
dimensional subspace of the (n + 1 )-dimensional 'A-space 
which is orthogonal to 0'. For the exceptional algebras, the 
number of quarks greatly exceeds the rank of the algebra, 
and it is convenient to relate the orthogonal basis to a maxi
mal regular subalgebra which is one of the classical algebras. 
There are alternative possibilities, but, to avoid the compli
cation of quarks with nonorthogonal weights, we avoid su
balgebras which involve A (n) (for n > 1). Thus, for example, 
the orthogonal basis for E (6) is related to the simplest repre
sentation ofD (5) EB UrI) rather thanA (5) EBA (1). Thederiva
tion of these bases is discussed in Appendix A of FFM, and 
the results are presented in Tables I and II there, The quarks 
and roots (nonzero weights of the adjoint representation) are 
given in terms of orthogonal basis vectors 'Ai for all simple 
Lie algebras in these tables. 

For the classical algebras [even with the slight compli
cation present inA (n), discussed above] we can construct the 
maximal regular subalgebras by focusing on the direct corre
spondence between the orthonormal basis vectors and the 
quarks. 

The first stage of the construction is to segregate the 
quark weights of G into two disjoint sets. The quarks of G go 
into the quarks of the (in general nonsimple) g. If G is a 
classical algebra, g will be a classical algebra or a direct sum 
of two classical algebras. There are two potential com plica-
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tions. The first occurs if one of the two subspaces of the 
original space is spanned by a subset of k + 1 
A"S(A; , ... ,A~ + I) of the original A'S (A I,A2, ... ,An ) for B (n), 
C (n), D (n) or (AI· .. An + I ) for A (n), which are in fact used to 
construct A (k ). In this case, we want a k-dimensional sub
space of this k + 1 dimensional space, defined as the sub
space orthogonal to the vector k', where 

k+1 

k' = L A~. (3.7) 
a=l 

The second complication arises from the fact that the 
quarks of C (n) and D (n) have the same weight structure. In 
this case, the geometry of the weight space is not sufficient to 
determine the maximal subalgebras, and we must observe 
the restrictions due to the structure of the algebras. These 
restrictions become immediately apparent from the commu
tation relations, if the roots are written in terms of the or
thogonal A'S (see FFM). 

Thus, the maximal regular subalgebras of the classical 
algebras are 13

•
14 

A (n):{A (n - 1) Ell U(I), 
A (n - k - 1) EllA (k) Ell U(I), k = 1,2, ... ,[(n - 1)/2], 

(3.S) 

where [In - 1 )/2] is the next lowest integer to the number 
indicated, 

B n .{D(n), 
( ). D (n - k ) Ell B (k ), 

{
A (n - 1) Ell U(I), 

C(n): C(n _ k) Ell C(k), 

D(n):{A (n - 1) Ell Uti), 
D (n - k ) Ell D (k ), 

k = I, ... ,n - 1, 
(3.9) 

(3.10) 
k = I, ... ,[(n - 1)/2)], 

(3.11) 
k = I, ... ,[(n - 1)12]. 

[Note that B (n - 1) Ell Uti) is included in (3.9) and 
D (n - 1) Ell Uti) in (3.11) since D (1) is isomorphic to U(I).] 

Geometrically, we can think of the procedure carried 
out to obtain the maximal subalgebras of the classical alge
bras as a projection to subspaces where the orthogonal basis, 
labeling the axes, is kept fixed. The same argument as the one 
just given for the classical algebras does not apply to the 
exceptional algebras as there is no simple relation between 
the weights of the quarks and the basis vectors Ai of the 
orthogonal base. Nevertheless, for the sake of completeness, 
we list the maximal regular subalgebras of the exceptional 
algebras below 13

•
14

: 
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{

D(5) Ell Uti), 

E(6): A (5) EllA (1), 

A (2) EllA (2) EllA (2), 

{

E (6) Ell Uti), 

E(7): D(6)EllA (1), 
A (7), 

A (5) EllA (2), 

E (7) EllA (1), 

E(6) EllA (2), 

E(8): D(S), 

A (S), 

A (4) EllA (4), 
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(3.12) 

(3.13) 

(3.14) 

{ 

B(4), 

F(4): C(3) EllA (I), 

A (2) EllA (2), 

G (2)' {A (2), 
. A (1) EllA (1). 

(3.15) 

(3.16) 

4. NONREGULAR SUBALGEBRAS (S-SUBALGEBRAS) 

In this section, we describe the procedures which lead 
to the main results of this paper, namely the expressions, 
given in Tables I-VI, for the ell(r) in terms of E a ( p)' The ell(r) 

are the generators of the maximal nonregular subalgebras g 
and the Ea(p) are the generators of the algebras G. To obtain 
this relationship, we must find which set of roots 15 a.(r,! ) of G 
project into a given root p(r) of g. This, in turn, requires a 
knowledge of the projection matrix which takes a given re
presentation of G into a res presentation of g. In the conven
tional techniques (described by Dynkin2 and used by McKay 
and Patera l3 and McKay, Patera, and SankoffI6

), the matrix 
which projects the basic weights (as defined by Dynkin2) of G 
into linear combinations of basic weights of g is given. These 
weights are nG or ng in number (where nG and ng are the 
respective ranks) and span the two weight spaces. However, 
these weights are not orthogonal and therefore the projec
tion matrix is not an orthogonal one. In contrast, our ap
proach is to make use of the orthogonal basis vectors Ai and 
a knowledge of how the quarks of G project. Because of the 
direct relationship between quark weights and the basis vec
tors for the classical algebras this projection matrix becomes 
trivially obvious. In the case of the exceptional algebras, the 
construction of this matrix is only slightly more difficult 
than for the classical algebras. The procedure is described 
below. One of the important quantities required for the con
struction is the scale factor, also derived and defined below. 

The rank n g of an MNR subalgebra g of an algebra Gis 
less than nG , the rank of G. Denote the orthogonal basis of g 
by j.1a, (a = I, ... ,ng ), with 

(4.1) 

The space of g is a subspace of the space G, spanned by Ai 
(i = I, ... ,nG)' but the basis vectors j.1a are rotated with re
spect to the vectors Ai , and, as pointed out above, the length 
scale in the two spaces may be different. That is to say, the 
"scale factor" [closely related to the index j, Eq. (3.1 )], 
which we define as 

S2 = A 2//12, (4.2) 

may be different from unity. 

A. Scale factor 

Suppose the decomposition of an irreducible represen
tation <p of G in terms of irreducible representations t/J w of g 

to be 

(4.3) 

Let A be the weight of an element of <p and Hi be a 
componene 7 of the vector H (i = I, ... ,nG)' Then, 

(4.4) 

The number of weights A (including the zero weights) is the 
dimension of the representation. The subgroup g will have 
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ng of the H; in common with G. For these H;. we can also 
write 

H; lA, t/J) = A; IA. t/J), i = 1, ... ,ng • 

It follows that 

(A. ¢ IH;Hj IA. ¢) = A;Aj' i,j = 1 ..... no. 

(A. t/JIH;HjIA, t/J) =A;Aj' i,j= 1, .... ng , 

(4.5) 

(4.6) 

(4.7) 

where the state vectors of the representations are all normal
ized to unity. Let us sum (4.6) and (4.7) over allIs A in ¢ and 
t/J. respectively. That is, we take the trace of H;Hj in these 
representations. Thus. 

i,j = 1, .... no, 
(4.8) 

and 

1 "'I I "'I 
I A;Aj = I (A, t/JIH;Hj lA, t/J) = Tr Hi~ = e "'~ij' 
A A 

i,j = 1, .... ng , 
(4.9) 

where the e'" (e "') are constants l9 which depend on G. ¢ 
(g, t/J). Traces are independent of the state vectors which 
span the representation. Thus, the space spanned by the 
I A. ¢ ) is the same as that spanned by I A, t/J). This allows us 
to deduce from (4.8) and (4.9) that 

(4.10) 

We use (4.8) and (4.9) again by setting i = j and summing 
over i in each case. We obtain20.21 

(4.11) 

and 

(4.12) 

If the weights in G are expressed in terms of A 2 and those in g 
in terms of J-L2. we get from (4.10)-(4.12) 

2_ A 2 nG (I "'I n. A ;/1 ¢ I nG A~) 
s=-2=-II-2 II-2' 

J-L ng A i~1 J-L A i~1 A 

If the subalgebra is nonsimple and is of the form 

G-::Jg) fBg2, 

(4.13) 

(4.14) 

where g", has rank nOJ (w = 1,2), then the same argument 
may be applied to a representation ¢ which decomposes as 

¢-+( tfJ/', tfJ)21) fB ( t/J~II. t/J~21) fB .. · fB ( t/J~I, tfJ~I). (4.15) 

We must now distinguish the components ofH ing). 
from the components ofH in g2' One can show that 

~A ~nw A 2 
""'I "'I ""'i~ I i 

W= 1,2. 

so that 
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(4.16) 

!?: = ~ = !!.2.... l:~"'1l:7'" [A 7/(J-Lwf]. 
'" (J-L"')2 nO) l:~¢1l:7G(A;/A2) 

(4.17) 

B. The projection matrix 

Suppose that, in the projection of the weight space G 
into that of g. the basis vectors A; of G project according to 

A;-+ IM;a f.La' i= 1, ... ,no , a= 1, ... ,ng • (4.18) 
a 

where the f.La label the orthogonal basis vectors in g. Since 
the basis vectors, Ai and f.La. each form orthogonal sets, the 
rectangular matrix 

Mia/S (4.19) 

may be interpreted as the first ng columns of an nG Xno 
orthogonal matrix,22 which rotates the orthonormal system 

A;I[.1:1, to another orthonormal system f.L;lJ/?, where the 
ng vectors f.La in (4.18) are a subset of the vectors f.Li' Thus, 
we would need an additional no - ng of the f.L vectors to 
span the whole space of G. Accordingly, the projection of G 
into g is interpreted geometrically as the rotation of the or
thogonal A; basis to the orthogonal f.Li basis, followed by 
setting the coefficients multiplying the additional (nG - ng) 
f.L vectors to zero. Thus, the columns of Mia possess the or
thogonal property 

nG 

I M;aM;b = s2~ab' a,b = 1, ... ,ng • 

i= I 

(4.20) 

Ifgis semisimple, the normalization condition (4.20) must be 
altered so that the scaling factor S2 is that associated with the 
subalgebra factor over which the a,b labels range. 

Although the quantities (4.19) are elements of an or
thogonal matrix, they are not all the elements. Nevertheless, 
they allow us to determine the f.La in terms of the A; (but, of 
course, not vice versa): 

(4.21) 

Since we know the roots p(r) of g in terms of the f.La (see 
Tables I and II ofFFM), we easily determine the p(r) in terms 
of the Ai> associated with G. In addition, a knowledge of the 
alp) (in terms of the Ai) and of the elementsM;a allows us to 
find immediately which set of roots of G [call them a(r,!)] 
project into a given root p(r) (labeled by r) of g. That is, we 
can obtain 

a(r,l)---..p(r), 1= 1, ... ,L. (4.22) 

The value of L is given by the number of times that the given 
weight p(r) appears in the decomposition 13 of the adjoint 
representation of G in terms of representations of g. This 
follows because every weight in a representation. ¢. of G 
projects into a weight of the representation, t/J, of g. 

The projection matrix, Mia, is constructed to ensure 
that the relations (4.18) project weights of quarks, 
('Ix,X = 1, ... ,Nq ) in G into weights (w~ql) of the corresponding 
representation, t/J. ofthe subalgebra g in such a way that the 
conditions (4.20) are satisfied. Thus, 
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n ~ Q . A-wlq) 
'Ix £.. Xl I X 

(4.23) 
i= 1 

When Gisoneoftheclassical algebrasB (n), C(n), D (n), 
the steps outlined above for constructing Mia are very simple 
to carry out. This is so, since the nG Ai themselves are the 
weights of quarks (more precisely, one-half the total number 
of nonzero quark weights) and project directly into weights 
of the subalgebra. There is no complication when G is A (n) 
[or23 G (2)], even though the quark weights are not the Ai but 
[see (3.4)] 

1 n + 1 • 

Ai - -- I Aj' 1= 1, ... ,n + 1. 
n + 1 j= I 

We can choose the projection such that 
n+1 

I Aj-O, 
j= 1 

(4.24) 

(4.25) 

so that (4.23) will be given by (4.18), where the L~'= 1 Mia ~a 

are a set of the w~j weights. 
There is, in constrast, a complication when A (n) [or23 

G (2)] is a subalgebra, g, and we embed the ng dimensional 
space of g into the very convenient ng + 1 subspace defined 
by Eqs. (3.4) and (3.5). For example, ifgisA (2), the projection 
(G_g) is onto a two-dimensional space which we embed in a 
three-dimensional space with basis vectors ~a (a = 1,2,3). 
The weights w~j are, however, expressed in terms ofthe three 
quark weights of g, Xa' where 

1 3 

Xa = ~a - "3 b~1 ~b' (4.26) 

and, of course, 
3 

I Xa =0. (4.27) 
a=l 

This implies that the quantities Wxa in (4.23) will be con
strained to satisfy the subsidiary conditions 

3 

I Wxa =0. (4.28) 
a=l 

Although the projection of the basis vector Ai onto the three
dimensional subspace will be of the form given by (4.18) 
(where the Mia Is are elements of an orthogonal matrix), the 
projection onto the two-dimensional subspace will be given 
in terms of the quantities 

_ 1 3 

Mia = Mia - - I M ib · (4.29) 
3 b= 1 

This is the case, since Mia are linear combinations of the Wxa 

which satisfy (4.28). Using Eqs. (4.21) and (4.26), we have 

1 n,. -
Xa = 2" I Ai Mia, 

S i= 1 

from which it follows [again using (4.26)] that 

- - 2 I MiaMib = S (8ab - j), a,b = 1,2,3. 

(4.30) 

(4.31) 

We shall call the quantities Mia Is elements of a pseudo-or
thogonal matrix.24 

When G is an exceptional algebra,25 the construction of 
the projection matrix is only slightly more difficult than for 
the classical algebras. In this case, there are many more 
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quark weights 'Ix than there are basis vectors Ai' However, 
in our basis, which makes use of the orthogonal subalgebras 
of the exceptional algebras, the "vector" weights26 of q are 
closely related to the basis vectors. Thus we have for the 
"vector" weights (see Table II of FFM) of7 

F(4): 

E(6): 

± Ai' i = 1, ... ,4, 

± Ai - X~J3, i = 1, ... ,5, 

2X~J3, 

(4.32) 

(4.33) 

E (7): ± Ai ± X7 /v'L, i = 1, ... ,6, (4.34) 

E(8): ± Ai ± Aj , i,j= 1, ... ,8. (4.35) 

From a knowledge of the quark decomposition [i.e., of 
the quantities W xa , defined in (4.23) and listed in Tables l
VI, in section (ii)], we must find a set of nG X ng numbers 
with which to construct the elements of the orthogonal (or 
psuedo-orthogonal) matrix. This set is selected so as to sa
tisfy the conditions (4.20) [or (4.31 )].It is far from unique, but 
simple solutions can be found almost by inspection. One aid 
in this construction is to examine the weights wi"') of g into 
which the adjoint of G projects. A trial set of Mia must have 
the property that Ai + Aj (which are always some of the 
adjoint weights) do not project into weights larger than the 
maximum of the weights wi."'). Another useful ansatz is to let 
2X~yj for E (6), A6 - X71v'L for E (7), and A7 - As for E (8), 
project into one of the smallest weights w~). For the simple 
subalgebras, we can also take A6-o for E (7) and A7 (or 
A8)-o for E (8). For the nonsimple cases, on projection these 
vectors can be taken to have no components for at least one 
of the semisimple factors. Note from the Tables IVA-lYE 
(ii) that all of the simple maximal regular subalgebras of E (6) 
contain three zero weights w~), which means that we could 
(and did) take 

A5 , X6-0 (4.36) 

for all of these cases. Similar arguments can be used for the 
E (7) and E (8) subgroups, although for E (7) we cannot28 take 

X7-0, (4.37) 

since ± v'LX7 ± A7 are roots. In these cases it is useful to 
choose Al and A2, say, to project into weights with the largest 
possible Wxa consistent with (4.20) [or (4.31)] and such that 
Al + A2 projects into a weight which is the largest weight 
into which the adjoint projects. For theA (1) MNR of E(7) 
and E (8), we make an additional choice, which allows a sim
plification in the notation for the roots ala,! ). Once the pro
jections of A6 , X7 for E (7) and A7, A8 for E (8) have been cho
sen as outlined above, we choose for the projection of Al the 
largest possible Mia consistent with (4.20). The rest of the 
matrix is then uniquely determined. 

As mentioned earlier, once we construct the projection 
matrix, we can find directly the set of roots, a(r,/ ) of G which 
project into rJ(r), a root of g. We can now express the genera
tors eplr) , of g as linear combinations of those of G (Eal p)): 

1 L 

eplr) = -,- I B (r,l)Ealr.I) ' (4.38) 
s (r) 1= 1 

where the coefficients B (r,l) are determined so as to satisfy 
the algebra of g. The quantity s'(r), which is directly related 
to the scaling factor s is extracted so as to make the matrix 
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which determines the B (r,! ) coefficients particularly simple. 
We take29 

(4.39) 

In keeping with our physical assumption concerning step-up 
and step-down operators, we take 

1 L 
e _ l3(r) = -, - I B *(r,!)E _ a(r,I)' (4.40) 

s (r) I~ 1 

To determine the coefficients B (r,1 ), we must substitute 
(4.38) and (4.40) into the commutation relations (2.2)-(2.4), 
for the group g. From the first set (2.2) 

[/3(1 ).H,e13(rd = /3(t )'/3(r)ef3(rp (4.41) 

we find 

/3(t )'a(r,/) = /3(t )'/3(r), all I, 

and, in particular, 

/3(r)·a(r,l) = /3 2(r), all/. 

From the set of relations (2.3), 

[ef3We - f3(rl] = /3(r)·H, 

we have 

1 {L /3(r)·H = -- I IB (r,! Wa(r,! )·H 
[s'(rW I~ 1 

(4.42) 

(4.43) 

(4.44) 

+ I B(r,!)B*(r,!')[Ea1r,II,E_a(r'!'I] +c.c.}. 
1'1'1' 

(4.45) 

Two sets of relations follow from this condition, the first 
being 

1 L -- I IB (r,! Wa(r,l) = /3(r). (4.46) 
[s'(rW I~ 1 

Multiplying by a(r,m) and using (4.39) and (4.43), we ob
tain30 

L 

I a(r,m)'a(r,! )IB (r,1 W = U 2, all m. (4.47) 
I~ 1 

Another sum rule for the IB (r,! ) 12 is obtained by multi
plying (4.46) by /3(r) and using (4.43): 

L 

I IB (r,! W = [s'(rW· (4.48) 
I~ 1 

For E(6), E(7), E(8), 

a(r,m)'a(r,l) = U 2, for 1 = m, 

= ± A. 2,0, for 1 i=m, I,m = 1, ... ,L. 
(4.49) 

For F(4), the values ±!A. 2 are also possible. 
If the set of L roots a(r,! ) for a given r are a subset of 

simple roots, the scalar products in (4.49) for I i=m must be ° 
or - A. 2. A set or subset of simple roots are all independent, 
which in turn implies that Eqs. (4.47) determine IB (r,1 ) 12 
uniquely. The implication of scalar products in (4.49) with 
values +,1 2[ +0- 2forF(4)]isthatthesetofLrootsa(r,!)are 
not independent. In this case, the set of equations (4.47) do 
not uniquely determine the IB (r,l) 12. The property (4.49) is 
indicated in the Tables I-VI (iii) in the manner of Dynkin. 
The roots a(r,! ) are labeled by closed or open circles. Two 
roots joined by a single continuous line have a scalar product 
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of -A. 2. Roots not directly joined, or not joined at all, are 
orthogonal. In addition, we have introduced a new notation: 
The dashed line connecting two roots indicates that their 
scalar product is + A. 2. 

There will be a second set of relations which follow 
from (4.45) if for some pairs of roots a(r,!v) and a(r,1 ~) (v 
labels each pair) 

a(r,!v) - a(r,l ~) = 0.( x), 

where 0.( xl is a root (not in the set r), which is the same for all 
v. For such a case, we must have 

I B (r,lv)B *(r,l ~)N7 I;. = 0, (4.50) 
v 

where we have used the fact that 

(4.51) 

and where the N 7.1;, are structure constants of G. We will 

delay the determination of the pairs of roots which contri
bute to (4.50), because similar arguments are used below 
where all the generators for simple roots are obtained. As 
shown by Dynkin, if one uses the commutation relations 
(4.41) and (4.44) for simple roots [ /3(a)] only and the addi
tional relations 

[ ef3(ape _ f3lb I] = 0, (4.52) 

the entire subalgebra can be generated. If we substitute ex
pressions (4.38) and (4.40) into (4.52), we obtain restrictions 
on the coefficientsB (a,! ), B (b,m) similar in form to Eq. (4.50): 

(4.53) 

where 

a(a,!v) - a(b,mv) = 0.( y). (4.54) 

Restricting our discussion, for the moment,31 to the 
case where Gis E (6), E (7), and E (8) (all the roots a for these 
algebras have length 0.2 = U 2), it follows on taking the 
square of (4.54) that, for every pair contributing to (4.53) 

a(a,lv )'a(b,mv) = + A. 2. (4.55) 

When tw032 or more pairs contribute to the same root 0.( y), 
we have 

a(a,lIl- a(b,mIl = a(a,!2) - a(b,m2) = a(y). (4.56) 

It follows from the fact that all the roots appearing in (4.56) 
have the same length U 2 and, taking squares of various com
binations of the roots in (4.56), that the configuration ofsca
lar products must be as displayed in either Fig. l(a) or l(b). 
The meaning of the dashed line connecting two roots has 
been discussed previously. If we make the substitution 

a(afd a(alz) a(al,) a(al]) 
0 0 0-------0 

a(bm,)o + a(bm,)? + 0 
I 
I 

a(bm2)o + a(bm2)6 0 + 
(a) (b) 

FIG. 1. Scalar products of roots contributing to Eq. (4.53). See text for 
explanation of symbols. 
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(4.57) 

we find the configuration of scalar products for those roots 
which contribute to (4.50). These are displayed in Fig. 2(a) or 
2(b). 

We find that restrictions of the form (4.50) exist only for 
some of the subalgebras of E (7) andE (8) (see Tables VB, VIB, 
VIC-E). Such contributions are nontrivial only when one or 
more pairs of a(r,l) have scalar products which are + A 2 [see 
(4.55)]. This is turn implies that not all of the a(r,!), for a 
given r, are linearly independent, from which it follows that 
the equations (4.47) do not uniquely determine the IB (r,l W. 

It is often useful (and straightforward) to generate the 
entire algebra (and not just the algebra of simple roots) di
rectly. That is, we construct the commutation relations 

[e(3lr!,e(3(td =n~te_(3(u)' 

where l3(r), l3(t), l3(u) are any roots such that 

l3(r) + l3(t) + l3(u) = 0, 

(4.58) 

(4.59) 

and the n~t are the structure constants of the subgroup g. 
Substituting (4.38) into (4.58), we obtain in a manner similar 
to (4.50) and (4.53) 

(4.60) 

where the ii are the structure constants of g (in units of A ), the 
magnitudes of which are given by Eqs. (2.17)-(2.21) ofFFM. 
Further, we have 

a(r,/v) + a(t,rnv) = - a(u,k ), for all v. (4.61) 

In this case, no more than one pair need contribute to an 
equation of form (4.60), and the pairs must satisfy the rela
tion 

a(r,l)"a(t,rn) = - A 2. (4.62) 

If more than one pair contributes to the same a(u,k), its con
figuration of scalar products [shown in Fig. 3(a) or 3(b)] is 
easily obtained from Fig. 2(a) or 2(b) by simply letting 

a(a,fv)-a(r,!v), a(b,rnv)- - a(t,rnv)' (4.63) 

As previously mentioned, Dynkin has shown2 that it is 
sufficient to determine coefficients B (a,/ ), which satisfy Eqs. 
(4.50) and (4.53) for the simple roots. The entire subalgebra 
can then be generated from the algebra of the simple roots 
using (4.58) as the definition of e -(3(u)' The phases of the 
structure constants N 7m , of the parent algebra, which appear 
in these equations can be chosen arbitrarily since they are not 
restricted by either linear constraints [Eqs. (2.7)] of FFM or 
bilinear constraints [Eqs. (2.8) ofFFM]. Dynkin2 exploits 
this freedom. The resulting phases generated in this way are 
consistent for the algebra and subalgebra under considera-

a(rl,)a(rl j)o.(riz)u(rl i) 
c>---o--o---o (a) 
~ 

a(rl.)a(rli)a(rli)a(rl2 ) 

0;-,- --0- - --<>- :: l' (b) 

FIG. 2. Scalar products of roots contributing to Eq. (4.50). See text for 
explanation of symbols. 
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I u(rltl 

a(t~-I ° + 

a(tm2)o I + 
(a) 

a(tm,)9 
I , 

a(tm2)6 

a(r/,1 a(rizl 
0---------0 

o 

o 
(b) 

FIG. 3. Scalar products for which more than one pair of roots of type (4.62) 
contributes to Eq. (4.60). See text for explanation of symbols. 

tion but do not necessarily imply a simultaneously consistent 
phase convention for the treatment of different subalgebras. 

In our approach, we have systematically used the phase 
conventions established in FFM for both the parent algebras 
and the subalgebras, so that the relation 

e -(3 = 4 (4.64) 

is maintained and all solutions are consistent with each oth
er. 

5. SUMMARY OF RESULTS 

We are now ready to present a summary of our results 
for the various MNR subalgebras. Table I gives the relevant 
information on the single classical Lie algebra we consider in 
detail in Appendix B, D (4):::>A (2). Tables II-VI present all 
MNR subalgebras of all exceptional Lie algebras as follows: 

G(2):::>A (1), Table II; 

F(4):::>A (I),G (2) sA (1), Tables III A and III B, respectively; 

E (6):::>A (2),G (2),C (4),F(4),G (2) sA (2) 

Tables IV A-IV E in that order; 

E(7):::>A (I),A '(I),A (2),A (I)sA (1), 

G(2)sA (1),C(3)sG(2),F(4)sA (1) TablesVA-VG; 

E(8):::>A (I),A '(I),A "(1),C(2), 

A (2) sA (I),F(4) s G (2) Tables VIA-VIF. 

In addition to using the general presentation of Sec. 4, 
as illustrated in the examples considered in Appendices A 
and B (material from which is included in Tables I, IVB, 
VIC, and VIE), we have relied heavily on the work of Dyn
kin2

, McKay and Patera,13 and FFM to prepare the tables. 
We have used our Dynkin-like diagrams for roots a(r,l) and 
McKay and Patera'sl3 notation for irreducible representa
tions, as well as the structure constant phases chosen in 
FFM. 

Each of the tables is divided into four sections which we 
label (i), (ii), (iii), (iv). In Section (i), we list the algebra G, the 
subalgebra g, and the representations of g into which the 
quark (q) and adjoint (d) ofG decompose. (The notation of 
McKay and Patera l3 is used to label the irreducible repre
sentations and their dimensions are listed below the sym
boIs.) The superscript which appears on the subalgebra is the 
scale factor S2 defined by Eq. (4.13). Except for A (1) and C (n), 
S2 is the same as Dynkin's indexj, defined by (3.1). Because of 
our normalization of roots in terms of quark weights, S2 is 2j 
for theA (1) and C (n) algebras. 33 The value of S2 is determined 
from Eqs. (4.13) or (4.17). This requires a knowledge of all the 
weights of the quark of G and weights w~) into which the 
quark decomposes in g. The dimensions and weights of the 
quark and adjoint of G are given34 in Tables I and II ofFFM. 
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We see from Table II ofFFM that each nonzero weight of 
the quarks has a length squared, jA 2, A 2, jA 2,0 2, :u 2 for the 
exceptionalgroupsG (2 ),F (4),E (6),E (7), andE (S), respective
ly. The tables of section (ii) headed Wxa allow one to calcu
late the length squared of all the weights w~). 

Section (ii) of the tables gives the weight matrices Wxa , 

the projection matrices Mia (or Mia), and the roots of g, p(r), 
in terms of the basis of G, Ai -(i). The table headed Wxa gives 
the coefficient in the expansions in the g basis of all the 
weights w~) into which the quark of G decomposes [see 
(4.23)]. The column lables ~a' ~b ,~c, etc. imply that all pos
sible permutations of the a,b,c labels are to be taken. The last 
column gives the number of weights associated with the con
figuration of Wxa elements, indicated in a given row. 

In the tables headed Mia (Mia)' the rows are labeled by 
the indices (i) which stand for the Ai' the basis vectors of G 
and the columns by ~I' ~2""VI' V2, ... , where the ~a and Va 
are the basis vectors of the respective component algebras of 
the subalgebrag. The projection is always from Ai =(i) space 
into ( ~a ,Va) space and is so indicated by an arrow in the 
table. The matrices have nG rows enG + 1 = 3 for G = G (2)] 
and ng columns eng + 1 for A (2) and G (2)]. When the subal
gebra is notA (2) or G (2), the sum of the squares of all entries 
in a column must equal S2 and any two different columns 
must be orthogonal [see (4.20)]. When g is A (2) or G (2), the 
sum of the squares of all entries in a column must equal iS2 

and the scalar product of any two different columns must be 
- js2 [see (4.31 )]. To indicate that in these cases the matrices 

are pseudo-orthogonal, we put an X through the projection 
arrow. 

The last table in section (ii) gives the simple roots of g 
(more often, all the roots) as expansions in terms of the Ai' 
the basis of G. For nonsimple algebras g (in our examples, 
there are always only two component subalgebras), two such 
tables are given. The number on the upper left corner of this 
table indicates the common denominator by which the linear 
combination of A, (indicated by the numerical entries in a 
given column) are to be divided. Unless otherwise indicated 
(in some of the cases where all roots ofg are given), the Ai (i) 
labels of the rows carryover from the Mia tables immediately 
to the left of these p(r) tables. The convention for labeling the 
p(r) is the same as that for the aIr,! ), and is discussed below 
when section (iii) is considered. 

In section (iii) of the tables, the roots a(r,!) which project 
into the simple roots pta) are listed and diagramed. The co
lumns (rows) have two headings, the leading heading being 
the rooe5 pta) of g. Just below (to the right) are the a(a,!) 
which project into that pta). Associated with the ala,! ) are 
diagrams which are generalizations of those introduced by 
Dynkin, in that any two roots in a row (or column) directly 
connected by a continuous line have a scalar product of -A 2, 

two roots directly connected by a dashed line have a scalar 
product of + A 2, and any two roots not connected, or not 
directly connected, are orthogonal. The information pro
vided by these column and row headings plus the G phase of 
NaP is sufficient to allow us to write down Eqs. (4.47) and 
(4.50). The entries in the table give the scalar products 
between component roots. The information provided by 
these scalar products allow us to write down Eq. (4.53) [see 
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the discussion following (4.53)], and, in the few cases in 
which all roots are specified, Eq. (4.60). The roots a(r,!) [p(r)] 
are labeled in an obvious way in terms of their Ai [ ~a or va] 
decomposition. We have reserved a ( P) to label the roots of 
G (g) and lower (upper) indices indicating a positive (nega
tive) basis vector A or ~. Thus, for example, 

P~=~a - ~b' (5.1) 

and for corresponding "vector" roots of G 

d; = Ai - Aj • (5.2) 

For the spinor roots of E (6)and E (S), we label the a's by the 
fewest number of positive or negative Ai which appear. For 
example, in the case of E (6) we have27 

al=!(AI - A2 - A3 - A4 - A5 - v3X6), (5.3) 

[recall that the spin or roots for E (6) or E (S) are such that the 
total number of negative signs which appear must be odd]. 
For the case of E (7), we also include the position of the label 
7. Thus 

a~4 = !( - AI + A2 + A3 - A4 + A5 + A6 + V2X7). (5.4) 

We must include the 7, because, although the total number 
of minus signs in front of A(""A6 must be even, we have roots 
for both signs of X7• In addition, we denote all indices 1-6 
positive (negative) by a + ( - ) superscript. Thus, 

a~± I = + (( ± ) itt Ai + V2X7). (5.5) 

The algebra of F(4) has both odd and even numbers of 
minus signs in the spinor weights. To avoid confusion with 
vector roots, we label all basis vectors in this case. Thus for 
G ==F(4), by the symbol aii we mean 

(5.6) 

and similarly for Pii in terms of ~a' for g = F(4). 
The remaining special cases involve "vector" roots like 

2v, ~I' 2~3' A7, or Xa [where Xa are theA (2) quark weights, 
Eq. (4.26), and G (2) roots]. These roots are directly so indi
cated in the tables in which they appear. 

In section (iv) of the tables, the results for the simple 
generators ep(a) ofg in terms of the generators E«(a,l) ofG are 
given. (Frequently the results for all the generators of g are 
given. This fact is signaled by the phrase "All ep " in the 
tables.) The notation used for generators is obviously related 
to that for roots. Thus, the generator denoted E ~ is that 
associated with the root a;, and the generator E pqr is that 
associated with the root apqr

, etc. We use lower case letters 
for the generators of g, and again the notation is almost ob
vious. Thus, e~ is associated with the g root p~ =~a - ~b • 

For the roots which are explicitly written, like 2v, Xa' 
etc., we also explicitly label the corresponding generators: 
e2v ,ex. ,etc. 

We illustrate the use of the tables and figures by discuss
ing the cases of E (6PG (2) and E (SPA 104°(1) in Appendix 
A. We treat these two cases in detail, because they are the 
ones in which our results differ significantly from those of 
Dynkin. As described in Appendix A, these differences are 
due to errors in Dynkin. 

In general, other differences between our results and 
those of Dynkin are due to different choices for the G phases 
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and are also due to Dynkin's definition of generators other 
than those associated with simple roots in terms of nested 
commutators of generators for simple roots: 

(5.7) 

From his convention [Ref. 2, Eq. (9.10), p. 171] any genera
tors appearing with an even number of k labels (i.e., contain
ing an even number of simple roots) will have a phase of ± i 
relative to those with an odd number of such labels. 

Other apparent differences which arise for the cases 
E(7PA 462(1), E(8PC(2), E(8PA (2) EBA (1), and 
E (8):>A 1520( 1) are due to the freedom, in these cases, of arbi
trarily choosing some of the coefficients IB (a,l W. This point 
is also discussed in Appendix A. 

Examples in which we obtain expressions for all the 
generators e(3lr) (not just the simple ones) are given in Appen
dix B. 

6. DISCUSSION 

The generators for simple roots of MNR subalgebras g 
ofthe exceptional algebras G in terms of generators of G have 
been given by Dynkin. 2 In addition, the p(a) of simple roots 
of g is given in terms of a(i) of G in Ref. 2. Projection matrices 
which determine the a( p)_p(r) are given in Refs. 13, 16, and 
20. In this work we have shown how these results (and some 
oftheir generalizations) may be obtained in a more geometri
cal framework. By making use of the orthogonal bases (the 
Ai ), we have avoided a number of steps required in the usual 
procedure. There, one needs to know both the covariant and 
contravariant bases, and one must specify a certain ordering 
of weights (and adhere to it). The projection matrices so con
structed are equally complicated for the classical as well as 
the exceptional algebras. In our case, since the bases we use 

are orthogonal, the projection matrices are parts of orthogo
nal matrices (or of pseudo-orthogonal, as defined in Sec. 4). 
For the classical algebras, because of the direct relationship 
between the quark weights and the basis vectors, the projec
tion matrices are immediately obvious. The situation for the 
exceptional algebras is only slightly more difficult. For these 
algebras, we do not have the direct relationship between 
quark weights and basis vectors that we have for the classical 
algebras. However, if we use the orthogonal basis associated 
with the regular maximal D (n) or B (n) subalgebras of the 
exceptional algebras, we can construct the projection ma
trix, almost by inspection. The disadvantage of our form of 
the projection matrix (which we hope to rectify in the future) 
concerns its use in constructing branching rules for any arbi
trary representation of G. 

Using the newly constructed projection matrices as a 
starting point, we have shown how, from Dynkin-type dia
grams36 and a few tables of scalar products of roots, one may 
derive the equations which determine the B (a,l), the coeffi
cients which relate the subalgebra generators to the genera
tors of the algebra. In this way we have been able to find 
solutions more symmetric than those given by Dynkin. 
There are as many non vanishing coefficients B (a,l) as there 
are roots a(a,/), a feature not always present in Ref. 2. Also, 
our set of generators E a1a•I ) , which enter an eJ3la) have simple 
specifications in terms of root labels, given in terms of Ai' In 
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contrast, Dynkin frequently has to define them indirectly in 
terms of nested commutators [see Eq. (5.7)]. For the case37 of 
E (8), a maximum of eight such nested commutators appear. 
Two nested commutators occur frequently. 

Another advantage of our approach, in addition to the 
simplified derivation and presentation of results, using or
thogonal bases, is its greater convenience for physical appli
cations. It is in general more convenient for computational 
purposes to specify all roots p(r) and their corresponding 
generators rather than just simple roots and their generators. 
We have succeeded in doing this for most of the cases we 
considered. With further effort, other cases could no doubt 
be similarly presented. In contrast, only simple roots are 
specified in Ref. 2. ThephasesoftheB (a,l ) chosen by Dynkin 
are frequently zero, or at worst, 1T. At first glance, this is an 
advantage of Ref. 2 over the present work. However, in re
cent physical applications, such as symmetry breaking in 
grand unified models3.38.39 one has to deal simultaneously 
with all of both maximal regular (MR) and MNR subgroups 
g of G, or a large subset of such g's. In such cases, it is essen
tial to have a consistent set of phase choices for structure 
constants. This choice, in turn, serves to limit the arbitrari
ness of the phase choices of the B (a,l ), as is indicated by the 
relations derived in Sec. 4 above. If this condition is not met 
the linear and bilinear relations (FFM) between structure ' 
constants will not be satisfied in general. Finally, the require
ment that all step-up operators be the Hermitian adjoints of 
step-down operators is a physically useful requirement. We 
impose this condition in the present paper. Apart from the 
errors in Ref. 2, this requirement is also satisfied there.40 

We have not considered nonmaximal regular or nonre
gular subalgebras of the exceptional algebras in the present 
work. The extension to these cases is trivial. The p(a) and 
e(3la) can be obtained directly for these cases, using the meth
ods we have developed. They can also be obtained indirectly 
by considering chains of subalgebras, each link of which is a 
maximal subalgebra of the previous algebra in the chain. 
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APPENDIX A 

Tables I(iii)-VI(iii) have been constructed so that one 
may read off directly the equations corresponding to (4.47), 
(4.50), (4.53), and, when required, (4.60). As an example of 
how the procedure works, consider the G (2) subalgebra of 
E (6) (Table IVB). In Table IVB(iii), the column and row 
headings give the simple roots ofG (2), Pi, and Xz, respective
ly. The secondary column and row labels specify which a(a,/ ) 
of E (6) project into the respective simple roots. The Dynkin
like diagram associated with the a(a,l)'s indicates scalar pro
ducts. For the set associated with Pi all scalar products are 
zero, whereas for those associated with Xz not all scalar pro
ducts are zero. With this information, we can write down 
Eqs. (4.47) which determine the IB (a,l W. They are 

21B i 12 = 2, 21B4512 = 2, 21B ~ IZ = 2 (AI) 
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and 

21Bj 12 = 2, 21B2512 -IB612 = 2, 21B512 -IBW = 2, 

(A2) 

from which it immediately follows that the IB (a,l ) 12 are de
termined uniquely to be 

(A3) 

and 

(A4) 

There are no equations of type (4.50) since there are no 
dashed line connections among the roots. To find relations of 
type (4.53), we must find configurations in Table IVB(iii) like 
those of Figs. 1 (a) or 1 (b). There is just one such configuration 
and thus one such equation, namely, 

d( - 2 - 1 - 4)BiBr + d(4 - 52)B45B;5 

+ d (452)B ~B ~. = 0, (A5) 

where the d (pqr) are phases which have been defined in FFM. 
This last equation can be considered an equation for two 
relative phases oftheB (a,! ). We may take all the phases asso
ciated with the root X2 and the phase of B ~ to be zero. This 
then determines the phases of B 45 and B ~ : 

(A6) 

where 

e jO = (1 + i-tt)l2.J2. (A7) 

The final results for the roots e~ and ex, are listed in Table 
IVB(iv). These results differ markedly from those to be found 
in Dynkin.41 At first sight, it appears that the difference 
arises because Dynkin does not seem to make the hermiticity 
assumption implied by our Eqs. (4.38), (4.40), and (4.64). In 
fact, in place of (4.40), he would write 

1 L 
e -13(a) = -,- I B '(a,!)E - a(a.!» 

S (a) I~ 1 

(A8) 

where B '(a,!) is generally unrelated to B (a,!). This implies 
that our equations (4.47) for IB (a,l W will become equations 
for B (a,l)B '(a,l), which in turn implies that for this case [the 
G(2) subalgebra of E(6)] the results (A3) and (A4) will be 
modified to read 

(A9) 

and 

(AW) 
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Similarly, in place of (A5), which follows from (4.53), we 
must write 

d( - 2 - I - 4)B~Bi' + d(4 - 52)B45B~5 

+ d(452)B~B~' = O. (All) 

We must now also write the equation which is a consequence 
of (4.52) when pta), P(h )- - pta), - P(h). The result is 

d (214)B i'B i + d ( - 45 - 2)B ~5B25 

+ d ( - 4 - 5 - 2)B 1B ~ = o. (AI2) 

Proceeding as before, we can choose as unknown phases 
those associated with B45, B ~5 ,B ~, and B ~'. Using (A9)
(AI2), we find that, apart from a possible arbitrary overall 
phase, B4~ and B ~ are determined as in (A6), with 

This result does not depend on the phase convention for the 
d (pqr) but is a consequence of Jacobi identities for phases,42 
namely, 

d (pqr)d ( - p - q - r) = - 1. (A13) 

Dynkin's result, which in our notation implies 

can be obtained by using an incorrect version of (A 13) to 
determine some phases, namely, 

d(214)d( - 2 - I - 4) = + 1. (AI5) 

There are other cases for which our results differ (apart 
from some trivial phase choices) from those ofDynkin. They 
are all those cases in which the equations (4.47) do not lead to 
unique solutions for the IB (r,l W. These occur when one or 
more pairs of the a(r,l ) for a given r have a positive scalar 
product (i.e., they are connected by a dashed line in the Dyn
kin-like diagrams). In these cases [E (7):JA 462( I),E (8):J C (2), 
E(8):JA (2) alA (1), E(8):JA 152°(1), E(8):JA 104°(1)] we have 
looked for and found solutions which we term symmetric. 
They are those in which the IB (r,l W corresponding to a pair 
of a(r,l ) with positive scalar products are taken to be equal. 
This inevitably leads to some B (r,l ) coefficients which are 
complex. It appears that Dynkin looks for solutions in which 
(in our notation for generators) as many B (r,/ ) as possible are 
real and some of them are zero. We illustrate the different 
possible solutions by examining in detail the case of 
E(8):JA 104°(1) (Table VIC). This will help to describe our 
methods further and also to point out another (nontypogra
phical) error we have found in Dynkin's results. That Dyn
kin's generator43 ex for A 104°(1) is incorrect is easily seen 

since his IB (a,l W coefficients do not satisfy the sum rule 
(4.48). From our Table VIC(iii), we can see that there are 12 
a(a,!) which project into the A (1) root 2v. Again, from the 
rules outlined in Sec. 4, one may immediately write down the 
matrix of coefficients and equations [corresponding to 
(4.47)] which determine the IB (a,l W. They are 
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2 -1 -1 0 0 0 0 0 
-1 2 +1 -1 0 0 -1 0 
-1 +1 2 0 -1 -1 0 0 

0 -1 0 2 +1 0 +1 -1 
0 0 -1 +1 2 +1 0 -1 
0 0 -1 0 + 1 2 +1 0 

0 -1 0 +1 0 +1 2 0 
0 0 0 -1 -1 0 0 2 
0 0 0 0 0 - 1 -1 +1 
0 0 0 0 0 -1 -1 -1 
0 0 0 -1 -1 0 0 0 
0 0 0 0 0 0 0 0 

These equations do not determine the IB (a,! Wuniquely. This 
follows from the presence of + 1 factors in the matrix (see 
Sec. 4). However, the sums of those IB (a,! W, the roots of 
which have positive scalar products, are determined. The 
results are 

IBW=38, IBjI2+ IBj)2 = 74, 

IB:12+ IB~12+ IB;12+ IB~12= 142, 
IB ~ 12 + IB ~ 12 = 88, IB7812 + IB6812 = 118, 

Again, because of the existence of these positive scalar pro
ducts, there will be further restrictions of the type (4.50). 
These can be obtained by picking out the subdiagrams of the 
type illustrated in Figs. 2(a) or 2(b) from the structure in 
Table IV C(iii). Using the E (8) phases44 of FFM, we find 

- BjBr + B~B~' + B~B~' = 0, 
(AI8) 

B78B;S +B~Br -B~Br -B~Bt =0. 

The Dynkin solution contains two B (a,! ) coefficients which 
are zero. Such a solution (with some coefficients in common 
with Dynkin's incorrect solution) can be found by taking 

B68=B~=0. (AI9) 

This choice yields 

e2v = (l/~)hf38E~ + ~4.37 Ej 

+ ~69.63E~ + ~38.37 E~ + ·J7.93E~ 

+ ~95.69E~ + ~78.31E~ 
+ ~9.69E~ + vltf8E78 + ~Ed. (A20) 

(The coefficients under the square roots are all ratios of very 
large integers. They have been evaluated only to two decimal 
places above.) A somewhat simpler, Dynkin-type solution 
[with three B (a,!) coefficients equal to zero] can be found by 
taking 

B~ =B~ =0. 

From (AI8), this choice implies that 

either B j or B ~ = O. 

If we choose B j to be zero, we find 

1240 J. Math. Phys., Vol. 25, No.5, May 1984 

(A2I) 

(A22) 

0 0 0 0 IBW 2 
0 0 0 0 IBj 12 2 
0 0 0 0 IBW 2 
0 0 - 1 0 IB~ 12 2 
0 0 -1 0 IB~ 12 2 

-1 - 1 0 0 IBW 2 

-1 -1 0 0 IB ~ 12 2 
+1 -1 0 0 IB ~ 12 2 

2 0 -1 0 IB ~ 12 2 
0 2 +1 -1 IB7812 2 

-1 +1 2 -1 IB6812 2 
0 - 1 -- 1 2 Bl12 2 

e2v = (l/~HmEi + !f4E~ 
+ J34E~ + JW8E~ 

~~~ + ~1716/37E: + ~1540/37E~ 
+ ~3640/37E78 - ~726/37E68 + ~EI J. 

Our symmetric solution, which is listed in Table 

(AI6) 

(A23) 

VI C(iv), is obtained by equating alllB (a,! W, the associated 
roots of which have positive scalar products. 

In all ofthe other cases in which our results differ from 
those of Dynkin, the Dynkin results can be obtained by set
ting to zero certain suitably chosen B (a,! ) coefficients. Other 
apparent differences have been discussed in Sec. 5. 

APPENDIX B 

In this appendix, we show how, by ajudicious choice of 
notation, it is often possible to express all of the generators of 
g (not just the simple ones) in a uniform manner. We illus
trate with two examples. 

D(4):JA(2) 

In this case, the quark of D (4) (with weights ± Ai' 
i = 1, ... ,4) decomposes into the adjoint of A (2) [with weights 
± ( I-la - I-lb)' a,b = 1,2,3 and two zero weights]. Since the 

subgroup is A (2), the projection matrix will be pseudo-or
thogonal, as defined in Sec. 4, and the projection defined by 
(4.18) is immediately obvious. It yields the matrix of Table 
I(ii). The value of the index, S2( = 3), follows from (4.13) and 
it is easy to see that the matrix Mia satisfies the conditions 
(4.31). From this matrix, and using (4.30), one immediately 
finds for the roots fJ~, 

1 3 
(3~=l-lb - I-lc = Aa - - L Ab (a,b,c = 1,2,3 cyclic). 

3 b= I 

(BI) 

It also follows directly from this table that the roots of D (4) 

which project into (3(a) [ (3~ ] are 

ua±=Aa ± A4 , u~== - Ab - Ac, b,c=j.a. (B2) 

We have here introduced a notation for our u(a,!) different 
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from our normal convention. Its usefulness is demonstrated 
below. The three roots a~ (/ = ± ,0) for a given a are orthog
onal and the matrix of scalar products for two different roots 
is given in Table I(iii). Because of the orthogonality of the a~ 
for different /, Eq. (4.47) and its solution follow immediately: 

(B3) 

Since there are no two roots connected by a dashed line 
in the labeling of the rows or columns, there are no restric
tions of the type (4.50). There are, of course restrictions of the 
type (4.53), which follow from (4.52). However, since we 
wish to generate the entire subalgebra, we proceed directly to 
restrictions of type (4.60). By looking for scalar product con
figurations in Table I(ii), given by Figs. 3(a) and 3(b) and 
using the D (4) phases of FFM, we arrive at the equations 

(B4) 

(B5) 

Multiplying by the complex conjugates of the right sides and 
using (B3), these three equations for all a,b,c become 

(B6) 

Recognizing the identities 

3 L e2imrr/3 = 0, 
rn= 1 

(B7) 
3 

L (- I )meimrr/3 = 0, 
m=l 

we can find a complete solution, to (B3) and (B6): 

B~ =(_It+leliarr/3 (a= 1,2,3) (/= ±,O). (B8) 

The equation which follows from (4.52), namely, 

is, of course, satisfied identically by (B8). 

E(8)~A(2) EIlA(1) 

As indicated in Tables VIE(ii), it is convenient to relabel 
the orthogonal basis Ai (i = 1, ... ,8) so that i = a,a,7,8, where 
a = 1,2,3, a = i,2j, and a = a + 3. The scaling factors fol
low immediately from (4.17), on using the Table VI E(U) la
beled Wxa • Thus 

~(2) = 6, S~(l) = 32. (BIO) 

Again, since the A (2) part of the projection matrix is pseudo-
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orthogonal, the sum of the squares of any column labeled by 
a J.La must be ~s~ (2) = 4 [see (4.31))' An examination of the 
weights of Wxa indicates immediately that the projection 
matrix will have the form given. From this table the roots rJ~ 
and 2v in terms of the Ai can be read off and are given in 
Table VIE(ii). An examination ofthe adjoint [which is identi
cal with the quark for E (8)] decomposition in Table VIE(i) 
tells us that six a(a,l ) project into each rJ~ and eight a(a,l) 
project into 2v. These a(a,!) are found from the projection 
matrix and the results are entered as the labels of the rows 
and columns of Table VIE(Ui). 

We next introduce the expansion of theA (2) EllA (I) gen
erators defined by (4.38) and (4.40). We find 

(BII) 

From the scalar products indicated by the diagram in the 
row labels of Table VIE(iii), we deduce immediately, using 
(4.47), 

IB f 12 = IB b 12 = I, (a,b,c) = (I,2,3,cyclic), 

2IB:12+ IB!12_IB~12=2, 

21B~ 12 + IB~ 12 -IB: 12 = 2. 

(BI2) 

(BI3) 

(BI4) 

Two more sets of equations are obtained from (B 13) and 
(BI4) with the labels 7 and 8 interchanged. Because some 
scalar products in the set a(r,!) are positive, equations oftype 
(4.50) occur. Looking for configurations as in Fig. 2(a) or 
2(b), and using the E (8) phases of FFM, we have 

(BI5) 

Were we interested only in the algebra of the simple 
roots, we would need the conditions (4.53) which follow from 
the commutation relations (4.52). Using the entries in Table 
VIE(iii), we have 

B:B~' + B!B r -BtBf' = ° 
and (BI6) 

B"Bb'+B"B b' -B~BC'-O 88 77 b,,-' (a,b,c) = (1,2,3 cyclic). 

We are, however, interested in constructing the entire 
A (2) subalgebra. We therefore require conditions (4.60), 
which follow from the commutations relations (4.58). As 
outlined previously, we look for configurations of the type in 
Fig. 3(a) or 3(b) in the table of scalar products, Table VIE(iii). 
Using the E (8) phases of FFM, we find 

B~Bb +B~B~ = -Br, 

BtBb -BfB: =B~', 

-BbB~ +B~B~ =B~', 

(BI7) 

(BI8) 

(BI9) 

(a,b,c) = (1,2,3,cyclic). 
(B20) 

Two more sets of equations are obtained from (BI9) and 
(B20) by replacing the label 7 by 8. 
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From the scalar products implied by the diagram of the 
column labels for the eight roots which project into 2v [Ta
ble VIE(iii)], and, using (4.47), we find immediately that 

and 

21B abe l2 _IB abe l2 
= 2, 

_IBabel2 + 21B abe l2 = 2, 
(B21) 

(B22) 

and another equation obtained from (B22) by interchanging 
the labels 7 and 8. Again, since some of the scalar products of 
the roots which project into 2v are positive, we have rela
tions of the type (4.S0). They are 

3 L Baa7BaaS' = O. (B23) 
a=l 

Further, there are conditions of the type (4.S3) which are 
consequences of the commutation relation45 

[ e2v ,e _ ilia)] = O. (B24) 

They are 

B bb 7 B 7' + B bb S B s· + Babe B " = 0 
a a b' 

(a,b,c) = (1,2,3,cyclic), 

(B2S) 

(B26) 

(B27) 

(B28) 

and a further equation, obtained from (B28), by replacing 7 
by 8. 

Except for (BI2) and (B21), which lead to unique solu
tions for IB b 12, IB ~ 12,IB abel2,IB abel2, the other equations, 
(B13), (BI4), etc., (B22), etc., do not lead to unique solutions 
for the magnitudes appearing in them. This, as we know, 
follows from the fact that some of the scalar products of the 
associated roots are positive. However, we can find symmet
ric solutions in which coefficients associated with roots with 
positive scalar products are taken equal in magnitude. This 
ansatz leads to the following solution for equations (BI2), 
(BI3), (BI4), etc., and (B21), (B22), etc.: 

and 

1242 

IB:1 2 = IB~12= IB~12= IB~12= IBtI2= IBj;12= 1 
(B29) 

Recalling the identities (B7), we see that a solution to all 
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of the phase determining equations can be found. Such a 
solution is 

(B31) 

B ~ = - B'/, = ( - 1)", (a,b,c) = (1,2,3,cyclic), (B32) 

B aa7 = Baas' = ( _ Ite - ia7T/3{2, (B33) 

and 

Babe = _ Babe = {2. (B34) 

A very different solution has been given by Dynkin.37 
He is concerned only with the simple roots, and consequent
ly the generators e~, e~ , and e2v ' For this case, one must find 
solutions to Eqs. (BI2)-(BI4), etc., (BlS), (BI6), (B21), (B22), 
etc., (B23) and (B2S)-(B28), etc. [and is not concerned with 
(BI7)-(B20), etc.], where (a,b,c) take on the values (1,2,3) and 
(2,3,1). As we already know, Eqs. (BI3), (B14), etc., and 
(B22), etc., do not lead to unique solutions for the magni
tudes appearing in them. However, we do have the result 
that 

I 712 I iI 12 B a = B 7 = 2 - Xa , IB~12= IB~12=Xa' all a, 
(B3S) 

with O<;xa <;2. We now look for real solutions and substitute 
these results into (BI6) for (a,b,c) = (1,2,3). We find 

(B36) 

We may choose 

XI =0, (B37) 

which implies that 

X 2 =~. (B38) 

Use of(B22), etc., (B23), and (B2S) allows a determination of 
the additional magnitudes: 

IB I17 12 =4, IB liS I2 =0, IB2i712= IB33712= 1, 

IB 2i812 = IB 338 12 = 3. (B39) 

If we arbitrarily choose all the signs appearing in the expan
sion for e ll(2) to be positive, the remaining equations allow a 
determination of the other signs. We find a solution which is 
essentially that given by Dynkin,37 differences in signs being 
due to different choices for the E (8) phases used by Dynkin 
andFFM: 

e~ = (1Iv'6)!{2(Ei -E~)+(E~ -E~)), 

e~ = (lIv'6)!(lI{2)(Ei + E~) 
+ ~(E~ + E~) + (E ~ + E1)), 

e
2v 

= H{2(E 123 + E iij) + 2E li7 

+ (E 2i7 + E 337) + f3(E 22S - E 338) ). 
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TABLE I. D(4). 

w" 
~, ~b ~c 

(C) 1 (;)1 

° d ~ b l' ( 

q. (1,1), ~. (l,O) • (O,l) , (1,1) 

No. ~1 

·1 

10 TIl 

M. 
" 

~2 

·1 

·1 

, 
1 ,. 

__ "_'b_ , 
(a) 1 2 

(i) 

(ii) 

a, b, c: l, 2. 3 

(1) 

(2) 

(l) 

(4) 

(b) : ·1 

(e) 1·1 

(4): 0 
,-~~~~~------------

, 
, 4 
,q",O 

1c:~b40 i ~ca 0 

{a. b. c) " 0,2, 3, cyclic) 

All eJ!' 

(_-_,)_'_',1_ { iae li18 4 bc) 
e Ea4 + e - Ea + E J; 

/3 

TABLE 11,46 G(2). 

q. (6) 14- ~ (10)0 (2) 

11 

Wx• ~1a 
No. ~ 

,6 (1) -6 ·6 

'4 (2) 

'2 (l) 

'!; '3 . ~ (-(I) • (2) • 2(l)' ... 2? 

~ 

Pri nc ; pa 1 suba 1 gebra 

1243 

..L (/5 El • 3E ) 
/i4 2 ~3 
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(iii) 

(iv) 

(i) 

(iii) 

TABLE IIlA.47 

W" 
Nu. 

q • (16)0(8) 

17 

n
1 

'" 16,14.12,10 

n2 '" 8.6.4,2 

(1) 
(2) 

(3) 
(4) 

M~ a 

" 
16 

6 

2l 15 

~ 
, 16 

rA ~; ~4 ~34 -?- 2..;, 

~ 

Pri nCl oa 1 suba 1 gebra 

All efl-' 

\ 30 E-. + 4 Ei
34 

-4 

TABLE IIIB.4S 

11 
(i) 

(ii) 

(iii) 

q • IO,I)(2)0(0,C)(4),~. (0.1)(4)0(1,0)(0)0(0,0)(1) 

21 35 14 (i) 

1 :X, ~~ 8: z" 

(a); 2/3 0 
, 
,2 

(b):-113 1 I, 

" (C):-I!3 -1 12 

14 I, ,-

(ii) 

W. a M. 

~ 
]a 

~il: :.:'b :":c :"IJ I '0 I ~1 '2 '3 
\ :,2/3 \+ 1113 \:; ,1!3 ::21 J (1) 

1

113 -1/3 -1/3 

\:- ,2/3 \+; 113 \.; ;1/3 ,0 (2) -Ill 21l -1/l 

'. I , I (3) -1/3 -112 2n 
1-"- I 141 

i :-2 I I 1 'J 

, I : I J.b,:: l? '} 

; 0 
1 

(a ,b,() 0,2 .3,eycl ic) 

(iil) 

All e 

c 
EC e

b b 

L .2 Eb; , ,4 
(lV) 

" .3 " 
" 

e2 
1. ,E. E~23 
.2 ':4 
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TABLE IVA.4! 

q - (1,1); ~ - (1,4)8 (4.1)8 (1,1) 

17 JS 1; 

fl. 
la 

w 
" I 

No. 
'1 '1 'J 

9 I ,3 6
1 

6
1 , 2 3 1 " ~b ~c 

(1) ·1 i 1 ·1 ·1 

(1) ·1 1 l-l ·1 

+ 1 (~) 1 (~)1 '-J 
1 ·2 

(3) ·1 0 1-1 -2 
11 (4) -1 

I 
3 .J I 

-1 

(5) 
, 

a ~ b ~ c 
(6) 

a. b, C = 1. 2. 

eJ 

-------:,-- ------
~15 9'4 ~24 

Q---{) o 
I i ~15 r 
I ~6 

~ 
4 

"1 0 

~1 ::135 ~12 
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'5 
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::2 
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J 
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(i) 
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25 

- E~ + ~-;0£5 "" e
ie

E6 j' 8" 4" 

1 

°1 
. t {_1[12 + /i (£1 + £234 - ei8E135 _ e-i8E245n 

TABLE 1VB.4! 

'a 
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( ~14/3 

\ ~) 

e 
"'2 
2 

'1 

1244 

1 

q • (0.2) ;,/\- (1.1)811.0) 

27 64 14 
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~b " ., No. 
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TABLE IVE.52 

4 

13 : 
~ 0 

2: ~6 0 
---1----

2 \ ~450 
11 I S 

: ~4 0 
--3 1-"3--

~2 : ~2 0 

All e
f 

e , 
1 

q + (0.\)(0.\)0(0.0)(1.0) ;~. (0.\)0.lI00.0)(0.0)0(0,0)(1,\I 

1\ 

I 
I 

, I 
,I I 

______ -.i ___ I ____ --

, 
I 

I 

------~- -- ~--- ---

G(2)' 

e . (e e
b b 

~ ! (_l}iI[bc e , [ [5 
~a .] as d 

,3 
2 

,2 
1 

\ 
'2 

56 I' 

1 : §~ ~a 
~ 

2: y~ 
(a): 0 

2 I 0 ") ) 
I I 

(b) I I 0 , 
I , 

(e)1 .\ I , I 

(')i I 1 
0 ;- 2 

, 
I (5), 0 0 

I I 

(~) : ' ,3 , 
2" 

I I 

A(2) 

ll[' , fbi 
12 
l,[ 

/2 4) 
, r', 

4 

liE 
I! c, 

, [\:']) 

TABLE VA.53 

[(7)::J A798(1) q. (27)G (17)0 (9); "",. (34)0 (16) G (22)G 118)G (14)0 ',1O)G (2) 

No. 

28 18 

n
1 

" 27,25,23,21, 19 

n
Z 

" 17,15,13 .11 

n
J 

'" 9,7,5,3.1 

~rincpal slJbalgebr-a 

A11 (' 

10 

Mia 

(I) 26 

(2) 

(3) 

(4) 

(5i 

(6) 

(7) .2 

4 
'3 

35 27 

399 ' -, '. 
; 26 

8 

, j 

I u 
I -
, .2 

3 
~Z 

+ 2 

23 15 11 

(il 

(i,) 

(iv) 

(i) 

(ii) 

(iii) 

(i,) 

J. Math. Phys., Vol. 25, No.5, May 1984 Feldman, Fulton, and Matthews 1245 



                                                                                                                                    

TABLE VB.54 

q ,(21)(;j(151G:'1l 1)0(s);A' (2'10(??)0(leI0(15)011 1 101(1O)0(610(2i 

22 16 12 27 23 19 17 lS 22 

" " 
M 

" 
X~ 23\ 12 

I 

'n1 
1'] ''o~ n

1
" 21,19.17 'I) I() I 20 

I 
'rl

2 
4x2 n ~ 15,13 2 

'"3 6d n ~ I"l,g,? 
J 

': 2) E 

(ll 

(') 

, 
I 

'", Pd " 5,),} (S) 

(6) 

(71 .2 

~56 

All e 

-" 1,21 E . .4\' 
7 , !< '2. .131 :7 [i6 

57 50 
7 2 y -

2 r (/ ';111 = -( Y--;r\ z 

(i) 

(ii) 

(iii) 

TABLE Vc. 50 

~a 
, 

\ ~ J4 

+ 
\ ~ ,3 

\:)2 

a I b 

a,b,c 

All e 

1246 

q - (6,0)8(0,6), si-- (4,4)0(1,1) 

18 28 125 

"xa i'\, 

~~o . ~~ 21: 
_J ,1 ? 

'b 
,7 

'2 
p' 

-c -l 

\+ 12 \+-12 (1) -1 -2 ·5 

\ +- ,Z \+-d 11 (1) -1 -1 2 -1 

(31 ·3 -5 
2 11 

(41 -1 I 2 -1 -) 

\+)1 \+)1 i2 ;5) 

I,~ 
-2 I -J 

1 12 (6) 0 

(;, -,2 -.'1 .,~' 2,"2 

I c 

1.2.3 

I P~ 1- -------.: - - - -- ---
, 7 6 

Ib46~6; 

(24 407 _:2 .'Ii'" ,257 

1 e
J 

o ~-o-----<) 

J. Math, Phys., Vol. 25, No.5, May 1984 

(i) 

(iv) 

TABLE VD.56 

" ,a 

.. 6 1:3 , 
-6 I : 1 

:4: '3 

..-4 tl , 
. 2 I ~5 , 
'2, 

- 2 ~ . 1 

o I -5 , 
o I :3 , , 

2 

No. 

G , , 
8 

11 

- , 

i tI 
/57~ 

AI 1 e~: 

(,) 
18 10 18 

st.,- (81(2)8 (6)(4)8 (41(6)8 (4)(2)8 (1)(4)8 (11\0)8 (0)(1) 

(1) 
(2) 

(3) 

]:[ I,:, 

27 

-3 

J5 

24: 2 
--,-,-

35 

15 : 2~ 

3 

-3 

-1 

15 15 

Feldman, Fulton, and Matthews 

(ii) 

(iv) 

1246 



                                                                                                                                    

~ 

I\J 
~ 

"" 
<-

s:: e 
?" 
-u 
~ TABLE VE. '7 
!" 
< 
~ 
I\J 
C11 

z 
9 
5J' 
s:: 
~ 
~ 

<0 
CD 
~ 

~ 
0: 
3 
!Il 
.::J 

" C 

SO 
::J 

!Il 
::J 
0. 

s:: 
~ 
::J' 

~ 

~ 

I\J 
~ 

"" 

[(7)::> G
1
(2)0A1'(I) (1.0)(1)0 (0,1)(1); ~ • (0.1)(2)0 (u.l)(')0(1.0)(0)0 (0,0)(2) 

w 
" , 

~h ~c: No. 

28 

'I 

Bl 

ji 

" 
'·2 1.:1 

+ 2 - 1 - 1. \ -} i \ +}3 \'" ij" : ~3 12 (1) 2/1 ·1/3 ·1/3 1 

+ 2 - 1 - l' 
\ -)3 It}3 l'" J3 : '1 

, 
- 1 0 :'1 

, 
0:'3 , 
o ;-1 

a ~ b ~ c 

a.b,c;: 1,2,3 

24 

11 

2f 

(1) ·1/3 2/3 ·1/3 

(1) ·lil .(.'J 1/3 

(4) 1/3 ·1/1 ·11l·l 

(5) ·1/3 1/3 ·)f]·1 

(6) ·1/3 ·l f J 2/3·1 

(i) 0 1,2 

I 
I 

, b 

-T ~b--~~--~7--~7i-T.~ 
000 0---0 100 

:I\a~o 
" :aico 

,0 ~b : -ae71 , 
I ae I 
I 9

7 
0 J ___ L __________________ ._L _____ _ 

lab 0 
I·a 

§~ I Ct. b 0 ., 

All e§: 

';'a 

a e
b 

e2 

,6 

l:llc 
,2 

o I 
I 
I 

o I , 

(b_c)(E bc _ Ebe ) +- (Z((_l)'\OU + E~c)} 

E~ + E6
fl 

1 
.~ {i. Eil + ,2 (E+ .. E~) I 
.7 a:} a 7 I 

1S 11 

7 ~ 2 ~a !.:~ 

·1 

·1 I (b): ·1/3 ·1 
.) (e) I ·1/3 

·1 (e) I ·1/3 

2.2 (7) : 

= a + 3, (3 ,b ,c) (l ,2,3 .eyel ic) 

"" - q, , (a + a) + :, (il' 
a ~ 1 

(i) 

(ii) 

(ii i) 

(iv) 

TABLE VF.52 

E(7)::> c1
(3)0G

1
(2) II Q • (1.0,0)(0,1)0 (0,0,1)(0.0); A' (0.1,0)(0.1)0 (2.0,0)(0,0)0(0,0,0)(1,0) 

42 14 

W" 

:~ 
~a ~b 

" 
v :'b ~)c I!l ·e ·a 

'1 .1 .1 11) 

• 1 ·1 ·1 '1 l-J) \+ )) \+}3 J6 (2) 

'1 12 (3) 

a ~ b r' c (') 
a,b,c = 1.2.3 

(5) 

(6) 

(7) 

2 I I 2 
~l I 2~3 : "2.} I ':'2 

, , I 
------~---~--7----------

3 I I 5 I 1 46 
r:!Z3 :!z I :7 I '.(4 I ~35 ~5 ~ 
00 1 010000 , ) 

: 913 0 I 
83 , \ 
-2 I }37 0 I I I 0 

I' I I I ---,----- -----.---1-------------
J t.!35 0 J 0 
I I 

~2 : ~~ 0 : 
I I 
: ~46 0 ] 0 : _ : 

- --1"- ---- -----,.----,- ---.- -- -- -- ----

'Ii : '!~ 0 0 0: 0 I : 
---1------ ------t----L--r-----------

2\.1 1 J.. 0 0 0 I I 
-3 )-7 I I 

C(3) , G(2) ; 

e1
2 J_ (E + E3) 2 E' .'2 23 2 'I , 

98 

M. 
" 

~2 ~J 

·1 

12 

3 e
2 ~ {E~3 + E

237
J 

,2 :2 
![ .. [3 + [46 

."3 35 5 

e2~~3 [, 
.) 

21 14 

, 1 p3 2\1 1 ~ yi "1 "I '3 2 : ~1 ·2 -.!.. 
10 I 

I I 

:2 
I 

·1 I 0 
I 

I I 
10 I 0 
I I 

2 1 1 
:0 

I 
3 • 3 . 3 I 
1 2 

I I 
'j 3 'j : a 1·1 

I I 
I , 0 
I I , I 

lo·/i 112 , 

'2 

(i 1) 

(iii) 

(iv) 



                                                                                                                                    

TABLEVG.57 

w xa 

'~a ~b " ·e 

'1 

" ," ., 

a I b I c I 

\!d:=-' tlo. 

'1 16 

'1 32 

.J 

0 '1 

d 

q • (0,0,0.11(11(,)(0.0.0.0101 

,2 4 

A" (O,O.c.l )(21(,)11,0.0,01(010(0.0,0,01(21 

(1) 

(2) 

(31 

(41 

(5) 

((,) 

78 \2 3 

M. 

" 

o .? 
a ,b.e.o 1. .. 4 iii 

(il): 

(b) I 

(ell 

(dl : 

(,II 
(bl i 0 

(7): 0 

I 

: ~3S 0 

"3 I , 
J '3 0 ---,----

~~ : ~~ 0 
---1----

ti : ~f 0 

t (a. b. (" ,d ) 3 : Z ~ 
--r-

o 
I 0 

I 0 

I 0 
I 

I . 
, .1 

(',al) 

~(a ,b) 

~(a ,b,e ,d) 

2~ \ ':~: ~~: ~ 3 
-~--------L---l---[-· ----

5 I 2 3 I 5 
~56 ..{l ~7 ~ ~1 ~(2 I '~)'i ~3 
00010000 

o I 0 ! 
I I 
I I 

_0 _______ ~ ~ _ ~ ~ ~_~ ____ _ 

+ 0 \ 0: I 

I J 

- + 0 l Q I - : 
--- --- -- -- _-l __ 1--- ----

o 0 {) ~ -: : 

--------+--4--,-----~ 
o 0 u I I I 

J I I 

era ,b) 0 E(a ,b); era) 0 • II E
5

(a) , E\ (a) I 
,2 

1248 

e
4

(a,b,c) "" -~ IE~4 (a,b,r,'S) - d(a,b,c) r~4 (a,b,c.,+-])) 
,2 

e4 (a ,b,e) - -~ 1 d(a .b.e) l~'~ (a.b,c ,+S) , E~4(a ,b.c, '5; I 

,2 

d(a,D,c) - ,(a+b) £.(tJte I date) 

J. Math. Phys., Vol. 25, No.5, May 1984 

t "(d)) 
(ii) 

TABLEVIA.'R 

E(8)::O A
2480

(1I q 011' (58)8 (46)8 (38)8 (34)0(26)0(22)0 (14)0(2) 

59 47 

~lo . 

2x6 

Pn nClpal subalgebra 

All e, 

TABLE VIR" 

(I) 

(2) 

(J) 

(41 

(5) 

(6) 

(7) 
(8) 

39 

M 

" 
." 

46 

12 

10 

35 27 

1240 : 

I 
J 

I 
~ 

46 

12 

10 

I 0 
J 

• 2. 

23 15 
(,) 

(i1) 

(ili) 

(iv) 

£(8;::0 Al520 (1) q 0 ..... {4618(38)0 (J4)0{28)0(26)0 (22)8118)8(14)8110)8(2) 
4) 39 35 29 27 23 19 15 11 3 

===W========~------------~M~----------------------------~{i)--
xa la 

No. 

2x4 [11 = 46,44,42 ,t.O 

n
2 

~ 38,36 

n3 -; 34,32,JO 

& 
(2) 10 

(3) 

(4) 

'28 15) . 

: n 4 I ~ 0 x2 n 4 = 26,24 I' 

"5: 12,2 Os 0 22.20 :~; 
'n

6 
~ 140:2 I 06 18.16 

'n
7 

lex.? 
I 

0
8

1

18

" 2. ~rJ 

o lC 

-2 

All f:' 

n7 14.12 

ns 10,8,5,4 

4 
~3 

71, Y = 53, z'" 86 

760; 2--, 
-~,-~ 

I 36 
I 
I 10 

8 

-78 

- i!: x ~ 0, 

• 2 

Feldman, Fulton, and Matthews 

(ii) 

1248 



                                                                                                                                    

TABLE VIC.·3 

E(8)::> A
1040

(1) q'" -(38)0(34)0(28)0(26)0 2(22)0(18)0(16)0114 )0110) 

39 35 29 27 46 19 17 15 11 

0(6)0(2) 

w 
" 
~ No. 

~n5 18x2 

~28 6 I :':n
6 

20x2 

, 18 14 

~n7 22)(2 

,2 24 

12 

rll 38,36 

n
2 

34,32,30 

n3 = 26.24 

n
4 

22,20 

n5 14.12 

n6 10,8 

n7 6,4 

6 
~4 

(1) 30 

(2) 

(3) 

(4) 

IS) 

(6) 

(7) 
(8) 

~68 ~1 

520 1 2-::. 

30 

8 

All e§: 
1 - 3 r7l' \, 6 7 I, 6 7 J - I e -I e ) 

eZ,:, '" .520 {.Jg £2 + J T lE4 + E5 + e (E5 + (4) + .x(e xE 78 + e )(E 68 

+ /y(e;i?YE~ + e-ifYE~) + /Z{E~ + E~) + >'60 [1: 

37 
cos; = IT ; x "59, Y = 44. z = 37. 

I 2 2)" Slntlx"-l~' Sl""(~)" Y 4yz ' 

1249 J. Math. Phys., Vol. 25, No.5, May 1984 

(i) 

(I iI 

(iii) 

TABLE VID.50 

w 
" 

!5 ±1 16 

'4 

,4 

'4 

'3 

'3 

'2 

'2 

'I 

'4 

'2 24 

16 

16 

48 

14 

36 

40 

11 

q.1o- • (6,0)0(2.3)0(2.0) 

84 154 10 

Mia 

~1122 ~d 
II) 1 

(2) -1 -1 

(3) 0 

(4) 

(5) 

16) 

(7) 
(8) 

-3 

o 

I 3 

-3 

-1 

158 257 8 7 4 1 
r; (~ '::2] 1~2 ~t2 ?28 l~567 '2568 '-'I ~3 

(k--~,~ 
~ 

(I) 

(II) 

(i ii) 

·2~2 • ,h {Of + 1)(E47 + [~) + (l{ - i)1[~ • E48 ) + IT ([115 + E
346 

+ E357 + (358) + E;} 

e; . ,h {-IE17 , E~) + ilEi + E28 ) + {E~ - [j)' ff(E 567 ' E568 , E258 , E257 )} 

{I,)61 

Feldman, Fulton, and Matthews 1249 



                                                                                                                                    

~. co 
o 

TABLE VIP.'6 

-:~t _N_ ~_~_": _N_~ _":.~_ 

~~~~~~-~-~-~ ~;-~i-

q .~. (0.0.0.1)(0.1)0(1.0.0.0)(0.0)0(0.0.0.0)(1.0) 

a ~ b ~ c ~ (\ 

W 
xa 

a, ... ,d '" 1 •... ,4 

, 
1 : ~(a .b) ~(a) 

(a) 

Ib) : 

(c): 0 

(d) 1 0 

15) 1 

(f) 
(g) 

(h): 0 

181 51 14 

t:d I ~f 'lh No. 

I -+ 2 - 1 1 
:~-13 \-+/3 ~+)3 

, -+ 2 - 1 - 1 
:!:\ 1\-13 \-+}3 \+)3 

1 

o :\!J~ 
1 
1 
1 
I 

o ' 
I 

- 1 

, I 9 I h 

f ,9 ,h '" 6,7,8 

~(a ,b,c,d) 

: 0 

: 
1 
1 
I 

48 

96 

24 

16 

31 

(1) 

(2) 

(3) 

(4) 

(5) 0 

18 (6) 0 

(7) 0 

(8) 0 

I 0 0 
1 
1 0 0 

: 1 (')2/l 

: -1 \+)113 

: 0 (+)1(3 

f " f-5. etc. 

+ ,(d)) 

1 -1 -\ 
"3 "3 "3 

-1 1 -1 
"3 '3 '3 

-1 -1 1 
"3 "3 "3 

1250 J. Math. Phys., Vol. 25, No.5, May 1984 

(i) 

o 

o 
.~~ 

.ul ~ 
;:: t 
1 0 0 

--!-,-;:"'-- ---- - ------- -- -- -- - -----
, ·N ,.- I 1 -. 

1 
1 
I ., 

r 3 I 2 I 2 I 
~3 : §2: gl: "11: X2 

- --------1---- ____ 1 ___ -r- - _________ _ 

0.5 0.3 r i : a? : 5 0.68-
~35 -3 -1 -1 1 -6 I ~5 'E, -
o 0 0 0 1 0:0 0 0 

123:~1230 : 0 : 

~4 I : I 
:C!4 0 0,010:0, 0-+ 

----,--- -- ____ ~_.J ___ ~ - __ ' ____ 1 ______ ------
I (1 0 1 0 I 0 \ I 

-75 I I I I 
5 I I I I 

62 07 0 lOt I 

: 68 r: I 
I (Y. 0 I I 0 I 

- ~-r--7- - -- - - - -- -~ -- -{-- -- t - - --l-- ---- - - -- --
11 l % 0 0 0: a : 0: : 
:2-r!--~- -;---~--:-~--~---i---l------ ------
.:1-j_--.1 __________ 1 ___ 1 ___ + ___ 1 ___________ _ 

3 I 3 1 I I ::2 : ~2 0 I::: 

F(4) , 

e(a.b) "E(a.b) ; E(a) " _J..!E (a) + E
5

(a)'· 
/2 5 

e
4

(abc) = ~ {E
6784

(abc+5) - d(abc) E~78(abC~5); 
.2 

e4 (abc) =. l {d(abc) E~78 (abc~5) + (6784 (dbc+S)) 
.1 

d(abc) -=. c(a+b) db+c) da+c) 
G12) , 

e~ 0= Ej 

e ~ «_l)f+l E9 h + E'5 + ES
f

)) 
Xi /3 

Feldman, Fulton, and Matthews 

(iii) 

(iv) 

1250 



                                                                                                                                    

IE. B. Dynkin. Am. Math. Soc. Transl. 17. (1950); maximal regular subal
gebras have also been discussed earlier: A. Borel and J. de Siebenthal. 
Comm. Math. Helv. 23. 200 (1949). 

2E. B. Dynkin. Am. Math. Soc. Transl.. Ser. 2 6. 111.245 (1957). 
3G. Feldman. T. Fulton. and P. T. Matthews. J. Phys. G. Nucl. Phys. 8. 295 
(1982). 

4G. Feldman. T. Fulton. and P. T. Matthews. J. Math. Phys. 25. 1222 
(1984). hereafter referred to as FFM. 

sTheindicesi.jwill. in what follows. be restricted to range from I tonG (the 
rank of G). and the a i• when they appear. will run over a set of simple 
roots. We will use p.q.m to label any root a( p) etc. of G. The indices a.b.c 
will generally run from I tong (the rank of g) [exceptforg = A (2)andG(2). 
in which case they run from I to ng + I]. The set l3a of roots of g. when 
they appear. will be a set of simple roots [except for A (2) and G (2)]. The 
indices r.t.u will be used to label any root of g. 

61n place of Nai pi.ai,i' we will often use the notation N;:;' and the symbol 

N :::;_, will be used for N _ aipl. -ai,I' 

7This is the notation of Ref. 2; in Ref. 3. A--+r. The vector A is not to be 
confused with the orthogonal basis vectors Ai. introduced later. 

·Conventional normalization is to take ai = 2. where a L (p) are the set of 

longest roots. 
9From the results ofDynkin (Tables 15.24. and 35 of Ref. 2) it appears that 
some of his expressions for the subgroup generators do not satisfy (2.8). 
However. except in one case. this is entirely due to misprints or trivial 
factors of i which can be absorbed into the definitions of some generators 
(see Sec. 5). The one exception. E (6):::) G (2). we believe is due to an error on 
Dynkin's part. This point is discussed in detail in Appendix A. 

lOWe have consistently used (2.10) throughout the present work. with the 
particular phase choices given in FFM. Thus. the generators of all the 
subgroups of a given group will have consistent phase choices. Dynkin 
restricts himself to the consideration of simple roots. and their corre
sponding generators. and to single subalgebras of a given algebra. The 
simultaneous entertaining of possible inconsistent choices does not create 
any difficulties for him. Indeed. it makes phase choices an easier process 
for him than it does for us in what follows below. 

IIDynkin2 adopts a more abstract approach than ours. He treats the weight 
spacesofGandgindependentiy. nomalizes both laL 12 and II3L 12 t02. and 
defines the index in terms of the mapping which relates the two spaces. 

12See Ref. 2. R-subalgebras. Tables 8. 9. and 10. p. 145. 147. Note that. when 
a regular subalgebra is derived from a Dynkin diagram by the removal of a 
vertex associated with root a( pl. a U (I) term may appear. It is not includ
ed by Dynkin in his tables. These terms are essential to the present discus
sion. 

I3W. G. McKay and J. Patera. Tables 0/ Dimensions. Indices. and Branch
ing Rules/or Representation o/Simple Lie Algebras (Marcel Dekker. New 
York. 1981). 

14Cf. Ref. 12 (and also Ref. 2. Table 12a. p. 151). but note the isomorphisms: 
A (1)~B(I)~C(I).D(I)~U(I).B(2)~C(2).D(2)~A (I)ad (I).A (3)~D(3). 
Using the quark weight arguments of the present work. the labels we have 
chosen in Eqs. (3.8H3.11) are the natural ones. Note that Ref. 2. Table 12. 
contains additional subgroups listings to the ones we give here. These are 
in error. They are not maximal. but subgroups of the groups already listed 
in Eqs. (3.13H3.15). See Borel and Siebenthal. Ref. I. 

IS As mentioned previously. r is used to label the roots l3(r) of g. The label I 
will run over L values where L depends on G. g. and l3(r). See the discus
sion following Eq. (4.22) below. 

16W. McKay. J. Patera. and D. Sankoff. in Computers in Nonassociative 
Rings and Algebras. edited by R. E. Beck and B. Kalmar (Academic. New 
York. 1977). 

17 Although we use the index i to label the components of the vector operator 
H in this case. we do not imply that we are taking components ofH in the 
Ai basis. Rather. as presently used. i is a component in any orthogonal 
basis such that the first n. components ofH will be the generators com
mon to both g and G. 

I·Care must be taken to include in the sum the degeneracy associated with a 
given A. 

19C~ is related to the index of the representation./~. defined in Ref. 2. by the 
equation c~ = ~ai I~. where ai is the square of the length of a long root. 
c" is of dimension length-squared in weight space. In Ref. 2. ai is set equal 
to 2. 

2°R. Slansky. Phys. Rep. 79. I (1981). 
21J. Patera. R. T.Sharp. and P. Winternitz. J. Math. Phys. 17.1972 (1976). 
22WhengisA (n) or G(2). the space of basis vectors is (n. + I)-dimensional. 

The generalization to these cases is described below. 
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23The discussion applies to G (2) because we choose as orthogonal basis vec
tors the three Ai'S corresponding to the regular A (2) subalgebra of G (2). 
Alternatively. we could have chosen the two Ai'S corresponding to the 
regular A (I) EllA (I) subalgebra of G (2). 

2'The generalization to the case wheng isA (n) is obvious. The right side of 
(4.31) will read S>[Oab - l/(n + I)]. a.b = I ..... n + I. 

2SWe treat the case of G = G (2) separately. since for G (2) we use a labeling23 

which depends on the regular A (2) subalgebra of G (2). 
26We distinguish the "vector" weights appearing in Table 2 ofFFM from 

the "spinor" weights. The latter are weights of a spinor representation of 
the relevant D (n) or B (n) used to label the exceptional groups. 

27We use the symbols X6 in E (6) and X7 in E (7) to define vectors with "stan
dard" normalizations: (X6f = (X7)2 = A. 2. The vectors X6 and X7 play spe
cial roles in E (6) and E (7). respectively. different from those of all other 
Ai'S. The symbols A6 in E (6) and A7 in E (7) will also find later use. These 
vectors have normalizations (A6f = 3,1 2 and (A7f = U 2. The vectors X6 
and X7 were introduced in FFM [cf. FFM Eqs. (A II) and (A 12)] in order to 
unify the characterizations of E (6). E (7), and E (8) with the aid of the prop
erty E(8PE(7PE(6). 

28For one case. g = A t:)2, we could take X7--+O. since here two roots of E (7) 
project to zero. However. for other reasons of simplification, we do not 
choose to avail ourselves of this opportunity (see Table VB). 

291f all the roots of g are of the same length. s'(r) = s for all r. 
3"The convenience of introducing the factor s'(r) in the expression (4.38) for 

ep;'1 now becomes evident. 
31The properties (4.55) and the scalar product configurations given by Figs. 

I (a) and (b) can be generalized to include the case ofGbeingF(4). However. 
because F(4) contains both small and large roots. the relevant configura
tions are more numerous. Since. as seen by the results shown in Tables 
III A and III B. the F(4) subalgebras are simple enough to work with 
directly. one need not bother with the general rules for F(4). 

32 At least two pairs must contribute to (4.53); otherwise. one B (al) coeffi
cient would be identically zero. 

33See Ref. 2. p. 231, bottom. Note the typo in the third row: A ~ --+A ;. 
34The zero weights, equal in number to the rank, are not listed for the 

adjoint in these tables. 
3sIn a few cases only the simple roots, j3(a), are listed. In most cases, all the 

roots. j3(r), are given. 
36These diagrams are neither Dynkin diagrams2 (except in the case of the 

principal subalgebras) nor extended Dynkin diagrams.2 The latter are 
used by Dynkin to obtain the regular subalgebras. 

37Cf. Ref. 2, p. 227, Table 35. 
'"G. Feldman and R. Holman, J. Phys. G. Nucl. Phys. 9, 7 (1983). 
39R. Holman, J. Phys. G. Nucl. Phys. 9. 35 (1983). 
4()The cases of E (6PA (2) and E (7PA (2) appear not to satisfy the reality 

condition (2.8), but this is not so. For E(6PA (2) (Ref. 2, p. 193) there is a 
misprint in the last coefficient of e _ y: the term should be =t= iei34' For 
E(7PA (2) (Ref. 2, p. 194), there is a misprint in thefirstcoefficientofe _yO 

the term should be - 2e;432' We must, of course, also bear in mind that 

additional i factors are introduced by the nested commutator definition 
(5.7) of generators in Ref. 2. 

"Ref. 2, p. 193, Table 24. 
42Equation (A13) is the transcription ofEq. (2.9) in terms of the E (6) phases 

defined in FFM. 
43Ref. 2, p. 173, Table 15, A ;20 C E •. 

44We have chosen our projection matrix so that in fact only D (8) phases 
appear. 

4SWe could replace - j3(a) by j3(a) or 2v by - 2v in (B24). 
46Cf. Ref. 2, p. 176, Table 16. 
47Cf. Ref. 2, p. 177, Table 17. 
48Cf. Ref. 2, p. 224, Table 35. Note the typographical error: v'2e1234--+e 1234' 

49See Appendix A for relation between our solution and that of Dynkin. 2 
sOCf. Ref. 2, p. 194, Table 24. 
51The table of scalar products for all the roots (rather than just the simple 

roots) could have been constructed in (iii). However, to obtain the results 
in (iv). it isjust as direct to make use of the F(4) phase equations (3.7), (3.9), 
(3.10), (3.41)-(3.44) in FFM. 

s2Cf. Ref. 2, p. 224, Table 35. 
S3Cf. Ref. 2, p. 181, Table 19. 
54Cf. Ref. 2. p. 173, Table 15. 
"For an alternative solution, which is less symmetric than the one given 

here [see Eq. (B40), for a similar case], see Ref. 54. That solution, in our 
notation, is 
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ely = (1Iv'ITf) [ ..fifE)., + ..j4OEi6 + ,f2X(cos Ox E! - sin Ox E~) 

+ fiY(cos Oy E46 + sin Oy ES6) + ..[fiE ~ +!i6E ~ ] . 

Also compare this table (VB) with Tables VIB and VIC. 
s6Cf. Ref. 2, p. 226, Table 35. 
"Cf. Ref. 2, p. 225, Table 35. 
s8Cf. Ref. 2, p. 185, Table 20. 
s9For an alternative solution. which is less symmetric than the one given 

here [see Eq. (B40) and Tables VB and VIC for a similar case]. see Ref. 43. 
(Note the typographical error in Ref. 54: .J32--.Jill.) That solution, in our 
notation, is 

ely = (II v76Q) [ v46E ~ + v'9OE ~ + v'illE ~ 
+ ,f2X(cos Ox E78 - sin Ox E68 ) 

+ fiY(cos Oy E~ + sin Oy E:) + ..[fiE~ + mEd. 
Also compare this table (VIB) with Tables VB and VIC. 
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60See the second part of Appendix A for a detailed discussion of the relation 
of this result to the corresponding generator presented by Dynkin43 and 
the specific analysis of the error in Ref. 43. 

61For an alternative,less symmetric solution [recalling thatB (2) - C(2)]. see 
Ref. 50. (Note the typographical error: 3~ for ey-) The generators of the 
simple roots, in our notation, are 

ell', = (1I,1T2) [2E! + E48 + .fj(E 346 + E"8) + E~], 
ei = (1I,1T2)[E27 - E~ - Ei + E28 - E~ 

+ E; + .fj(ES67 + E 251
)]. 

62See Appendix B for detailed discussion and comparison with Ref. 37. 
63In this case [and also for E(7):>F(4) EllA (I). Table VG]. we have projected 

As to zero, rather than A7 (see Sec. 4) in order to keep theseF(4) subgroups 
[as well as the E (6PF(4), Table IVD] essentially identical. 
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Indecomposable representations of the graded Lie algebra Osl(2) are analyzed in detail. It is 
further shown that the study of the irreducible representations (finite- and infinite-dimensional) is 
intimately related to the study of these indecomposable representations. 

PACS numbers: 02.20.Sv, 1l.30.Pb 

1. INTRODUCTION 

The representation theory of Lie superalgebras has re
cently been studied extensively. The motivation behind these 
investigations is that they are mathematical generalizations 
of ordinary Lie algebras. Besides, supersymmetric theories 
which are viable candidates for the unified gauge theory of 
particles are based on these superalgebras. I A complete clas
sification of simple Lie superalgebras has already been giv
en. 2 

For the case of Osl(2) the irreducible representations, 
both finite-dimensional and infinite-dimensional, have been 
discussed in the literature. 3 In this article we take a very 
general point of view and discuss representations ofOsl(2) on 
the space of its enveloping algebra by using methods success
fully used earlier for Lie algebras.4 Particular emphasis is 
given to the study of indecomposable (i.e., reducible but not 
completely reducible) representations ofOsl(2) (Ref. 5). The 
indecomposable representations of Osl(2) are shown to con
tain the finite-dimensional irreducible representations (on 
quotient spaces) as well as some of the infinite-dimensional 
irreducible representations (on invariant subspaces). In addi
tion, the known results regarding the class of irreducible re
presentations of Osl(2), finite- and infinite-dimensional, fol
low automatically as a consequence of the analysis of 
indecomposable representations. 

In Sec. 2 we define the Lie superalgebra Osl(2) and give 
explicitly the action of the generators of this algebra on the 
basis states. In Sec. 3 we obtain the standard extremal vec
tors which define the invariant subspaces of the indecompos
able representations. In Sec. 4, all representations ofOsl(2), 
indecomposable and irreducible (finite- as well as infinite
dimensional) which are defined by these extremal sectors are 
obtained in an explicit form. For the finite-dimensional irre
ducible representations and some of the infinite-dimensional 
irreducible representations the standard canonical form is 
rederived. 

'I Visiting member. Permanent address: MATSCIENCE, The Institute of 
Mathematical Sciences, Madras 600113 India. 

bl New address: Physics Department, Drexel University, Philadelphia, 
Pennsylvania 19104. 

2. LIE SUPERALGEBRA Gsl(2) 

Let (/3,1 ± ) be a Weyl basis of sl(2), 13 being the regular 
element and 1 ± the corresponding nilpotent elements with 
the commutation relations6 

(2.1) 

where the bracket [ ] stands for the commutator. The center 
of the universal enveloping algebra ofsl(2) contains the Casi
mir element 

(2.2) 

where the bracket ( 1 denotes the anticommutator. This 
sl(2) Lie algebra can be graded to a Lie superalgebra Osl(2) by 
using the spinor (V ± ) which satisfies the anticommutation 
relations 

(2.3a) 

Combining Eqs. (2.1) and (2.3), one obtains the bilinearoper
ations 

(2.3b) 

The center of the universal enveloping algebra of Osl(2) 
contains the Casimir element 

Oc(Q) = !l+,l-l + n + H V+,V_l 

=c(Q)+HV+,v_l. (2.4) 

The elements (/3,1 ± ) and (V ± l are, respectively, the even 
and odd elements7 acting on the Z2 graded linear vector 
space V, the latter being the direct sum of two subspaces Vo 
and VI; i.e., V = Vo + VI' (/3,1 ± lEVo, V ± EVI. A five-di
mensional irreducible representation of Osl(2) can be ob
tained from the bilinear mappings [Eqs. (2.1 )-(2.4)] as fol
lows: 
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L= 

o 

o 

o 

o 
-1 

o 

G ~ -~), 

(1I~~) 0 

o ( ~ ~ ~) , 
-1 0 0 

o (0 O-!) 
0-lN1 0 

o ( 
-1Iv100) 

o O! 

( ~ -~) 
-1 0 

o 

The Casimir element, Eq. (2.4), in this case becomes 
Oc(Q) = ~l (I is a 5 X 5 identity matrix), satisfying the 
Schur-Kac lemma.s 

(2.5) 

A basis for the universal enveloping algebra fl ofOsl(2) 
can be chosen as the following set of ordered elements 9.10 (the 
product is the ordered tensor product): 

fl: Il,Vi+ Vk_ l'+ IS_/~ ; i,k = O,l;r,s,tEN , 

N = the set of nonnegative integers J , 

Vi+ V~ 1'+ IS_/~==x(i,k;r,s,t), 

I==x(O,O,O,O,O) . 

(2.6) 

By straightforward induction one can easily obtain, in 
fl, the following relations for nEN 

1254 

V _ V2~ + I = _ V2~ + IV _ - V2~ 13 - ! n V2~ , 

V _ V2~ = V2~ V __ ~ n V2~ - I , 

1+ V2~ + I = V2~ + 1/+ + (1Iv1)V2~ V + 

- (n/v1)V2~-1/3 + (n2/2v1)V2~-I, 
I + V2~ = - V2~ 1+ - (nlv1) V"~" - 1)/3 

+ [n(n - 1)/2v1] V2~ , 

13V"± = V"± 13 ±! nV"± ' 

L/'+ = l'+ L - rl'+-1/3 -! r(r - I)/''; I, 

L/~ = (/3 + 1)'/_ , 

13l'± = l'± 13 ± rl '± . 

J. Math. Phys., Vol. 25, No.5, May 1984 

(2.7) 

The action of the elements of Osl(2) on x(i,k;r ,s,t ) can now be 
determined which yields the following master representa
tion: 

p(/3)x(i,k;r ,s,t) = x(i,k;r ,s,t + 1) 

+ [(r - s) + W - k )]x(i,k;r,s,t) , 

p(/+)x(i,k;r,s,t) = x(i,k;r + 1,s,t) 

+ (k 1v1)x(i + 1,k - l;r ,s,t) 

p(L)x(i,k;r,s,t) = x(i,k;r,s + 1,t) 

- rx(i,k;r - 1,s,t + 1) 

+ r[s - !(r - l)]x(i,k;r - 1,s,t) 

+ (ilv1)x(i - 1,k + l;r,s,t), 

p(V +)x(i,k;r,s,t) = xli + 1,k;r,s,t), 

p(V_)x(i,k;r,s,t) = (- l)ix (i,k + l;r,s,t) 

- ix(i - 1,k;r,s,t + 1) 

- i(r - s -! k )xli - l,k;r,s,t). 
(2.8) 

We find that, in Eq. (2.3), the square of each odd gener
ator (V ± ) is proportional to the even generator (I ± ), i.e., 
V2± = ± (1Iv1)1 ± . Thus, we have to supplement Eq. (2.8) 
with the following equations: 

x(2,0;r,s,t) = (lIv1)x(O,O;r + l,s,t) , 

x(2,1;r,s,t) = (lIv1l1x(O,l;r+ l,s,t) + (lIv1)x(l,O;r,s,t)J , 

x(0,2;r,s,t ) = - (1Iv1) I x(O,O;r,s + l,t) 

- rx(O,O;r - 1,s,t + 1) 

+ r[s - !(r - l)]x(O,O;r - 1,s,t)J , 

x(1,2;r,s,t) = - (lIv1l1x(l,O;r,s + 1,t) 

- rx(l,O;r - l,s,t + 1) 

+ r[s - !(r - l)]x(l,O;r - l,s,t) J . (2.9) 

Equations (2.8) and (2.9) define the representations ofOsl(2). 
It is important to realize that the Osl(2) generators acting on 
x(i,k;r ,s,t ) keep the (s,t ) the same orincrease. This allows us to 
discuss the representations on the invariant subspaces 
V(S,T), where V(S,T) is the linear span of the set of basis 
elements, 

V(S,T): Ix(i,k;r,S+s,T+t); i,k=O,l, 

r,s,tEN, S,TEN+ J , 

and also the representations induced on the quotient spaces 
fl IV(S,T). N+ denotes the set of positive integers. 

The relationp(/3)1 = A I,AEC, generates a left idealIA • 

The representation (2.8) induces on the quotient space the 
representation 
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p(/3 )x(i,k;r,s) = [A + r - s + W - k )]x(i,k;r,s), 

p(/+)x(i,k;r,s) = x(i,k;r + l,s) + (k 1v1)x(i + l,k - l;r,s), 

p(L)x(i,k;r,s)=x(i,k;r,s+ 1)-r[A -s+!(r-l)] (2.10) 

xx(i,k;r - l,s) 

+ (ilv2)x(i - l,k + 1 ;r,s) , 

p(V+)x(i,k;r,s) =x(i + l,k;r,s), 

p(V _)x(i,k;r,s) = ( - l)ix (i,k + l;r,s) 

-i(A +r-s- ~]X(i-l,k;r,s), 
and 

x(2,0;r,s) = (lIv2)x(O,O;r + l,s), 

x(2,I;r,s) = (lIv1)(x(O,I;r+ l,s) + (lIv2)x(1,O;r,s)) , 

x(0,2;r,s) = - (lIv2){x(O,O;r,s + 1) 

-r[A -s+!(r-l)]x(O,O;r-l,s)), 

x(I,2;r,s) = - (lIv2){x(I,O;r,s + 1) 

- r[A - s + W - 1)]x(I,O;r - l,s)) . 

(2.11) 

This representation has P(/3) diagonal. It is indecomposable 
and has invariant subs paces with bases V(s,T= 0), SEN+. 

3. REPRESENTATIONS INDUCED ON QUOTIENT 
SPACES AND SUBDUCED ON INVARIANT SUBSPACES 

A basis for the quotient spaces n I V (S, T) can be chosen 
as 

(Vi+ Vk_I'+ IS_/~==x(i,k;r,s,t), i,k = 0,1, fEN, 

s=O,I, ... ,S-I, t=O,I, ... ,T-l). (3.1) 

The representations which are induced on these quotient 
spaces are obtained from Eqs. (2.8) and (2.9) by formally 
settingx(i,k;r,s + S,t + T) equal to zero for S,TEN+. 

Another type of representations is defined by the rela-
tion 

p(J3)1 =Al, AEC, 

where 

x(O,O;O,O,O) = 1 , (3.2) 

i.e., the relation (/3 - A )1 = ° generates a left ideal on n. We 
consider the following representations which are induced by 
the master representation on the quotient space n I V (S = 1) 
which satisfy Eq. (3.2). We obtain 

p(/3 )x(i,k;r) = [A + r + !Ii - k ) ]x(i,k;r) , 

p(/+)x(i,k;r) = x(i,k;r + 1) + (k 1v2)x(i + l,k - l;r) 

p(L)x(i,k;r) = - r[A + !(r - l)]x(i,k;r - 1) 

+ (ilv2)x(i - l,k + l;r), 
p(V + )x(i,k;r) = xii + I,k;r) , 

p(V_Jx(i,k;rJ = (- IVx(i,k + I;r) 
- itA + r -!k )xli - I,k;r) 

with 
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(3.3) 

x(2,0;r) = x(O,O;r + 1) , 

x(2,I;r) = (lIv2)x(O,I;r + 1) + !X(I,O;r), 

x(O,2;r) = (lIv1)r[A + !(r - I)]x(O,O;r - 1), 

x(l,2;r) = (lIv1)r[A + !(r - I)]x(l,O;r - 1). (3.3') 

The representations given by Eqs. (3.3) and (3.3') are not 
necessarily irreducible, but can be indecomposable. In the 
latter case, they have nontrivial invariant subspaces. These 
invariant subspaces serve as carrier spaces for the infinite
dimensional subrepresentations subduced by the action of 
different p's while p induces finite-dimensional representa
tions on the quotient spaces. The extremal vectors Y which 
characterize the invariant subs paces satisfy the conditions 

p(V-)Y=o, p(L)Y=O. (3.4) 

An inspection of Eqs. (3.3) and (3.3') reveals that the extre
mal vectors Y satisfying Eq. (3.4) will exist only when r = ° 
or A + 1(r - 1) = 0, Le., for r = ° or r = - 2A + 1. For 
r = 0, two extremal vectors 

y, = (1 + [lI(A - mV+V-I, A #~ 
and (3.5) 

j\ = V_ 

are obtained which correspond to the weights A and A - !, 
respectively. If A = - !(r - 1), fEN + , we get two additional 
extremal vectors Y2 and Y2 given by 

12 = [1 - [lI(A - m V + V _ ] I ~ 2A + , , 

Y2 = V _I ~ 2A + , , (3.6) 

which correspond to the weights ( - A + 1) and ( - A + !), 
respectively. Thus, if A # - !(n - 1), nEN+, the representa
tion (3.3) decomposes into a direct sum of two infinite-di
mensional irreducible representations which are defined by 
the extremal vectorsy" andy,. If, however, A = - !(n - 1), 
nEN+, then the representation equation (3.3) decomposes 
into the direct sum of two indecomposable representations 
which are infinite-dimensional. One of these indecompos
able representations is defined by the extremal vector y, and 
has a second extremal vector Y2' The other indecomposable 
representation is defined by the extremal vector y, and has a 
second extremal vector 12. Each of these two indecompos
able representations induces on the quotient space with re
spect to the invariant subspace defined by the second extre
mal vector in each of these cases afinite-dimensional 
irreducible representation. In the former case the represen
tation (defined by y, with the second extremal vector Y2) is of 
dimension ( - 4A + 1). In the latter case, the representation 
(defined by y, withY2 as the second extremal vector) is of 
dimension ( - 4A + 3). On the invariant subspaces infinite
dimensional irreducible representations are subduced with 
lowest weight ( - A + 1) and extremal vector Y2 in the for
mer case (for the indecomposable representation defined by 
yd and with lowest weight ( - A +!) and extremal vector Y2 
in the latter case (for the indecomposable representation de
fined by yd. The indecomposable representation defined by 
Y 1 goes over to the indecomposable representation defined by 
Yl when one makes the substitution A_A -!. The same 
result holds for the irreducible finite-dimensional represen
tations induced on the quotient spaces and also for the infi-
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nite-dimensional irreducible representations subduced on 
the invariant subspaces. Therefore, it is sufficient to analyze 
only one of the two indecomposable representations. In the 
special case when A = !, there exist only two extremal vec
tors 

(3.7) 

with weights A = ! and A = 0, respectively. These two ex
tremal vectors result in two infinite-dimensional irreducible 
representations. Equation (3.3) reduces to the sum of two 
infinite-dimensional irreducible representations. Again the 
substitution A---+A - ! takes the one defined by y to that 
defined by y. 

We study below, for purposes of illustration, the nontri
vial examples for which n = 1 and 2, i.e., the cases for A = 0 
and A = -!. We shall discuss the two representations 
which are induced by Eq. (3.3) on the quotient spaces, modu
lo invariant subspaces. 

Case 1:A = 0 

The set of elements VI: I x(i,k; 1 + r), i,k = 0,1, rENJ 
defines a basis for an invariant subspace ofthe representation 
given by Eq. (3.3) for the case A = O. For the quotient space 
of n / V (1,1) with respect to the invariant subspace VI' a basis 
can be chosen as 

x(O,O;O), x(I,O;O), x(O,I;O), x(I,I;O). (3.8) 

The representation equation (3.3) induces on the quotient 
space a four-dimensional completely reducible representa
tion which is given by the matrices 

p(I,1 ~ [0 
0 

0 0 

0 _1 o ' z 
0 0 0 

p(I+1 ~ [: 
0 

0 1/v'1 0 

0 0 0 

0 0 0 
(3.9) 

p(LI~ [: 
0 

0 0 0 

1/Y2 0 0 

0 0 0 

p(V+1 ~ [~ 
0 0 0 

0 0 I 
2 

0 0 0 

0 0 

0 0 0 0 
0 0 0 0 

p(V-) = 
1 0 0 1 

Z 

0 -1 0 0 
The Casimir element of Gsl(2) from Eqs. (2.5) and (3.9) is 
given by the singular matrix 
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o ~~----4~ 0 

--------------;. 

------------'> 
........ ~ ~-----

<E,--_o_._ 0_ 

FIG. 1. Graphical representation of the four·dimensional completely reo 
ducible representation induced on the quotient space for A = O. II 

o 0 0 0 

o 1 0 0 
Gc(2) = 0 0 ~ 0 (3.10) 

I 0 0 ! 
There is a degeneracy of the elements 1 and V + V_and 

the four-dimensional representation can be broken up into 
its irreducible constituents. A singlet representation is ob
tained which consists of the only vector YI = 1 - V + V_, 
with weight A = O. That this is extremal can be seen by in
spection. The triplet consists of the elements 
I V +' 1 + ! V + V _, V _) generated by the extremal vector 
YI = V _, with weight A = -!, as we shall see in the later 
sections. See Fig. 1. 

Case 2:A = -1 
Here, Vz: Ix(i,k;2 + r), i,k = 0,1, rENJ forms a basis for 

an invariant subspace of n / V (1,1) with respect to the action 
ofEq. (3.3). The quotient space [n /V(I,I)]1Vz is eight-di
mensional, and a basis can be chosen to consist of the ele
ments 

X (i,k;O) , X(i,k;I), i,k = 0,1. (3.11) 
The representation (3.3) then induces on the quotient 

space modulo the invariant subspace the following complete
ly reducible eight-dimensional representation [with respect 
to the ordering of basis elements: x(O,O;O) = 1, 
x(I,O;O) = V +' x(O,I;O) = V _, x(I,I;O) = V + V_, 
x(O,O;I) = 1+, x(I,O;I) = V +1+, x(O,I;I) = V _1+, 
x(I,I;I) = V+V_I+ (see Fig. 2)]. 

~---~ ------------~ 

FIG. 2. The indecomposable representation A = -! on the quotient space, 
yielding a decomposable representation of dimension 8 = 5 + 3. 
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o 0 lIv2 0 
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o 0 0 0 

! 0 0 - A 
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o 0 0 ! 
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1 
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o 
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o 0 
o 0 

o 
! 
o 
o 

o 
o 

l/V1 
o 

! 0 0 o 
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o 
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o 0 1 

-1 0 0 

o 
o 
o 

o 0 

lIv1 0 
o 0 

o 

o 0 0 0 

o 0 ! 
o 0 0 0 
o 0 0 

o -lI2v1 
o 0 
o 0 
o 0 
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o 0 0 0 

o 
1 0 
o - 1 
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o 
o 

o 
o 

(3.12) 

The CasimirelementofGsl(2) given in Eq. (2.5) and (3.12) is a 
nonsingular matrix 

! 0 0 0 0 0 
o 1 0 0 0 0 

o 0 ~ 0 0 0 

o 0 
lI2v1 0 

o 0 

o 0 1 0 0 ~ 0 0 
Gc(Q) = I-O-:---O--O----:O~~-O~----:O~-!-I 

o ° 0 ° ° ~ 
o lIv1 ° 0 0 ° 
° ° ° ° ° 

° 
° 

° o 

We can see from Fig. 2 that there is degeneracy of the 
elements (l,V + V_) with -! eigenvalue for p(/3 ), 

(1+, V + V _1+) with eigenvalue! forp(/3 ), and (V +, V _1+) with 
eigenvalue ° for p(/3)' This eight-dimensional completely re
ducible representation (3.12) can be brought into the block 
form of three and five dimensions. To do this, we first con
struct the extremal vectors Y I and Y I for the three- and five
dimensional invariant subspaces. The remaining elements in 
each case can then be determined by the action ofthep's on 
the respective extremal vectors. 

In the following we carry out the analysis for the case of 
a general value of A and later we shall specialize to the case 
when A = -!. WedefineM=r+A +!(i-k)sothatM 
represents, from Eq. (3.3), the eigenvalue of x(i,k;r) for P(l3)' 
Consider the subs paces 

V M: ! x(i,k;r) , r = M - A + W - k) , 

fEN; i,k = 0,1) . (3.13) 

The elements of V M belong to the eigenspace of p(/3) with 
eigenvalue (M - A ). The two vectors 

y= (Coo + Cl1V+V_)l~-A, (M -A )EN, 
and (3.14) 
Y= (CoIV_l+ + CIOV+)l~-A-l/Z, M -A - !EN, 
are elements of V M' We want to find the conditions for which 
Yand Ybecome extremal vectors, i.e., p(C)Y = 0, 
p(V-)Y= O;p(C)Y= 0, (V-)Y= o. It turns out that there 
are four possibilities. Viz., 

YI = (1 + [lI(A - m V+V_) , A #!, with weight A, 

Yl = V_with weight (A - !) , 
Yz = (1 - [lI(A - m V + V _)l :; ZA + J , 

A #! with weight A + r, 

Yz = V _l :; ZA + J with weight A - ! + r. (3.15) 

The extremal vectors Yl and Y2 exist only when A i+ The 
extremal vectorsYz, andY2 exist only if - 2A + 1EN+. For 
the exceptional case of A = !, there exist only two extremal 
vectors, viz., 

y=V+V_, Y=V_. 

The considerations given above show that if A #0, -!, 
- ~, ... , then the representations given in Eq. (3.3) decompose 

into a direct sum of two irreducible, infinite-dimensional re
presentations. If A = 0, -!, - ~, ... , then the representa
tions given in Eq. (3.3) decompose into the direct sum of two 
infinite-dimensional, indecomposable representations. One 
of these has extremal vectors (.v1'YZ); the other has (Yl'Yz) as 
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extremal. The extremal vectors Y2 and Y2 define infinite-di
mensional invariant subspaces of the indecomposable repre
sentations. 

Now, returning to our example of the special case for 
which A = -!, we observe that the action of p's on the 
extremal vector YI in Eq. (3.15) yields a three-dimensional 
irreducible representation on the quotient spacefl IV(r = 2), 
A = -!. The basis for this three-dimensional irreducible 
representation is given by 

11- V+V_, F+ - V+V_l+, !V+ - V_l+l 

and the representation is obtained in explicit form as 

PII')~C~ 
0 

~). PII+I~G 
0 

~). , 0 2 

0 0 

PII~I~G ! 

~). 0 

0 

P(vcl~G 
0 +} 0 

0 

P(v~I~G 
0 

D' 0 

-l/V1 

Gc(Q) =!. 

(3.16) 

Similarly, the action of the p's on the extremal vector Y I in 
Eq. (3.15) results in the five-dimensional irreducible repre
sentation with the basis {V _, V _1+ + (l/V1)V +, 
V+I+,V+V_, V+V_l+ + !1+1 and the representation isob
tained as 

pILI~ G o 
o 

o 

o 

o 
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(~ 
Glc(Q) =flL. 

o 

-l/V1 
o 

(3.17) 

The representations given in Eqs. (3.17) and (2.6) are 
algebraically equivalent through a similarity transforma
tion. 

If one orders the basis elements in the sequence 

{V_, V_l++(l/V1)V+, V+l+, V+V_, 

V+V_l++F+, I-V+V_, F+-V+V_I+, 

- (l/V1)V_I+ + !V+l ' 

then one obtains the representation (3.12) in the form of a 
direct sum of a three-dimensional and a five-dimensional 
irreducible representation. Equations (3.16) and (3.17) repre
sent the decomposition of the eight-dimensional (reducible) 
representation (3.12) into a direct sum of a three-dimensional 
and five-dimensional irreducible representation. The repre
sentations (3.17) and (2.5) are equivalent. 

4. CANONICAL AND INDECOMPOSABLE 
REPRESENTATIONS 

In this section we explicitly construct and classify the 
representations which can be derived from Eq. (3.3). We ob
tain in an explicit form the matrix elements for the irreduci
ble infinite-dimensional representations which are defined 
by the extremal vectorsY"Y2'YI' andY2' Besides, we also 
obtain the matrix elements for the indecomposable represen
tations which are defined by the extremal vectorsy, andY2 
for A = 0, -!, - 1, - ~, .... Finally we derive the matrix 
elements for the finite-dimensional representations which 
are defined by the pairs of extremal vectors (y" Y2) and 
(Y2,yd, respectively, for A = 0, -!, - 1, - ~, .... 

A. Representations defined by y, 

The extremal vector y, has been defined by 

Yl=(I+aV+V_), a=l/(A-!), A#!. 

Use ofEq. (3.3) yields the following: 

P(l+)"Yl = [(1 + nal2) +aV+V_lI"+ ' 

p(V +)2K + Ip(l+)"YI = (1 + (n + K + l)a/2)(l/V1)KV +1"++ K 

+a(l/V1t+IV_l"++K+I, 

= (l/V1)p(V+)2K-Ip(I+)"+ IYI' 

p(V +)2Kp(I+)"YI 
= (l/V1tp(l+)" +KYI = (1 + (n + K)a/2) 

X(l/V1)KI"++K + a(l/V1)KV+V_I"/K , 

p('-)P(l+)"YI = - n [A + !(n - l)l p(l+)" - IYI , 

p('- )p(V + fK + Ip(l +)"Y 1 
- (n + K)[A + !(n + K)l p(V +)2K+ Ip(l+)"- IYI , 
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p(Cla(v +)2Kp(l+tYI 

= -(lIV1nn+K) 

x [A + ~(n +K -1)] p(l+t+K-IYI' 

p(V_)P(/+)"YI = - (naI2)V_In+ 

- (nlV1)(1 + naI2)V+ln+-1 

= - (nlV1) p(V +)P(/+l" - IYI> 

p(V -la(v +)2K + Ip(1 +tYI 

= - [A +!(n +K)]p(V+)2'jJ(/+)"YI 

= - [A + ~(n +K)](lIV1)Kp(I+)n+KYI' 

p(V -la(v +)2Kp(I+l"YI 

= - (n + K)~p(V+)2K-Ip(/+tYI 
= - (n + K)(1IV1)p(V+)2K+ Ip(l+t-IYI' (4.1) 

We now define 

p(V + )2K + Ip(l + ty I = 12K + 1 ,n) = (lIv1)K 11 ,n + K) , 

p(V+)2Kp(I+)"YI=12K,n) = (lIv1nO,n +K). (4.2) 

For K = 0, we have the basis 

10,n) , II,n), nEN. 

The action ofthep's on this basis is given by Eq. (4.1): 

p(13)IO,n) = (A + n)IO,n) , 

p(13)ll,n) = (A + ~ + n)II,n) , 

p(/+)IO,n) = 10,n + 1);p(C)IO,n) 

= -n[A+!(n-l)]IO,n-l), 

p(V +)IO,n) = /I,n) ,p(V _)IO,n) = - (nlv1)ll,n - 1) 

p(V+)/I,n) = (lIv1)IO,n + 1) 

= 12,n) , p(V _)Il,n) = - (A + ~ n)IO,n) . 
(4.3) 

Thus, we find that if A =I - n12, nEN, the representation is 
infinite-dimensional and irreducible. If, however, A = - nl 
2, nEN, then the extremal vector 10,0) defines an infinite
dimensional indecomposable representation with a second 
extremal vector 11, - 2A ). This indecomposable represen
tation induces on the quotient space a ( - 4A + 1 )-dimen
sional irreducible representation with basis (I0,s), 
s = 0,1,2, ... , - 2A; 11,s), s = 0,1, ... , - 2A - 1 J. Moreover, 
it subduces on the invariant subspace defined by the extre
mal vector 11, - 2A ), an infinite-dimensional irreducible re
presentation with basis: 

( l0,s) , s = - 2A + 1, - 2A + 2, ... ; 

II,s) , s = - 2A, - 2A + 1, ... J • 

The finite-dimensional irreducible representation which is 
induced is obtained from Eq. (4.3) by formally setting 
10, - 2A + 1 )~, 11, - 2A )~. The infinite-dimensional 
irreducible representation on the invariant subspace is ob
tained by restricting Eq. (4.3) to the subspace (see Fig. 3). 

The connection between the representations given in 
Eq. (4.3) and the usual finite-dimensional canonical repre
sentations on the quotient space modulo the invariant sub
space defined by Y2 can easily be seen by redefining I = n12, 
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n;>O, integer -A = I, n = 1+ m and 10,n) = 10,I,m), 
10,0) = 10,1, - I), II,n) = II,I,m), 11,0) = 11,/, -I). One 
obtains for the canonical basis of the (41 + I)-dimensional 
representation 

/lO,I,m)==alm 10,I,m) , m = 1,1 - 1, ... , -I + 1, 

/ll,l,m) = aim [1/(1 - m)] II,I,m) , 

m = 1- 1, ... , - 1+ 1 , 

/10,1, -/) = 10,1, -/) , 

,,1,1, -I) = 11,1, -I) , 

where 

{
-I+ll }-1I2 

alm = II -[/(/+I)-K(K-I)] . 
K=m 2 

From Eqs. (4.3) and (4.4), it follows that 

(4.4) 

p(1 ± )/lO,I,m) = ~W += m)(1 ± m + 1)/lO,l,m ± 1) , 

p(V _lIl0,/,m) = - ~(I + m)(1 - m + I)/lI,/,m - 1) , 

p(V+)/lO'/,m) = (I - m)/lI,l,m) , 

p(C)/I I,l,m) = ~W + m)(l- m + 1)/lI,l,m - 1) , 

p(/+)/lI,I,m) = ~W - m)(1 + m + I) 
X [(/ - m - 1)1(1 - m)]/lI,I,m + 1), 

p(V -lIll,/,m) = ~/lO,l,m) , 

p(V+)/lI,/,m) = ~~(I + m + 1)/(/- m)/lO,I,m + 1) . 
(4.5) 

B. Representations defined by Y1 
The extremal vector YI = V _. If we now define as we 

did earlier for YI' 

p(V+)2K+ Ip(/+tYI=I2K + I,n) = (lIv1tll,n + K) , 

p(V +)2Kp(/+)nYI==12K,n) = (lIv1t 10,n + K), nEN, 
(4.6) 

it can be seen using Eq. (3.3) that 

p(/3)IO,n) = (A + n - !)IO,n) , 

p(/3)ll,n) = (A + n)II,n) , 

[A ] [A + I] I [- A - I] [ - A ] [ - A + I] 

10,0) 10,1) I 10, - 2A - 1) 10, - 2A ) 10, - 2A + I) 
-.---.~ _.- -.~ _.-._.-=:. -.-~-"~ _.-

~ ......... ~?<i .. I .;~?~/ ....... ~O /?<i'" 1]// I] // I] // j // II ; ~/// 1.,/: ! ~/// ~/// i~/ 
o!:~:·:-.:::; O~':_1 :':..0 _._. __ -+ .~'.:'::_::. ~ O~_ .. :--" 

11,0) 11,1) 111, - 2A -1) 11, - 2A) II, - 2A + 1) 
[A +~] [A+H [-A-!] [-A +!] [-A +H 

FIG. 3. Finite- and infinite-dimensional (bounded below) representation 
induced by the two extremal vectors 10,0) and II, _ 2A )." 
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[A +!l i [- A - U [ - A + ~l [ - A +~] 
10,1) I 10, - 2A ) 10, - 2A + 1) 10, - 2A + 2) 

-<._--< ..... -.- I 

~I<· .. ··~·;~<, ... 
I ;/ : 

:. /-j I 
/// 1'1./ I 

I,i/ 1 ... / 1 

-.--;.. - -.- ~ - - - -'-3!> -.-
··;0<····· .. ·;,0 /0"'''-

/"'-1.. //' / tj // / I 
//' // I 

I. // / I / 
Ii/.' J/' Iv/ 

0<,·····-··0,,·· 
- - _. - --;> ._ .. ···0 .<··········0<··---7 - - - . .....;;. _O_'--_..l -'-

1 

11,0) 11,1) I 11,-2A) 11,-2A+l) 11,-2A+2) 

[A 1 [A + III [-Al [-A+l1 [-A+21 

FIG. 4< Finite- and infinite-dimensional (bounded belowl representation 
induced by the two extremal vectors 10,0) and 11, - 2A + 1) < II 

p(I+)IO,n) = 10,n + 1) , 

p(C)IO,n) = - n(A + !(n - 2))IO,n - 1) , 

p(I+)II,n) = II,n + 1) , 

p(C)II,n) = - n[A + !(n - 1)] II,n - 1) , 

p(V +)IO,n) = II,n) , 

p(V_)IO,n) = - (nlV1)II,n -1), 

p(V+)II,n) = (lIV1)IO,n + 1), 

p(V _)II,n) = - [A + !(n - 1)] 10,n) . (4.7) 

It is easily observed that a replacement A_A +! in Eq. (4.7) 
yields the representation given by Eq. (4.3). Thus, this case 
gives nothing new (see Fig. 4). 

C. Canonical basis for infinite-dimensional irreducible 
representations subduced on invariant subspaces 

In this section, we determine the canonical basis for the 
infinite-dimensional irreducible representations. In the pre
vious section, it has been shown that the representation de
fined by the extremal vector yz for A _A +! is algebraically 
equivalent to the representation defined by Yl for the value 
A. Thus, for indecomposable representations (if A = 0, -!, 
- 1, - ~, ... ), the second extremal vectors which define the 

invariant subspaces in the two representations can be ob
tained by the replacement A-A +!; they yield the same 
infinite-dimensional irreducible representation. Since it does 
not matter which of the two extremal vectors we use, we 
choose 

yz=(I+PV+V_)I'+, P= -lI(A-!), A#!. 

If we define 

12K + I,n] = (lIV1n I,n + K] p(V+fK+ Ip(/+ryz, 
(4.8) 

12K,n] = (lIV1t 10,n + K ]=p(V+)2Kp(l+ryz' 

the following relations may be worked out: 

1260 

p(13)IO,n] = (-A + 1 + n)IO,n] , 

p(l3)II,n] =(-A +~+n)II,n], 

p(I+)IO,n] = 10,n + 1] , 

p(C)IO,n] = n[A - !(n + 1)] 10,n - 1] , 

p(/+)II,n] = 11,n + 1], 

p(C)II,n] = n[A - ~(n + 2)] 11,n - 1] , 

p(V+)IO,n] = 11,n] , 
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p(V -) I O,n] = - (lIV1)n 11 ,n - 1] , 

p(v+)II,n] = (lIV1)IO,n + 1] , 

p(V _)II,n] = [A - !(n + 2)] 10,n] . (4.9) 

The relation to the standard canonical representation may 
be obtained by identifying - A = 1- 1, n = (m - I), nEN, 
and by defining the canonical basis as 

11 0,1,1] = 10,0] , 

110,l,m] = Clm 10,n] , m = I + 1,1 + 2, ... , 

111,1,1 ] = 11,0] , 

111,I,m] = Clm [11(/ + m)] II,n], m = I + 1,1 + 2, ... , 

where 

{ 

m 1 } -- 1/2 

Clm = II -[l(/-1)-K(K-1] 
K~I+ I 2 

It can be easily verified that 

p(/=F lIIO,I,m] = ~W +m)(1 ± m - l)II0,l,m ± 1] , 

p(V+)II0,l,m] = (I + m)III,I,m] , 

p(V_)II0,l,m] = N - m)(1 + m + I)III,I,m - 1] , 

(4.10) 

p(/_)III,I,m] = ~W - m)(1 + m - I)III,I,m - 1] , (4.11) 

p(I+)III,I,m] = ~W + m)(/- m + 1) 

X [(l + m + 1)/(/ + m)]III,/,m + 1] , 

p(V_)111,1,m] = - !110,l,m] , 

p(v+)111,1,m] = !~(/ - m - 1)/(/ + m)II0,l,m + 1] . 

Here we have characterized the infinite-dimensional ir
reducible representation which is bounded below by 
( -/- 1) by the weight I of the indecomposable representa
tion from which it has been derived. It should be noted that 
the two weights ( - / - 1) and / are related by the action of 
the discrete Weyl group W, M = S(/ + R) - R, SEW. Here 
R = !, denoting one-half of the sum of the positive roots of 
Su(2). For S = 1, the identity, M = I, and for S = - 1, 
which is the other element of W, we get 
M= -/-2R= -I-I. 

D. Exceptional case A = ! 
The exceptional representation when A = !, 

r = - 2A + 1 = ° is defined by the extremal vectors 

y'=V+V_=x(I,I;O)= lim (A-!)YI' 
A-I/2 

y" = V_ =x(O,I;O) =YI' 

The extremal vector y' generates an infinite-dimensional ir
reducible representation which is bounded below. 

In the above we have taken the correspondence from 
Eq. (4.2) by the replacement li,n)-(A - !lIz',n), i = 0,1, 
nEN. Now, the extremal vector y" can be used to generate 
new representations obtained from y' by the replacement 
(A+-+A + i). 
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The existence, uniqueness, and continuity with respect to initial data of global solutions of the 
Cauchy problem is proved for the Schrodinger and Klein-Gordon equations with Yukawa 
coupling in one space dimension. The proof is based on the standard tools for handling abstract 
nonlinear wave equations. 

PACS numbers: 02.30. + g, 03.50.Kk, Il.lD.Lm 

1. INTRODUCTION 

In this paper we shall prove the existence, uniqueness, 
and continuity with respect to initial data of global solutions 
of the integral equation corresponding to the Cauchy prob
lem for the Schrodinger and Klein-Gordon equations with 
Yukawa coupling in one space dimension: 

a a2 

i - t/J(x, t) + - t/J(x, t) = gt/J(x, t )Re u(x, t ), at ax2 

a2 a2 
-

-2 u(x, t) - -2 u(x, t) - m 2u(x, t) = gt/J(x, t) t/J(x, t), ax at 
t/J(x, to) = t/Jo(x), 

a 
u(x, to) = uo(x), - u(x, to) = vo(x), at 

(1 ) 

whereg, m are real constants and t/J(x, t ), u(x, t ) are complex
valued functions on R. 

This problem will be treated (locally in Sec. 3 and glo
bally in Sec. 4) in the context of a Hilbert space 
H I(R) $H I(R) $L 2(R) by now standard technique for han
dling abstract nonlinear wave equations (see Sec. 2). In this 
regard our discussion ofEqs. (1) is simpler and more general 
than that of Fukuda and Tsutsumi in Ref. 1, where the com
pactness arguments were used in order to prove the existence 
of weak solutions for (1). 

We note finally that for the integral equation corre
sponding to the Cauchy problem for the Dirac and Klein
Gordon equations with Yukawa coupling in one space di
mension an existence-uniqueness theorem has been proved 
by Chadam in Ref. 2. 

2. PRELIMINARIES 

In this section we first introduce some notations, defini
tions, and results on Sobolev spaces that will be used in the 
paper (for proofs see, e.g., Ref. 3). Then, for the reader's 
convenience, we shall outline those aspects in abstract non
linear equations that are relevant for our purposes. This sec
ond part is based on the lectures by Reed4 to which the read
er can be referred for details and further references. 

A. We denote by H '(R), for any nonnegative integer r, 
the Sobolev space of all complex-valued square-integrable 
functions Ion R with finite norm 11111, = (SR(l + k 2)' 
If(k Wdk JI/2, where/is the Fourier transform off, 
defined by 

(FI)(k) = /(k) = l.i.m. (217)- 1/21 e - ixk I(x)dx, 
N~"" !xl <N 

where l.i.m. denotes the "limit in mean" taken with respect 
to the norm in L 2(R) = H O(R). Equivalently, H '(R) is the set 
of all complex-valued functions on R whose distributional 
derivatives of order smaller or equal to r lie in L 2(R). Hence 
H'(R) is a Hilbert space with the scalar product (f, g), 

=fR(I +k2)' j(k)g(k)dk andH'(R)CHS(R) for r>s. 
Moreover for r> 1: 

(a) H '(R) is an algebra with respect to pointwise multi
plication and there exists a constant a, such that II Igll, 
<a, II 111,llgll, for allf, g E H'(R), r> 1. 

(b) 11/11"" <11111, for all/EH'(R), r>I, where IHI"" de
notes the norm in L ""(R). 

For any even nonnegative smooth functionj on R such 
thatj(x) = 0 for Ixl> 1, fR j(x)dx = I, and any €> 0, we de
note by J~ a smoothing operator defined by (J~/)(x) 
= f R j~(x - y)/(y)dy for any I from H'(R), wherejE(x) 
= (1/ €)j(x/€). The operator JE has the following properties: 

"" 
(c) J<: H'(R)--+ n H'(R)CC ""(R); 

r=O 

(d) (JE f, g), = (f, JEg), for allf, g E H '(R); 

(e) IIJ</II,<II/II, forallJEH'(R); 

(f)lim IIJEI-/II, =0 forall/EH'(R); 
<~ 

(g) IIJ</II,«217) 112 111<(1 + k2)'1211"" II/II,-s for all 
IE H '(R) and r>s. 

B. Let uo/'be a Hilbert space with the norm 11<1> II, <1>E2 
and e - itA, tER be a strongly continuous one-parameter 
group of unitary operators on uo/' with the self-adjoint on 
.0 (A ) C uo/' generator A. For a mapping K of uo/' into itself 
with the property K (0) = 0 let us list the following assump
tions: 

(i) 11K (<1» - K (1ft)11 <C (11<1> II, 111ft III II <1> - 1ft II; 

(ii) K takes .0(A) into itself and 

IIA (K(<1» -K(Ift))1I 

<C (11<1> II, IIA<1> II, II 1ft II, IIA 1ft II lilA <1> - A 1ft II; 

(iii) IIAK(<1>lIl<C(II<1> 11l11A<1> II 

for all <1>, IftE.0(A ), where each C is a monotone increasing 
(everywhere finite) function of the norms indicated. 

Now we can state the basic theorems. 
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Theorem 1: 1. Let (i) hold. Then, for each <PoE $" and 
toEH there is a positive number Tsuch that the integral equa
tion 

<P (t) = e - i(t - to)A<po + ('e - iA (t - slK (<P (s))ds (2) 
l 

has a unique continuous solution <P (t )on( - T + to, to + T). 
Moreover, we note that T can be taken to be any positive 
number7SuchthatUI<Poll + I)CUI<Poll + 1, II<Poll + 1) < 1/r 
and then II<P (t )11 <1I<Poll + Ion ( - r + to, to + r). 

2. Let (i) and (ii) hold. Then, for each <PoEpj) (A ) and toEH 
there is a positive number Tsuch that the initial-value prob
lem 

d<P(t) = _ iA<P (t) + K(<P (t i), 
dt 

<P (to) = <Po 

(3) 

has a unique strongly continuously differentiable solution 
<P (t )Epj) (A ) on ( - T + to, to + T). [Note that <P (t) is a solu
tion on ( - T + to, to + T) of(2) too.] 

Theorem 2: 1. Let (i) hold. If on every finite interval 
( - T + to, to + T)onwhichacontinuoussolution<P (t )of(2) 
exists, II<P (t)1I is bounded, then (2) has a unique global contin
uous solution for all t. 

2. Let (i), (ii), and (iii) hold. If on every finite interval 
( - T + to, to + T) on which a strongly continuously differ
entiablesolution <P (t ) of(3) exists, II<P (t)1I is bounded, then (3) 
has a unique global strongly continuously differentiable so
lution for all t. 

3. THE LOCAL PROBLEM 

In order to place (1) in the abstract framework ofTheo
rems 1 and 2, let us rewrite it in the form 

(

I/1(X' t )) ( - ..1 + 1 :t u(x, t) = - i 0 
v(x, t) 0 

o 0) (I/1(X' t )) o i u(x, t) 

i(..1 - 1) 0 v(x, t ) 

( 

- igl/1(x, t )u(x, t ) + il/1(x, t )) 

+ 0 , 

IlU(X, t) - gt/J(x, t) l/1(x, t) 

(4) 

(

I/1(X' to)) (l/1o(X)) 
u(x, to) = uo(x) , 

v(x, to) vo(x) 

where v(x, t ) = au(x, t )I at, u(x, t ) = Re u(x, t ), ..1 = a 2/ ax2, 
andll = 1 - m 2

• 

Now let the Hilbert space $" be the direct sum 
HI(H)~HI(H)~L2(H)withthenormll<P1I = {lll/1lli + Iluili 
+ IIvl16 J 1/2, where 

d> ~ (D and ¢. ueH '(RI. vEL '(RI· 

We define A in $" as 

( 
- ..100 + 1 ~O °i) 

i(..1 - 1) 
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acting on the domain pj) (A ) = H 3(H) ~ H 2(H) ~ H I(H). We 
have 

Lemma 1: A is self-adjoint. 
Proof Let if '(H) = FH '(R) = 1);fEB '(H)) be the Hil-

A A 

bert space with the norm Ilfll, = Ilfll, and $" = F$" 
= FH ;"H) ~ FH I(H) ~ F,....L 2(H) be the Hilbert space with the 

norm II <P II = II <P II. Let A be defined in $" as the operator of 
multiplication by 

A A A AA A 

with the domain ~(A ) = I <PE2; A <PE2). It is easy t~see 
that Fpj)(A ) = pj)(A) and, consequently, that A =F-IAF. 
But A is self-adjoint and F is an isomorphism of $" onto~, 
so that A is likewise self-adjoint. Q.E.D. 

We define now a mapping K and its regularization, 
which will be useful to derive an a priori estimate on solu
tions in the next section. Let for any E> 0, J

E 
be a smoothing 

operator and let Jo be the identity operator. We define Ko 
E:;;'O (Ko = K) as the following mapping of $" into itself: 

Now in order to apply Theorem 1 we need 

Lemma 2: (i) IIKE(<P) - Kc(lll)11 <C (II<P II, IW'lllIl<P - ifill 
for any E:;;'O. 

(ii) For any E> 0 KE takes pj) (A ) into itself and 

IIA (KE(<P) - KE(IfI))11 

<CEUI<P II, IIA<P II, II ifill, IIA I[III)IIA<P - A ifill· 

(iii) IIAKE(<P lIl<CEUI<P 11l11A<P II, for any E>O 

for all <P, IfIEpj)(A ), where C and each CE is a monotone in
creasing (everywhere finite for E> 0) function of the norms 
indicated. 

(iv) lim IIKE(<P) - K (<P )11 = 0 for all <PE2. 
E--+O 

Proof Let 

(i) If <P, 1[IE2, 00 then 

IIKE(<P) - KE(IfIJlI 

<lgIIII/1IJEuI -1/1z/E u2111 

+ 111/11 -1/12111 + IgIIIJE(I/1I¢1 -1/12¢2)llo 

+ 1IlIllu I - u2110 

<II + III I + 2a l lgl(ll<P II + 111fI1I)]11<P-I[III, 

where we have used (a) and (e) (Sec. 2A). 
(ii) If <P, IfIE§ (A ), E> 0 then 
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IIA (K€(4» - K€(Vt))1I 

<>; Iglll"'IJ€u I - "':zl€u2113 

+ 11"'1 - "'2113 + IgIIIJ€("'I¢1 - "'2¢2)111 

+ 1,ulliu l -u2111<>;(21T)1/2a3 Iglllj€(k)(1 +k2)11", 

X {lIullllll"'l - "'2113 + 11"'211311u I - u211d 

+ 11"'1 - "'2113 + allglll"'l - "'2111(11"'1111 + 11"'211Il 

+ 1,ulllu l -u2111<>;{1 + l,ul + a l lgl(ll4> II + IIVtIIl 

+ (21T)1/2a3 Iglllj€(k)(1 + k 2111 '" (114) II + IIA Vt III J 

X IIA4> - A Vt II, 

where we have used (a), (e), and (g) (Sec. 2A). 
(iii) This follows from (ii) when we take If! = O. 
(iv) This is an immediate consequence of (t) (Sec. 2A). 

Q.E.D. 

The last two lemmas show that K, A, K€ satisfy the assump
tions of Theorem 1.1 (and 1.2 if € > 0) so a local existence
uniqueness theorem for the integral equation corresponding 
to (4) is proved. 

The proof of a global existence-uniqueness theorem will 
be given in the next section. 

4. THE GLOBAL PROBLEM 

It is our aim in this section to put Theorem 2.1 to work. 
Therefore it becomes necessary to show that the norm of the 
solution is bounded on every finite interval on which the 
solution exists. To this aim we first establish this bound for 
the smoothing coupling case (i.e., K€, € > 0). The result we 
subsequently need for the Yukawa coupling case (i.e., K) will 
be obtained thence by limiting arguments. We start with 

Lemma 3: Let 4>oEK, toER and €>O. If4>€(t) is a 
strongly continuously differentiable solution on ( - T + to, 
to + T) ofthe initial-value problem 

d4>€(t) = _ iA4>€(t) + K€(4)€(t)), 
dt 

(5) 

(

J€"') 
4>€(to) = J€4>o= J€u , 

J€v 

where by (c) (Sec. 2A) J€ 4>oE~ (A ), then 

114>€(t lIl<>;r(ll4>ollle iJLiT, tEl - T + to, to + T), (6) 

where r is a monotone increasing (everywhere finite) func
tion of the norm indicated. 

Proof Let 14>€(t)1 = {211",€(t)lIt + lIu€(tlilt 
+ IIv€(t )II~ }1/2 and PE(t) = 2g("'E(t) "'€(t ), JJI€(t ))0' Then 
14> €(t Wand PE(t) are continuously differentiable functions 
on ( - T + to, to + T) and by straightforward calculation 
[using Eqs. (5) and (d) (Sec. 2A)] Olle can check that 

or 

1264 

!!... {14>€(tW + PElt)} = 2,u Re(uE(t), v€(t)!o, 
dt 

:t 11"'€(tlll~ =0 
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14>€(tW + PElt) = IJ€4>012 + PElto) 

+ 2,u ReI: (u€(s), v€(s))ods, 

11",€(t )110 = II "'€(to)11 (7) 

for all t E ( - T + to, to + T). Now from (b) and (e) (Sec. 2A) it 
follows that 

IP€(t)I<2Iglllu€(tllllll"'€(tlll~ 
<>; IgI8I1u€(t )lIt + (lgl/8 )11",€(t )116 (8) 

for any 8 > 0 and t E ( - T + to, to + T). Thus (7) and (8) im
ply 

14>€(t W<>; IgI81Iu€(t )llt 

+ 21,u 1 1I: (u€(s), v€(S))odSI 

+ (2 + Ig18l1l4>01l2 + 2 J& 114>011 4
, 

8 
t E ( - T + to, to + T). 

Therefore, if we choose 8 > 0 such that IgI8<>;!, then 

14>€(t W<>;2 1,u11I: I 4>. (sWdsI 
+ 5114>011 2 + (2/8 2l1l4>011\ 

t E ( - T + to, to + T). 

Hence using the Gronwalllemma3 we have 

114> .(t III <>; 14> .(t ) 1<>; r( II 4>ollle iJLi 
T, 

t E ( - T + to, to + T). Q.E.D. 

Ifwe now apply Theorem 2.2 we obtain that the initial-value 
problem (5) has a unique global solution on R. We remark 
that K does not map ~ (A ) into ~ (A ). Therefore in order to 
show that (6) remains true for € = 0 we need 

Lemma 4: Let 4>oEK, toER, € > 0 and let 4> (t ) be a con
tinuous solution on ( - T + to, to + T) of the integral equa
tion (2) with A and K as in Sec. 3. If 4>.(t) is a strongly 
continuously differentiable solution of (5) on R, then 4>.(t) 
converges to 4> (t ) in K, as €---+O, uniformly on compact sub
sets of ( - T + to, to + T). 

Proof Since lim.---+o II 4>€ (to) - 4> (to)11 = 0 [see (t) (Sec. 
2A)] we need only verify that there exists a positive number r 
such that, iffor some tlE( - T + to, to + T), 

(9) 

then 4>.(t) converges to 4> (t) in K, as €---+O, uniformly on 
( - r + t l, tl + r)n( - T + to, to + T). To prove that, letrbe 
chosen so that 

(r(II4>ollle iJLiT + 1) 

XC(r(lI4>oll)e iJLiT + 1, r(114)ollle iJLiT + 1) < 1/7 (10) 

with C as in Lemma 2(i). From (9) and Lemma 3 we have 

Henc~ 

(114) (tIl II + I)C(II4> (tIl II + 1, 114> (tl)1I + 1)<1/r. (11) 
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Moreover, it is easy to check that for any tlE( - T + to, 
to + T), <P (t) [resp. <P E(t)] is a continuous solution on 
( - T + to, to + T) (resp. R) of the integral equation of type 
(2) with tl in place of to and with <P (td [resp. <PE(td] in place 
of <Po (resp. JE <Po). Therefore by (11) and Theorem 1.1 we get 

11<P(t)II<II<P(tl)11 + 1<r(II<PolllelpIT + 1, 

t E ( - l' + tl, tl + 1')n( - T + to, to + T). 

Next we observe that for all t E ( - T + to, to + T), 

II<PE(t) - <P(t)II<II<P.(td - <P(tl!ll 

(12) 

+ If IIK.(<P.(s)) - K (<P (S))lIdsl· 

On the other hand, by Lemma 2(i), (6), and (12) we get 

If IIK.(<P.(s)) - K.(<P (s))llds I 

< ! Ifll<P.(S)-<P(S)lIdsl, 

t E ( - l' + t l, tl + 1')n( - T + to, to + T). 

Moreover, if we set 

71.(t) = If IIK.(<P(s)) -K(<P(s))11 dsl, 

t E ( - T + to, to + T), 

then the integrand is uniformly bounded on ( - l' + t l , 

tl + 1')n( - T + to, to + T)[see Lemma 2(i) and (12)] and con
verges to zero as €~ for each s E ( - T + to, to + T) [see 
Lemma 2(iv)]. Consequently, 71.(t) converges to zero, as 
€~, uniformly on ( -1' + t l, tl + 1')n( - T + to, to + T). 

Now, from the last two inequalities it follows that 

11<p.(t) - <P(t)II<II<P.(td - <P(tdll 

+ ! If 11<p.(s) - <P(s)lldsl + 71.(t), 

tEl - l' + t l, tl + 1')n( - T + to, to + T). 

Therefore, if we apply the Gronwall lemma to the above 
expression we get 
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11<p.(t) - <P(t!ll<e(lI1')lt-t,1 

X {11<P.(td - <P (tdll + 71.(t)l, 

tEl - l' + t l, tl + 1')n( - T + to, to + T) 

which gives the desired result. Q.E.D. 

We can now prove the main result ofthis paper 
Proposition: The integrated form of the Yukawa cou

pled Schrodinger and Klein-Gordon equations (1) has a 
unique global solution in H I(R) Ell H I(R) Ell L 2(R) which de
pends continuously on initial data. 

Proof From Lemmas 3 and 4 it follows that the norm of 
a solution of the integral equation (2) with A andK as in Sec. 
3 is bounded on every finite interval ( - T + to, to + T) by 
y!ll<Poll)elpIT. Therefore, by Theorem 2.1 we obtain the uni
queness and global existence. 

Now, let <P I(t) and <P 2(t) be solutions with initial data 
<P 6 and <P ~. Then the continuity with respect to initial data 
follows from the estimate4

: 

II<P I(t) - <P 2(t )11 < II<P 6 - <P 611 

+ I L 11K (<P I(S)) - K (<P 2(S)) lids I 

<11<P6 - <P611 

where 

+ CII L II<P I(S) - <P 2(s)llds I, 

tEl - T + to, to + T), 

C I = C(y(II<P611)e1pIT, y!lI<P611)e lpIT ), 

which by Gronwall lemma gives 

II<P I(t) - <P 2(t!l1 < II<P 6 - <P 611e 1t - tolC" 

tEl - T + to, to + T). Q.E.D. 

II. Fukuda and M. Tsutsumi, Bull. Sci. Eng. Research Lab. Waseda Univ., 
No. 69 (1975). 

2J. M. Chadam, J. Funct. Anal. 13, 173 (1973). 
3M. Schechter, Modern Methods in Partial Differential Equations 
(McGraw-Hill, New York, 1977). 

4M. C. Reed, Abstract Non-linear Wave Equations, Springer Lecture Notes 
in Mathematics, Vol. 507 (Springer, New York, 1976). 
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Sum rule for products of Bessel functions: Comments on a paper by 
Newberger 

M. Bakker and N. M. Temme 
Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 
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Recently, Newberger considered a series of Bessel functions with as a special case the form 
l:(niJ~(z))/(n + Il)' The interesting point is that he obtained new explicit expressions for the sum 
ofthe series. In this note we point out that some results of Newberger are not correct, especially 
the results obtained by the principle of analytic continuation. Our remarks include a correction 
for his important result for the series Vn (z)Jn _ m (z)l(n + Il). 
PACS numbers: 02.30.Gp, 02.30.Lt 

1. INTRODUCTION 

Newberger l presented a sum rule for the infinite series 
of the form 

S
-- ~ (- WniJa-rn(z)JP+rn(z) 

L (1.1) 
n=-oo n+1l 

wherejENu{ OJ, IlEC\l, a,/3, ZEC, rE(O,I]. Initially, a and/3 
are restricted to Re (a + /3 ) > - 1. Under this last restric
tion, Newberger found interesting explicit expressions for 
the sum S. Afterwards he extended his results beyond this 
range of parameters a and /3. As will be shown in this note, 
this last step yields incorrect results. 

2. SYMMETRY RELATION FOR S; a, (3EZ, r = 1 

An important observation is that S is not defined for all 
a and /3, as stated after (1.1). This will be proved in Sec. 4. 
Here we consider r = 1 and integer values of a and /3. Then 
the series is convergent and there is a symmetry rule. To 
show this we denoteSof(1.1) by Sj (a, /3, r, Il). Then we have 

Sj(-a, -/3, 1,-Il)=(-Iy+a+/H 1Sj (a,{3, I,ll), 
(2.1) 

where we used 

J _n(z) = (- I)nJn(z), nEZ. 

The following important special case is considered by New
berger. We define Tm (z, Il) = ( - I)mSo(m, 0, 1, Il), or expli
citly 

mEZ. (2.2) 
n = - 00 

This function arises in a lot of physical problems, for in
stance in plasma physics. Applying the symmetry rule (2.1) 
for this case we obtain 

(2.3) 

Newberger found [see his result (4.6)] 

(_ l)m1T 
Tm(Z,Il) =. Jm+jJ-(z)J _jJ-(z), m;;'O. (2.4) 

sm 1l1T 
The addition m;;.O is not given by Newberger, but has to be 
made. To see this, verify the symmetry rule (2.3) for the 
above relation. It follows that (2.4) cannot be correct for all 
mEZ. The correct relation for negative values is 

1T 
Tm(Z,Il) = -.--J _m_jJ-(z)JjJ-(z), m<O. (2.5) 

sm 1l1T 
Observe also that (2.2) is an entire function of z, as are the 
right-hand sides of(2.4) and (2.5). For m < 0 (2.4) is not entire 
in z; for m > 0 (2.5) is not entire in z. 

3. A RECURSION FOR Tm(z, Il) 

The fact that (2.4) is no longer valid for negative values 
of m is also revealed by a recursion for T m (z, Il). We recall the 
well-known identities 

00 

L In(z)Jn_m(Z)=Dm,a, 
n = - 00 

(3.1) 

(3.2) 

where Kronecker's symbol is used. 2 By using (3.1) we have 

Tm _ l (z,ll) + Tm + dz,ll) 

= ~ f In(z)(n-m)Jn_m(z) 

z n=-oo n+1l 
Writing n - m = (n + Il) -Ip + m) we obtain with (3.2) 

Tm _ I (z, III + Tm + I (z, Il) 

- _ 2(m + Il) T ( ) + ~ ~ - m Z,1l Um,a' (3.3) 
Z Z 

Observe that this recursion relation is an inhomogeneous 
version of(3.I). Without the term (2/Z)Dm. a a solution would 
be ( - 1 t J m + I" (z) (mEZ) times a factor not depending on m. 
Hence, since Tm (z, III satisfies (3.3) (mEZ) and the right-hand 
side of (2.4) satisfies the homogeneous version of (3.3) for 
mEZ, it follows once again that (2.4) cannot be true for all 
mEZ. For m # 0 (3.3) gives the proper recursion for both (2.4) 
and (2.5). On the other hand we have, using (2.4), (2.5), and 
(3.1), 
T_l(z,ll) + Tl(z,ll) 

-1T 
= -.-- [JI"(z)J _1"_ I (z) + J -I" (z)JjJ- + I (z)] 

sm 1l1T 
21l1T 
. J,.,. (z)J _,.,. (z). 

z sm 1l1T 
Interpreting the cross product of Bessel functions as a well
known Wronskian relation for these functions3 we obtain 

T _lIz, III + Tl(z, III = 21z - (21lIz) Ta(z, Il), 

which confirms (3.3) for m = O. 

1266 J. Math. Phys. 25 (5), May 1984 0022-2488/84/051266-02$02.50 © 1984 American Institute of Physics 1266 



                                                                                                                                    

4. CONVERGENCE OF THE SERIES (1.1) 

The convergence of the series (1.1) follows from the 
asymptotic expansions 

Jv(z)- (!zr/F(v + 1), 
Re v-+oo .(4.1) 

J _v(z)-(lhr)(!z) -VF(v)sin V1T, 

The second line holds for noninteger values of v; otherwise 
weuseJ _ n(z) = ( - l)nJn(z), nEl. Using (4. 1) for the terms of 
(1.1) we obtain 

~Ja_ yn(z)Jp+yn(z)-ri-I(!Z)a+P 
n+f-l 

Xsin[( yn _ a)1T] F( yn - a) 
F(yn+{J+ 1) 

Using F(z + a)/F(z + b )-z" - b, Re Z-+oo, we conclude 
that the series diverges when 

Re(a + (J ) <j - 2, 

unless a, (JEl, y = 1. In general, large terms for n-+ ± 00 

will not cancel each other. Thence there is no chance that the 
divergence at n = + 00 combined with that at n = - 00 is 
removed. 

The series (1.1) is absolutely convergent when 
Re(a + (J ) > j - 1. This condition is sufficient to make the 
sum holomorphic with respect to a and {J in this domain. 

It follows that S, as a function of the complex param
eters a and (J, is defined and holomorphic for 
Re(a + (J) > j - 1. Possibly there is an analytic continuation 
ofS(a, {J, f-l) withrespectto Re(a, f3)<j - 1, but itis not clear 
what this continuation looks like. For a, (JEl, y = 1, the 
symmetry rule (2.1) gives the value for negative a and (J. 

Newberger used the splitting 

(4.2) 

with SI equal to (1.1) withj = O. He evaluated this expression 
in the form [see his formula (2.8)] 
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11' 
SI = -.--Ja+yp(z)Jp_yp(z). (4.3) 

SlDf-l1T 

His proof is correct for the range Re(a + (J ) > - 1. The 
right-hand side is entire in a and{3, whereas from the above 
remarks it follows that some combinations of a and {3 yield a 
divergent series. Extension of (4.3) to all complex a and {J 
(and y) is therefore not allowed. 

5. A FINAL REMARK 

The second part of (4.2), i.e., S2' is also evaluated in 
terms of derivatives of Bessel functions. Starting point is the 
evaluation of 

00 

L (- l)nnP Ja - yn (z)Jp + yn (z), (5.1) 
n = - 00 

where p is an integer, O<p<j - 1. 
As admitted by Newberger, the analysis for deriving the 

sum rule for S2 is quite formal, with an appeal to the theory 
of generalized functions. However, an approach without dis
tributions is possible here. For instance, aeplication of (3.1) 
gives a recursion relation [denote (5.1) by S2(a, {3, p)) 

yS2(a,{J,p) = aS2(a,{3,p - 1) - !z[S2(a + 1,{3,p - 1) 

+ S2(a - 1, (J,p - 1)]. 

Repeated application reduces (5.1) to the case p = O. One 
further step makes the Fourier series in Newberger's formu
las (2.12) and (2.13) convergent. 
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An improved method is presented for obtaining fractional approximations. The fractional 
parameters are now solutions of a set of linear equations, and no nonlinear equations are involved 
as in the previous procedure. Excellent fractional approximations are presented for the Coulomb 
functions for 1] = 0.5, 1,2, and 5. The accuracy is sufficient for most of the computations where 
this function is used. The straightforward extension to higher orders is indicated. 

PACS numbers: 02.30.Hq, 02.30.Mv, 02.60.Lj, 03.80. + r 

I. INTRODUCTION 

The Coulomb scattering wave functions are of funda
mental importance to a wide range of problems in atomic 
and nuclear physics. 1 Nevertheless, calculations in scatter
ing problems with charged particles can lead to errors as 
large as 100%, as in the plane wave Born approximation, or 
to formidable computational difficulties, as in the distorted 
wave Born approximation. 2 We thus felt that a simple, man
ageable polynomial fraction that could be employed in inte
gral forms with ease would be useful in such and other calcu
lations. From the mathematical point of view, our interest in 
the Schrodinger radial differential equation with a Coulomb 
potential, and its solution, lies in its relation, through a sim
ple transformation, to Kummer's equation and thus to the 
confluent hypergeometric functions. 3

•
4 

The method of fractional approximations used here is 
based on the one originated by Martin and Zamudio-Cristi5 

for linear first-order differential equations [Z (s), Ei(z)], and 
extended to second order by Martin and Guerrer06 [Jo( x), 
J 1( x), Ai( x)]. We have introduced improvements and new 
developments in the general method of generating fractional 
approximations. The existence of a complex exponent in the 
multiplicative factor has led to an added difficulty in the 
treatment. That difficulty was reduced by employing a 1 
rather than a complex parameter a, since there is thus no 
ambiguity in the principal value used; further, the resulting 
equations have a simpler form, and thus the extension to 
higher order is straightforward. Here, after extracting an 
exponential and power multiplicative term, we determine a 
power series and an asymptotic expansion for the solution of 
the transformed equation in terms of two complex constants 
and of the strength parameter 1] of the Coulomb field. We 
then determine the parameters of the fractional approxima
tion as solutions of a set of linear algebraic equations whose 
coefficients are the coefficients of both series. This procedure 
simplifies and systematizes the calculation of the parameters 
of the approximation, since the system of algebraic equations 
is now linear. No equations of second or higher degree ap
pear as in the previous paper,6 and higher-order approxima
tions can be easily obtained. Finally, a further improvement 
has consisted of including an imaginary part in the power 
series which permits greater accuracy of the fractional ap
proximation for a given order. The phase of this complex 
constant is almost independent of the degree of the approxi-

mation, so once it is determined for the simplest approxima
tion, the same phase is valid, with minor adjustments, for 
approximations of higher degree. 

Our results show excellent approximations to the Cou
lomb function for an ample range of values of 1] from 0 to 5. 
For instance, the maximum error for 1] = 1 is as low as 
0.015, equivalent to 7% of relative error. This maximum 
error occurs in a narrow range of the variable p, and soon 
decreases more than an order of magnitude. Clearly, this 
accuracy would be enough for most of the computations 
where the Coulomb function is used. 

The paper has been arranged in six sections. Section II 
reviews the general method for obtaining fractional approxi
mations of linear differential equations illustrating it for the 
Coulomb equation, and presents the new developments and 
improvements. Section III discusses the determination of 
the values of the parameters for the fractional approxima
tion of the Coulomb scattering wave function. Sections IV 
and V present the results for 1] = 1 and other 1]'S respective
ly, together with a graphical analysis. The conclusions are 
discussed in Sec. VI. 

II. THEORETICAL TREATMENT AND IMPROVEMENTS 

The radial Coulomb scattering equation for L = 0 is4 

pF" + (p - 21])F= O. (1) 

Now we should obtain a fractional approximation of the 
type P n ( p)l Qm (p) valid for small as well as for large values 
of p. The procedure already described5 consists in substitut
ing P n (p)l Qm ( p), rationalizing and equating to zero the 
higher and lower powers of the resulting polynomial. Clear
ly, if this procedure is done directly in the differential equa
tion, the largest power in the first term is p2m + n - I, and the 
largest power in the second term p2m + n + I. As a conse
quence, incompatibilities appear in the equations obtained 
from the highest power. To avoid these inconsistencies, suit
able transformations of the dependent and independent var
iables should be done. In this case, however, modification of 
the independent variable was found to be not necessary; on 
the other hand, the dependent variable will be modified with 
a power and exponential factor in the following way: 

F(p) = e'"P(I + p)'v(p). (2) 

This transformation is similar to the ones described in a pre-
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vious paper,6 but with the choice of a as 1. This will intro
duce a very important economy in the calculation of the 
parameters of the fractional approximation due to a strong 
simplification of the equations used to determine these pa
rameters. Furthermore, the computation of the approxima
tion is also simplified since we do not have to worry about the 
principal value of the power term (1 + p)S . In order to find p 
and s, it is better to proceed in two steps. First we make the 
transformation 

F (p) = el"Pu( pI, (3) 

and the differential equation becomes 

pUff + 2}lPU' + [(,u2 + l)p - 21]Ju = O. (4) 

Here,u should be ± i. Since, to obtain the real Coulomb 
function, we add one function and its complex conjugate, we 
will only pay attention to,u = i. The second transformation 
is 

u(p) = (1 + p)'v(p), (5) 

giving now the equation 

pZV" + (2sp + 2ipZ)v' + ! s(s - 1) + 2isp - 21]p) v = O. 
(6) 

Here, by using the fractional approximation Pn (p)lQm (p) 
and rationalizing, the highest power in p gives the equation 

2i(n - m) + 2is - 21] = O. (7) 

The simplest choice is n = m and s = - i1], and this leads to 
an equation for v of the form 

(p3 + 2pz + p)v" + !2ip3 + (4i - 2i1])p2 + (2i - 2i1])p) v' 

+ [(i1] - 21] -1]z)P - 21])v = O. (8) 

Now the differential equation has a form suitable for a frac
tional approximation that can be used for small and large 
values of the dependent variable p. Thus, we can approxi
mate v( p) by the fraction v( p) defined as 

vIp) = Cttkpk) (1 + ktlqkpk ). (9) 

Thus the approximation for the Coulomb function will be of 
the form 

F(p) = vIp) exp(ilp -1] In(l + p)}) + C.c. (10) 

It is interesting to point out that we have started the numera
tor of the fraction with the first power of the variable, rather 
than with a constant, because of the behavior of the Coulomb 
function. In this paper we have gone only to fourth power in 
the variable, but the extension to higher powers is indicated 
and does not present any new difficulties. 

In order to avoid nonlinear algebraic systems of equa
tions, we have modified the procedure described in a pre
vious paper by computing now the power series and asymp
totic expansion for v. Because of the indicia} equation, we 
write for v a power series of the form 

00 

v =P 2: akP\ (11) 
k~O 

which we introduce in the above Eq. (8), and, setting the 
coefficients of the subsequently increasing powers of the 
variable equal to zero, we find the ak in terms of ao. The first 
three coefficients are 
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a I = 11] + i( 1] - 1)) ao' 

az = 1 -1]z + 61] - 4 + i(61]2 - 91])jaol6, 

a3 = - 181]3 - 271]2 + 201] 

+ i( - 31]3 + 61]2 + 61] - 6)jaolI8. 

(12a) 

(12b) 

(12c) 

A similar treatment is made for the asymptotic expan
sion. We first divide Eq. (8) by p3 and introduce in it a series 
for v of the form 

00 ( 1 )k 
V= I bk - . 

k~O P 
(13) 

Setting the coefficients of the subsequently decreasing pow
ers of the variable equal to zero, we obtain the bk in terms of 
boo The first three coefficients are 

bl = 11] + i(1]z + 21]))bol2, 

bz = 11]2 - 41]3 - 1]4 + i(41]3 + 41]2 - 61]) I bol8, 

b3 = 1 - 91]5 - 241]4 + 511]3 + 361]z - 121] 

+ i( - 1]6 - 61]5 + 191]4 + 221]3 

- 521]2 + 161]))bol48. 

(14a) 

(14b) 

(I4c) 

The coefficients ao and bo are determined by the behavior of 
the function at zero and infinity, respectively. For subse
quent ak and bk , one can use 

ak = [ - l/k(k + 1)](ak_ d2kz - 2k + 2ik - 2i1]k - 21]) 

and 

+ ak_z!(k - l)(k - 2) + (4i - 2i1])(k - 1) 

+ (i1] - 21] - 1]Z)) 

+ ak_ 3 (2ik - 4i)) (12') 

bk = (l/2ik )(bk _ I 

xl (k - l)k - (4i - 2i1])(k - 1) + (i1] - 21] -1]z)) 

+ bk _ zl2(k - 2)(k - 1) - (2i - 2i1])(k - 2) - 21]) 

+ bk _ 3 (k - 2)(k - 3)). (14') 

In order to determine the parameters PI and qj of the frac
tional approximation, the power series and asymptotic ex
pansion of the fractional approximation should coincide 
with the terms of the power series and asymptotic expansion 
already computed. Since we want only a linear system of 
equations, it is convenient to rationalize and write out these 
conditions as follows: 

Ittl/~(I + jtlqj;)~k~oakpk). (15) 

n - I ( 1)1 (n - I ( 1 )j (1 )")( ao ( 1 )k) Ip"-I- ~ Iqn-j- + - Ibk - . 
I~O P j~O P P k~O P 

(16) 

Here we get a linear system of equations to determine the PI 

and qj' Clearly, we could not identify all of the terms in both 
Eqs. (15) and (16) since we have to use only 2n equations. 
There are several possibilities depending on the kind of 
aproximation wanted, i.e., for better results at zero than at 
infinity, one should include in general more terms from the 
power series than from the asymptotic expansion. In our 
case we have used the same number of terms from the power 
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series as from the asymptotic expansion. The important 
point now is that all the resulting equations for qj and PI are 
linear on these parameters, and no second or higher degree 
equations appear, as they did in the previous procedure.6 

III. DETERMINATION OF THE PARAMETERS FOR 
COULOMB FUNCTION 

The leading term in the asymptotic expansion of the 
Coulomb functions goes as 

sin(p - 'Tf In 2p + u) = Aei(p - "Ilnp) + C.c., (17) 

where 

A = ~ exp[i(u - 'Tf In 2 - 1T12)] (18) 

and 

u= argF(l + i'Tf); (19) 

thus, if we want our approximation to have the same asymp
totic form, we must choose bo = A. Near zero, the exact 
function behaves as Cp, where 

C = [21T'TfI(e2
1T'1'/ - 1)] 112. (20) 

Here, instead of choosing ao = C /2, which does not lead to 
the most accurate approximations, we include an imaginary 
part and write 

ao = ~ C + ~ iC tan {j, (21) 

where the phase of ao,{j, can have an arbitrary value between 
- 1T12 and + 1T12. Since we have to add the complex conju

gate term, clearly the exact function is not modified by the 
inclusion of any phase {j in the parameter ao' However, the 
approximation depends strongly on {j. 

With the values of ao and bo, we can proceed to deter
mine the other a's and b 's using Eqs. (12) and (14) and then 
the PI and qj of our fractional approximation, as was ex
plained in the previous section. We have found that the best 
approximation is obtained if we take an equal number of 
equations from the power series as from the asymptotic ex
pansion. For the fourth-order approximation, the eight 
equations, in their simplest form, that determine the PI and 
qj are 

PI = ao' P2 = a~1 + ai' P3 = b~3 + b lq3' P4 = b~4' 
(22) 

(a) = M (q), (23a) 

where (a) and (q) are the column matrices (aO,a l ,a2,a3) and 
(q I,Q2,q3,q4)' and M is the square matrix 

{ 

bo bl b2 b3} 
M = - ao bo bl b2 

-a l -ao bo b l ' 

- a2 - a I - ao bo 

(23b) 

The first four equations [Eqs. (22)] are obtained directly from 
the first two terms ofEq. (15) and (16), respectively. Equa
tions (23) are, in matrix form, two by two combinations of 
equations, one from the preceding group, and the other from 
the third and fourth terms of Eqs. (15) and (16). The combi
nation is done in the way of deleting the P I' We can thus solve 
Eq. (23) for the qj using standard techniques and then find 
the PI using the four Eqs. (22). These equations can be used 
for fractional approximations of fourth degree or lower; in 
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the last case, we must set some of the parameters equal to 
zero. If we want to go to higher order, we must include the 
higher terms in Eqs. (15) and (16). The symmetry ofEqs. (22) 
and (23) can guide us in writing those equations without do
ing the algebra. For first order the values of the fractional 
parameters are 

ql = aolbo and PI = ao· 

For the second order, the fractional parameters are 

ql = ao(2 - !'Tf + i('Tf - 1)l!'Tf + i('Tf2 + 2'Tf)J)1 

(2bo + ao! 'Tf + i('Tf2 + 2'Tf) 1), 

q2 = 2(aol bo)(ao + bo! 'Tf + i( 'Tf - 1)J)1 

(2bo + ao! 'Tf + i('Tf2 + 2'Tf) 1), 

P2 = b~2' 

(24a) 

(24b) 

(24c) 

(24d) 

For higher order, the analytic expressions in terms of'Tf be
come too cumbersome, and it is best to solve for a particular 
'Tf by first evaluating the ak and bk substituting in Eqs. (22) 
and (23) and solving numerically. 

IV. RESULTS FOR 'Tf = 1 

Figure 1 shows the fourth degree fractional approxima
tion for 'Tf = 1, and for the best value of {j which in this case is 
- 1.46 rad, together with the exact function and the abso

lute error. The maximum error is less than 0.015 and occurs 
for small values of p (p':::!:.l), around the point of inflection 
and the first maximum. This absolute error corresponds to a 
relative error of about 6%. Beyondp = 7 the error decreases 
by more than an order of magnitude. The approximation in 
Fig. 1 is so good that we cannot really see any difference with 
the exact function on this scale. The absolute error is includ
ed in the figure in order to show the relative error of the 
approximation. A plot of the relative error is not adequate 
because the function has several zeros, and there the relative 
error will be infinite. 

Table I shows the values of the fractional parameters 

'. r 

··6F 

-I 

FIG. 1. Fourth degree approximation F (Table I), exact Coulomb function F 
and absolute error .dF amplified by a factor of 100, for", = 1. 
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TABLE I. Fractional parameters for the fourth degree approximation for 
7J = 1 and 8 = - 1.46. 

q, = 0.63552 - 0.371 44i 
q2 = 0.14957 + 0.602 79i 
q3 = 0.631 96 - 0.720 79i 
q4 = 0.86645 + 0.274 04i 
p, = 0.054211 - 0.487 28i 
P2 = - 0.092 335 - 0.817 lOi 
P3 = - 0.079 315 - 0.478 34i 
P4 = - 0.288 69 - 0.350 88i 

for the fourth degree approximation and for the best value of 
the phase o. When this phase is varied from its optimum 
value in either direction, the approximation worsens. This 
phase is very important since the accuracy of the approxima
tion can change by a factor larger than 100 for positive 
phases (near + 1T12). We illustrate this in Fig. 2. Here we 
show a semilogorithmic plot of the absolute error in the 
fourth degree approximation as a function of the phase, and 
we can appreciate how important this phase is for the accu
racy of the approximation. For instance, the maximum error 
is more than 100 times larger for positive values of 0 larger 
than 1.3 rad. 

In Table II we give the values of the fractional param
eters for first, second, and third degree approximations and 
the best 0 in each case. Clearly this phase changes very little 
with the degree and accuracy of the approximation. In this 
table, as in the previous one, the parameters are given with 
the smallest number of decimals needed for the accuracy of 
the approximation. We could in both tables suppress a deci
mal figure or two without increasing the maximum error, 
but that would decrease the accuracy for large values of p, 
which, for instance, by p = 20 is as high as four digits in 
Table I. Figures 3, 4, and 5 show the approximated function 
for first, second, and third degree, respectively, together 

"0 45.6 
1.0 
0." 
0.8 
0·7 
0 .• 

0.' 

0.4 

0.3 

0.2 

0.' 
0·09 
0.08 
0.07 
0.06 
C.OS 

0.04 

003 

0.02 

0.01 
-I·S -1.0 -o·s 0 .0.5 .1:0 +I:S 

FIG. 2. Semi-log plot of absolute error in fourth degree approximation for 
7J = 1 as a function of the phase 8. 
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TABLE II. Fractional parameters for 7J = I. 

Third degree 8 = - 1.53 

q, = 0.500 52 + 2.1691i 
q2 = 1.574 2 - 2.1943i 
q, = 4.2399 + 4.413li 
p,= 0.054211-1.328Ii 
P2 = 2.962 I - 1.8752i 
p, = - 0.576 03 - 3.0052i 

Second degree 8 = - 1.49 

q, = - 0.582 6 - 1.180i 
q2 = 1.662 - 0.2601i 
PI = 0.05421 - 0.6695i 
P2 = - 0.767 6 - 0.3434i 

First degree 8 = - 1.39 

ql = 0.232 + 0.556i 
PI = 0.0542 - 0.297i 

with the exact function. Figure 3 is the simplest approxima
tion possible in this method, and it already reproduces the 
location of the maxima and minima of the exact function, as 
well as the zeros. The worst part of the approximation is 
from near p = 0 to P = 5. After that the approximation gets 
progressively better. The maximum error in this approxima
tion is 0.5 and occurs just before the first maximum at 
p = 2.8, the relative error there is 44%. Figure 4 shows a 
marked improvement in accuracy with respect to the first 
degree approximation. Here, as in the previous case, the 
worst part is near p = 0 through the first maximum; but now 
the maximum error is 0.1 at p = 3, and there the relative 
error is about 10%. This maximum error occurs near the 
first maximum and decreases, for p > 15, more than an order 
of magnitude. Figure 5 shows that the third degree approxi
mation is excellent and almost as good as the fourth degree 
(see Fig. I). Here the maximum error occurs also right before 
the first maximum, it is 0.042 at p = 2, and the correspond
ing relative error is about 6%. The approximation gets pro
gressively better; for instance, by p = 13 its accuracy is as 
high as three digits, and by p = 19 it is as high as four digits. 

FIG. 3. First degree approximation F (Table II) and exact Coulomb func
tion F for 7J = I. 
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15 

F,1' 

-0. 

-F 
----1' 

FIG. 4. Second degree approximationF (Table II) and exact Coulomb func
tion F for 7J = 1. 

We should also note that this approximation is much better 
in the region near p = 0 than the two previous ones, We see 
that as the degree of the fraction increases by 1, the accuracy 
increases and the maximum error decreases by roughly one 
third of the maximum error of the previous degree, 

v. RESULTS FOR OTHER 11 

Table III shows the fractional parameters for the fourth 
degree approximations for 11 = 0,5, 2, and 5 and the best /j 
for which each approximation is obtained, In this, as in pre
vious tables, we give the smallest number of digits for the 
parameters consistent with the accuracy of the approxima
tion, Figures 6-8 illustrate the approximations obtained 
with this table, together with the exact function and the ab
solute error. The approximation for 11 = 0.5 (Fig. 6) is excel
lent, and in the scale of the figure we cannot really distin-

F, F 

o. 

-I. 

FIG. 5. Third degree approximation F (Table II) and exact Coulomb func
tion F for 7J = I. 
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TABLE III, Fractional parameters for fourth degree approximations for 
7J = 0,5, 7J = 2, and 7J = 5, 

7J=0,5, 8= -1.40 7J = 2, 8 = - 1.46 

q, = 1.1779 - 0,208 62i q, = 0,1891 - 0,276 5i 
q2 = 2,1673 + 2,049 8i q2 = - 0,063 62 + 0,012 99i 
q, = 2,364 2 - 1.234 2i q, = 0,048 80 - 0,073 23i 
q. = 8,887 5 + 3,161 Ii q. = 0.03222 + 0.Q25 97i 
p,= 0.188 34 - 1.092 Oi p,= 0.00331 - 0,029 75i 
P2 = - 0,457 7 - 1.965 8i P2 = 0.028 77 - 0.062 74i 
p, = 1.3956 - 2.507 Ii P3 = 0.02347 - 0.035 28i 
P. = - 1.1619 - 4.571 Ii P. = - 0.01131 - 0.017 33i 

7J = 5, 8 = 1.46 

q, = 0.1863 + 0.187 8i 
q2 = - 0.021 17 + 0.034 85i 
q,= -3.762xlO- 3 -2.033xlO-'i 
q. = 1.361 X 10-4 

- 1.917x 1O-4i 
p, = 4.223x 10- 7 + 3.796x 1O-6 i 
P2 = - 1.371 X 10-5 + 2.146 X 1O- 5i 
p, = - 7.282 X 10-5 + 9,353 X 1O- 6i 
P4 = - 6.667 X 10-5 

- 9.680 X 1O- 5i 

guish between the exact function and the approximation. 
The maximum error here is 0.02, corresponding to a relative 
error of about 7%, and occurs aroundp = 0.7. For p larger 
than 7 the accuracy is as high as four digits. This case is 
typical of all cases where 1] < 1, where excellent approxima
tions are obtained. For 11 = 0, our approximation gives a sine 
function with a maximum error smaller than 10-5

; the p's 
and q's in this case, however, are very large. 

The fourth degree approximation for 11 = 2 (Fig, 7) is 
very good and, after the first maximum, practically indistin
guishable from the exact function in the scale of the figure, 
The accuracy, though high, is not as good as in the cases 
11 = 0.5 or 1. The maximum error is 0.08 and occurs for 

1.5 

F,r 
IrP6F 

FIG, 6. Fourth degree approximation F for 7J = 0,5 (Table III) exact Cou
lomb function F and absolute error ~F amplified by a factor of 100. 
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I.' 
F,¥ 

t01dF 

FIG. 7. Fourth degree approximation F for 1/ = 2 (Table IIIl, exact Cou
lomb function F and absolute error jjF amplified by a factor of 10. 

smallp and near the point ofinflectionp = 99. We should 
note that the maxima and minima are well reproduced and 
also the zeros of the exact function. 

The fourth degree approximation for 'TJ = 5 (Fig. 8) is 
typical of the large 'TJ cases, where the approximations get 
less good with increasing values of'TJ. For'TJ = 5 the maxi
mum error is 0.14 and occurs near the first maximum and 
again near the first minimum. The first maximum, in the 
approximation, is shifted to the left by.t1p = 0.30. The other 
maxima and minima are well reproduced, and the approxi
mation gets, as is the case with all these approximations, 
much better with increasingp. For this 'TJ, the value ofthe 
phase /) is positive. If one wants to increase the accuracy, 
fractions of higher degree should be used. 

VI. CONCLUSIONS AND DISCUSSION 

We have presented improvements to the method of ob
taining fractional approximations previously published 
which permit a quicker and simpler way of obtaining the 
parameters of the fractional approximation. In the present 
method, to eliminate the singularity at the origin, instead of 
substituting a + x for x we use 1 + x, and this simplifies the 
subsequent equations. We also eliminate nonlinear equa
tions in the fractional parameters by first determining the 
power series and the asymptotic expansion of the trans
formed equation, and from those we determine the fractional 
parameters. This leads to a set of linear equations that are 
simple to solve. Another improvement in the method is the 
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F.r 
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1.0 
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FIG. 8. Fourth degree approximation F for 1/ = 5 (Table III). exact Cou
lomb function F and absolute error jjF amplified by a factor of 10. 

inclusion of an imaginary part in the first coefficient of the 
power series, ao, which yields, for a given degree, approxima
tions which are an order of magnitude or so better than if this 
imaginary term were zero. We have given first, second, 
third, and fourth degree approximations for 'TJ = 1 and 
shown how the accuracy increases with the degree. We have 
also shown that the value of /) is almost independent of the 
degree. We have presented fourth degree approximations for 
the Coulomb function with maximum errors of 0.02, 0.015, 
0.08, and 0.14 for 'TJ = 0.5, 1, 2, and 5, respectively. This 
maximum error is always near the inflection point, p = 2'TJ 
and the first maximum of the function, and decreases sub
stantially asp increases therefrom. Given the great precision 
of these approximations and the fact that the error decreases 
with increasing p, in such computations where the function 
has to be integrated, either in a finite or infinite range, these 
approximations can be used instead of the real function with 
great confidence in the accuracy of the results. 
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A systematic account of projection operators (projectors) and orthogonalization techniques 
together with applications to selected areas of physics is presented. This unified approach is 
shown to have advantages over other approaches in that the mathematical statements are more 
precise. The mathematical level, however, is aimed at the practicing physicist and lies between 
rigorous mathematics and current use in physics. Further, the techniques presented have 
practical applications as is demonstrated by examples in the quantum theory of measurement, in 
the relationship between second quantization and configuration space techniques, and in an 
account of generalized Wannier and Bloch functions. Attention is paid to the problem of 
construction of orthogonal projection operators (orthogonal projectors). The construction of 
orthogonal projectors even in approximate form would allow the solution of many practical 
problems ranging from the eigenvalue spectrum problem to the construction of states for many
body systems. One can almost say that any problem in quantum mechanics can be formulated as a 
problem involving the construction of projectors. 

PACS numbers: 02.30.Tb, 03.65.Bz 

I. INTRODUCTION 

Projection operators (projectors) are useful in vast areas 
of physics-in quantum theory, many-body physics, appli
cations of group theory, and in geometric theories-to name 
a few. We present what is hoped to be a unified view of pro
jectors with selected applications. We first discuss projectors 
in finite-dimensional vector spaces and then orthogonal pro
jectors in separable Hilbert spaces. The level of presentation 
lies somewhere between rigorous mathematics and custom
ary practice in physics. Next we discuss methods of con
struction of projectors and of orthogonal sets of vectors. This 
subject is very large and has been studied extensively, espe
cially by those interested in nuclear physics and in quantum 
chemistry. Our treatment unifies many of the approaches 
and also makes an attempt to present arguments which are 
clear and precise from the mathematical point of view. For a 
good review of background material for this section we refer 
to J 0rgensen. 1 

finite n, all norms are equivalent). That is, for all x in 
Vn , Ilxll is the norm of x. Linear operators A acting on vec
tors in Vn are then given a norm, also denoted by 11·11, defined 
by 

The next three sections are given to applications, first to 
the quantum theory of measurement, then to the relation 
between second quantization and configuration space, and 
finally to generalized Wannier and Bloch functions. 

Although the examples presented here cover only a 
small selection of the possible uses of projectors in physics, it 
is felt that the selection provides a fair coverge of their use 
and of general techniques in the field. 

II. PROJECTORS IN FINITE-DIMENSIONAL VECTOR 
SPACES 

Let Vn be a finite-dimensional vector space over the 
field F of real or complex numbers. The index n is the dimen
sion of Vn • Since in most physical applications one has a 
metric or a pseudometric (relativity theory), we assume that 
Vn is so equipped. We also assume a norm 11·11 on Vn (for 

A A 

IIA II=maxIIAxll· (2.1) 
Ilxll.;;1 

A linear operator P acting in Vn for which 

p2 =p (2.2) 

is called a projection operator on Vn , or simply a projector. 
Since2

•
3 for any pair A, S of linear operators on Vn , liAS II 

<IIAIIIISII, 
A A A 

IIPII = IIP211<IIPII2, (2.3) 

so if P # 0, 1 < liP II. Thus the norm of a nonzero projector is 
never less than unity. 

If Pis a projector on Vn so is P '=1 - p, where 1 is the 
unit operator on Vn • For all XE Vn , we have the unique de
composition 

A ~ A 

x=Px+(I-P)x 

=xp +xp" 

where 

xp-'Px 

and 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
A A A A A 

We note that Pxp = xp and Pxp. = P(1 - P)x = O. The 
vector space Vn is thereby decomposed into the direct sum 

v" = Vp $ Vp" (2.8) 
A. ........ A A 

where V p = PVn and Vp' = P'Vn = (1 - PlVn' The sub-
space V p is called the ra;zge ofP, and the subspace Vp' is 
called the null space of P. 
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Conversely, if Vn is the direct sum of the subspace VI 
and V2 , 

Vn = VI E9 V2, (2.9) 
A A 

then we may introduce unique projectors PI' P2 with proper-
ties 

and 

(2.10) 

A We point outthat the norm liP II for a nonzero projector 
Pmay be arbitrarily large for spaces having dimension larger 
than unity. As an example, we consider a two-dimensional 
unitary sRace with an orthonormal basis {el,fl I. Define an 
operator P by its action on {e,,fd: 

(2.11) 

P II = Ae
" 

(2.12) 
A A 

where A is a number. Clearly,p 2e, = el andp 2
/1 =Ae

" 
so 

A A A 

P 2 = P. Hence P is a projector. ~urther, IA I may be chosen 
as large as we please, and, since liP II = IA I, the norm may be 
arbitrarily large. If we have an infinite-dimensional vector 
space, a projector may even be an unbounded operator. As 
an example of the latter, we consider a separable Hllbert 
space with a basis B = {el,ft, e2,h,.·· I. We define P by its 
action onB: 

Pel = el, 1=1,2,3,.··, 
A 

PI I =Alel, 1=1,2,3,.··, 

and extend P to its domain of definition by linearity. If IAII 
are chosen to grow sufficiently rapidly with increasing I, 
P will be an unbounded projection operator. 

A pseudometric g on Vn is a nondegenerate Hermitian 
sesquilinear form defined for every pair x,y of vectors in Vn 
with the properties 

g( x,y) = g(y,x), V x,yEVn (2.13) 

(the bar indicates complex conjugation if F is the complex 
number field), 

g( x,y +z) =g( x,y) + g( x,z), V X,y,zEVn, (2.14) 

g( x,ay) = ag( x,y), VaEF, X,yE Vn . (2.15) 

If g( x,y) = 0, VyEVn, then x = O. From Eq. (2.13), 

g( x,x) = g( x,x) (2.16) 

sog( x,x) is real. Ifin additiong( x,x);;;,O, gis called a metric. 
Thus a pseudometric (p-metric for short) is a special type of 
second-order tensor defined on Vn • 

Let B = {e k I k = I be a basis for Vn • Then we define the 
components grs of g relative to B by 

g,. =g(e"es )' (2.17) 

IfB' = {ek , lk' = I is another basis for Vn , wemayexpressek' 
in terms of ek by means of the linear relation 

(2.18) 

(We adopt a notation similar to that used by Misner, Thorn, 
and Wheeler.4

) Equations (2.18) may be inverted to yield 

ek = ek,A k'k' 

where 
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(2.19) 

(2.20) 

and 

(2.21) 

In Eqs. (2.18), (2.19), (2.20), and (2.21) we use the Einstein 
summation convention-repeated indices indicate summa
tion from 1 to n. The notation adopted here may appear 
somewhat unusual. However, it is the most foolproof and 
automatic notation that has appeared to date. One minor 
point is that matrix elements A k k' for equal k and k ' can be a 
source of some confusion, unless we agree to write, for exam
ple, A 2 

2' and never A 22 , 

Thep-metric componentsgk'I' in the basisB' are given 
by 

gk'I' = g(ek, ,el') = g(ekA \' ,elA II') = A \,gk,IA II" 
(2.22) 

We introduce the n X n matrices 

(2.23) 

and 

(A)=(A\,). (2.24) 

Then Eq. (2.22) may be written in matrix form as 

(g') = (A )t (g)(A ), (2.25) 

where (A )t is the transposed complex conjugate (Hermitian 
conjugate) of the matrix (A ). Since (g) is Hermitian, there 
exists a unitary matrix (u) such that 

(v)t (g)(v) 

~2 
1 

o 
o 

(2.26) 

That is (v)t (g)(v) is diagonal with the A. 's and fJ.'s taken to be 
positive (since (g) is nonsingular). Let (.::1 ) be defined by 

III 
o 

fJ.I 

(2.27) 

Then 
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(g') == (A )+(g)(A ) 

~r 
") o 

-~ 
-1 _~_~ 

-1 

o 

(2.28) 

==(7J), 

where (A )==(v)(L1 )-I, and 7Jk'I' = Elk,)D(k 'I'), (no sum) with 
Elk') = 1, k' = 1', ... ,r', and Elk') = - 1, 

k' = r' + 1', ... ,n'. The trace of (7J),tr(7J) = r - s is called 
the signature of g. The form g( x,y) may be regarded as an 
indefinite inner product on Vn and is written variously as 

g( x,y) = (x,y) = x*.y. (2.30) 

We will use the notation (x,y) which conforms most closely 
with the widely used Dirac notation.5 When dealing with 
linear operators and matrices relating to indefinite metric 
spaces, care must be exercised. For example, the dual or 
adjoint A * of a linear operator A in Vn is defined by means of 

(A *x,y)=(x,Ay), VX,YEVn, (2.31) 

whereas we always define the matrix elements A 1m , A *Im in 
a given basis B = I ek 1 ~ = I by means of 

(2.32) 

and 

(2.33) 

(I refers to row and m to column). Matrix element calcula
tions are facilitated by use of the dual basisB *= I e*k 1 ~ = I to 
B, where 

(e*\ el) = Dkl' 

which always exists and is unique. Thus 

A 1m = (e*l,Aem) 

and 

A *Im = (e*l,A *em ). 

We define ~I by 

from which 

15k 
m = (e*\em ) = (eli\em) = tkglm' 

or since glm = gml' 

Dkm =glkglm =glkgml =gmlg1k, 

or as matrices 

i.e., 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

~/glm = gmlik = 15k m' (2.41) 

Further, tm = ~/, so (tm) is a Hermitian matrix. The above 
results may now be used to find the relation between the 
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matrix elements of an operator and those of its dual. From 
Eqs. (2.36) 

A *Im = (e*l,A *em ) 

= (esg'l,A *em ) 

= gsl (Ae"em ) 

= iijj 'sg,m , 

or in matrix form 

(A *) = (g) -I(A )t (g). 

It follows that (A *) = (A )t, in general, if and only 

(2.42) 

(2.43) 

if (g) = A. (1) where A. is a scalar and (1) is the unit matrix. 
Equation (2.29) shows that there exists a basis 

BL = I ek l~= 1> for which (ek> e/) = 7Jkl' We may callBL a 
Lorentz basis. If L is a linear operator which maps one Lor
entz basis B L onto another B L' , 

(2.44) 

then 

7Jk'I' = (ek·,el,) 

= (Lek, Lei) 

= (ek, L * Lei) = (ek,el) = 7Jk!> (2.45) 

or 

L * L =LL * = 1, (2.46) 

where i is the unit operator on Vn • 

The above equation may not appear to be familiar. It 
says that Lis pseudounitary. In terms of matrix elements in a 
Lorentz basis 

(L *)(L ) = (7J)-I(L )t (7J)(L ) = 1 

or, since (7J)-1 = (7J), by Eq. (2.43), 

(7J)(L )t (7J) = (L )- \ 

or, since (7J)2 = (7J), 

(L )t (7J)(L ) = (7J), 

(2.47) 

(2.48) 

(2.49) 

which is familiar from relativity where (L )t is the transpose 
of the real matrix (L ). Before returning to projectors, we 
show the relationship between matrix elements of an opera
tor A in a given basis B and those of the dual A * in the dual 
basis B *. Let us apply A * to elements e*m of B *, and define 
new matrix elements A * I m in the basis B * by means of 

Now 

so 

(e*IA rm,e,) = (e*m,e,A 's), 

and therefore 

or 

(2.50) 

(2.51) 

(2.52) 

Equation (2.52) states that the matrix of A * in the dual basis 
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B * is just the Hermitian conjugate of the matrix of A in the 
basis B. (Recall that indices to the left refer to rows of a 
matrix and indices to the right to columns of a matrix). 

A. A A A 

If Pis a projector on Vn , so is the dualP * ,sinceP 2 = P, 
and 

A A A 

(X,P2y) = (x,Py) = (P*x,y) 

= (P*x,Py) = «(p*)2x,y), VX,JIEVn. 
A A 

Therefore (P *)2 = P * is a projector. 
Given a projector P on Vn , we may choose a basis B 

adopted to the decomposition 
A A A 

Vn = PVn Ell (1 - P}Vn. (2.53) 

That is, w$..let e l , e2, ••• ,ep ' p<.n, span PVn and ep + I,··.,en 
span (1 - P) Vn • This means that 

A {ek , k = I, ... ,p, 
Pek = 

0, k =p + I, ... ,n, 
(2.54) 

or in the matrix form 

A (1 0 ) (P)=(P~)= oP °n_p , (2.55) 

where I p is the diagonal matrix havingp ones on the diagonal 
and OnAP is (n - p)X(n - p) zero matrix. A basisB for 
which P is a diagonal with ones or zeros on the diagonal is 
called a canonical basis. 

If XE Vn , then in a canonical basis 

p 

= Lei (e*I,x), 
1=1 

where {e*/l?= I = B * is the dual to B. 

(2.56) 

(2.57) 

If x,y are any two vectors in Vn we define a linear opera
tor x ® y by means of the definition: 

(x ®y)z==x(Y,z). (2.58) 

With the latter definition Eq. (2.57) may be written 

A p 

Px = L (el ®e*l).x (2.59) 
1=1 

A 

and since x is arbitrary we have a canonical form for P 

A P I 
P= L (el ®e* ). (2.60) 

1=1 
The adjoint (dual) ( x ® y)* of the operator (x ® y) is estab
lished directly to be given by 

(x®y)* =y®x, (2.61) 
A 

so that Eq. (2.60) yields for P *: 

A P 
p* = L e*1 ®el· 

1=1 

(2.62) 

A canonical representation [Eq. (2.60)] is clearly not 
"'-

unique, since we may choose other bases for PVn and 
(1 - P}Vn, and these give the same Pvia Eq. (2.60). 

A canonical representation via the basis B = {ek J k = I 
may be used to form another representation ofP. Introduce a 
square root E of unity by means of 

1277 J. Math. Phys., Vol. 25, No.5, May 1984 

A {ek , k = I, ... ,p, 
Eek = 

-ek , k=p+ I, ... ,n, 
(2.63) 

that is, E = 2P - 1, and 
A A A 

P=! (1 +E), (2.64) 
A A A A A 

E2 = 1. Conversely,ifE 2 = 1, thenPgiven byEq. (2.64)isa 
projector. A widely used version ofEq. (2.64) occurs in two 
dimensions. If a = (0"1,0"2,0"3)' where O"k are the 2X2 Pauli 
matrices, then 

(2.65) 

where a2=a7 + a~ + a~ = 1, akEC, is a complex 2X2 pro
jection matrix. Furthermore, every 2 X 2 complex projection 
matrix except the unit and zero 2 X 2 projectors can be so 
represented. Equation (2.65) can easily be generalized to n
dimensional matrices or operators. Let rk' k = 1, ... , n, be n 
Dirac type operators in Vn satisfying only the requirement 

!rk,rd==rkrl + rlrk = U kl · (2.66) 
A 

Then P defined by 

P = !Ii + akrk) (2.67) 

with ~k = I (ak )2 = 1, akEC, is a projector. 
We consider now the possibility of comparing two pro-

A A A 

jectors PI' P2 in Vn • First,jfthe range of fl has !!Ie same 
dimension as the range of P2' we say that PI and P2 are equi
valent or similar. 

Let B I be a canonical basis for i\ and B2 a canonical 
basis for P2. The basesBI = ! ell J 7= l}lndB2 = ! e 21l7= I are 
related by the nonsingular mapping fl: 

A 

ell ---+e21 = flell = elmfl ml , (2.68) 

and the basesB T,B! dual toBI and B2 are related by 

e!1 = n * - leTI=eTmfl • - 1m I. (2.69) 
A A 

The relationship between PI and P2 follows: 

A P P A A 

P2 = 2: e21 ® e!1 = 2: (fle ll ) ® (fl • ~ leT/) 
1= I 1= I 

(2.70) 

or 

(2.71) 

which is the usual relationship between simi~r operators. 
We now pre- and postmultiply Eq. (2.71) by P2 to find 

A A A-

P2 = fl21fll2 (2.72) 
A- A 

where fl 12 and fl2l are defined by 
A A A A 

fl)2 = Plfl -IP2 (2.73) 

and 
A A-A 

flzl =PzflPI· (2.74) 

Similarly, we find that 
A A A-

PI = fl 12fl21 · (2.75) 
A A 

The operator fl12 maRS the range of P2 o~to the range of PI 
an~ the null space of PJnto zero, while fl21 maJ?s the range 
of PI onto the range of P2 and the null space of PI into zero. 
TheJactorizations (2.72) and (2.75) are very useful in applica-
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tions, especially in Hilbert space, when dealing with orthog
onal projectors. 

In general, if one has a nontrivial factorization of a pro-
jector 

'" "'''' P=AB, (2.76) 
"'''' then BA is not a projector, as the following counterexample 

illustrates. LetA = n :), B = (_: _:). ThenAB = (g g), 
which is a projection matrix. However, BA = ( _ ~ _ ~ ), 
which is not a projection matrix. 

If 

(2.77) 
A A A A 

so that PI is nseudo-self-adioint: P T = fJ *(fJ *)* 
"'" A......,{" A. ",'.J"", 

= fJ *fJ = PI' thenP2 = fJ fJ * is not necessarily a projector. 
We prove this by exhibiting a counterexample. Let g be non
definite and choose a basis for which g is diagonal, so Eq. 
(2.72) in matrix form is 

( PI) = (g)(fJ )t (g)(fJ ) = (fJ *)(fJ ). (2.78) 

Let the nondefinite (g) = (I -I')' where 1 is the sxs unit ma
trix and I' is the tXt unit matrix (s + t = n). Write 

(fJ) = (~ ~) where A, B, C, D are matrices adopted to the 
(I -I' ) decomposition of (g). ChoosethematricesB, C,Dsuch 
that 

AtA=CtC, AtB=CtD, DtD=BtB, (2.79) 

then 

AtB-CtD) 
DtD-BtB =0. 

(2.80) 

Next 

(P2)~(fJ)(fJ *) = (_ ~t ~), (2.81) 

where 

I=AAt -BBt, J=BDt -ACt, K=DDt -cct, 
(2.82) 

We choose A such thatAA t -BBt #0; then(P2)#0. But 

2 (12 - JJ t IJ + JK ) 
(P21 = -JtI-KJt K2_JtJ =0#(P2), (2.83) 

as can be readily shown by using Eqs. (2.82). Hence Pz is not a 
projector. 

Suppose now that {j *{j = PI is a nonzero projector. 
'" A A 

What can be said about P2=fJfJ *? Certainly, 
A 2 '" 3 '" 4 '" z· . P2 = P2 = P2 = ... , so P2 IS a projector. Further 

A A22 '" "'2 A "'2 
(P2 - Pz I = 0 and ( Pz - P2 )* = ( P2 - P2 ), so 

g(( P2 - P/)x, ( P2 - P/)x)=O, (2.84) 

and, therefore, if g is definite, ( P 2 - P ~ 2)X = 0 all XE Vn so 
'" '" A P2 = P/. This holds also for the case PI = 0 for definite g. 

We have not investigated this question beyond dim Vn 
= 2. For 2 dimensions, g-nondefinite, we have the theorem 

A A A A. AA A 

that fJ *fJ = PI = p 1
2#0 implies fJfJ *=='P2 is a projector. 

We prove this result using 2 X 2 matrices and choosing a 
basis such that (g) = (I _ I) = 0'3' We then use the fact that 
any nonzero matrix projector except unity (where the 
theorem is trivially valid) can be expressed as 
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'" PI = (1 + a·a)/2, (2.85) 

where ai' a2, a3 are complex and a l
z + a/ + a3

2 = 1. Write 

n =fJo + n·O', 
where fJo, fJ I , fJ 2, fJ 3 are complex numbers. Then 

{j* =0'3nt 0'3 

= no + ii·a, (2.86) 

where ill = - nl, ilz, - fJ2, il3 = fJ3, so that 
'" A. r. 
PI = fJ *fJ = ~ + !a·a (2.87) 

yields 

liono + ii·n = !, 
iifJo + fJon + iiixn 

=A + iB = a/2, 

where A = fino + fJon, B = ii X n. 
The condition PI 2 = PI then is expressed as 

(2.88) 

A·A - B·B = l (2.89) 

(A·B=O). The expression for P2 = nn * is then calculated 
and found to be 

(2.90) 

where b/2=A - lB. We find 

b2/4 = A·A - B·B = l (2.91) 
2 A A A-

or b = 1, and hence Pz = fJ fJ * is a projector. We conjec-
ture that this result holds for Vn , n;>2. 

A sufficient condition that PI and Pz be equivalent is 
given by a theorem due to Kato,6 which we state without 
proof: If (1 - R )-112 exists, where R ==.(1\ - %)2, then PI 
andP2aresimilar, Theinversesquareroot(l - R )-1IZ exists 

ifJIR II < IJ.-. whis,tt in tu~ is v~lid if IIP I - Pzll < 1, since 
IIR II = II( PI - P2)211 <IIPI - P2112. Kato's theorem holds in 
infinite-dimensional Banach spaces, so in particular it is val
id for Hilbert spaces/.-For ,£'rthogonal projectors in Hilbert 
space H the norm IIPI - P2 11 is called the aperture? of the 

"'- "'-
closed subspaces PI Hand P2H. In Ref. 7 it is shown that 
IIPI - P2 11 < 1 is a sufficient condition that dim( PIH) 
= dim( P2 H). That is, if the aperture is less than unity, the 

two projectors are equivalent, which is a special case of Ka
to's theorem. 

We conclude this general introduction to projectors 
with some comments concerning certain combinations of 
projectors which are themselves projectors. We work in a 
general n-dimensional, n < 00, space Vn , although most of 
the results extend to infinite-dimensional vector space. 

/".. A AA AA AA 

If PI andP2 are projectors and PI Pz = P2 PI' then PI Pz 
is a projector. 

A A AA AA A 

If PI and Pz are projectors and PI Pz = Pz PI = 0, then 
PI + Pz is a projector. 

A A AA AA A 

If PI andPz are projectors and PI Pz = Pz PI = PI' then 
A A '" 
Pz - PI is a projector, and we say that PI is a subprojector of 
A. A A A. A 

P2 and write PI <P2. Note that P <P for any projector. If 
PI < P 2 w~ also state that PI is less than oJ:. equal to P 2' The 
range of PI is a subspace of the range of P2, and" <" is a 
partial ordering on the set of all projectors on Vn • 

A "'-

Given PI <P, then we may write 
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A A A 

P=PI +P2, 
A A A 

where P2 is the projector P - PI' We see that 
AA A A A A. A A AA A-

PI P2 = PI (P- Pd = PI - PI = o and similarly P2 P I = O. 
The set of all projectors on Vn together with the partial 

order " < .. forms a lattice with the lattice operations " V " 
A A 

and" /\" defined for every pair PI' P2 of projectors as 
A. ................ A AAAAA 

PI V P2==inf[P, p 2 = P, P>PI , P>P2 j, (2.92) 
A. ....... AA. AAAAA 

P I /\P2=SUp{P, p 2 = P, P<PI , P<P2 j. (2.93) 
AA AA ........ AA. 

The existence of PI V P2 andPI /\P2is assured since 0 <P< 1 
for every projector. The terms least UpP!! bo~nd (lub~ resJ?, 
greatestlowerbound (glb), are given to PI V P2, resp'PI /\P2• 

The lub and glb operations apply to arbitrary collections of 
A 

projectors on Vn. That is, if (P a j aEI is a famjly of p~jectors 
on Vn , where I is some index set, then V a P a' /\ a P a are 
defined in a manner analogously to the definitions given by 
Eqs. (2.92) and (2.93). Such compound projectors have many 
applications such as to the theory of von Neumann algebras, 
and for I a countable set, to many-body physics. We shall be 
particularly interested in the construction of 
V nEIPn, /\ nEIPn, where I is countable. 

III. ORTHOGONAL PROJECTORS 

We single out orthogonal projectors under their own 
heading because of their central use in physics, theoretical 
chemistry and in other areas. We deal here with a unitary 
vector space H which is complete, separable, and (usually) 
infinite-dimensional. That is H is a separable Hilbert space. 
In order to distinguish H from other spaces we have men
tioned, we use the Dirac notation (x iY) for the inner product 
of two vectors x and yin H. We state the axioms for the inner 
product: 

(xiY) = (PIx), (Hermitian symmetry) (3.1) 

allx,yeH; 

(xlYI + Yz) = (xIYI) + (XiY2)' 

all XI' YI' Yz e H; 

(xlay) = a(xiY), 

all x, y e H, a e C; 

(xlx);;;.O, 

allxeH; and 

(3.2) 

(3.3) 

(3.4) 

(xix) =0 if and only if x=O. (3.5) 

The norm IIxll ofa vector in His given by IIxll = + "(xix). 
Separability means that there exists in H a dense countable 
set of vectors. This in turn is equivalent to the statement that 
there exists in H a countable orthonormal basis. If 
B = [e; j ;""= I is such an orthonormal basis, we have 

(e; lej ) = 8;j' (3.6) 

and for every x e H, 

"" 
x = Lx;e;. (3.7) 

i=1 

with x;=(e;lx), and with the sum converging in vector 
norm: 
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lim Ilx- I,x;e;11 =0. 
N __ rx:. ;=1 

(3.8) 

The expansion equation (3.7) is also written as a resolution of 
the unit operator 1 on H: 

x = Ix = i: (e; ® e;)x== i: Ie;) (e; lx, (3.9) 
;=1 ;=1 

where we have used the Dirac notation Ie;) (e; I for the one
dimensional projector e; ® e; defined earlier. The operator 
expansion 

1= i le;)(e;1 (3.10) 
;=1 

is understood as a strong operator limit which means that 
1:;",,= I Ie;) (e; Ix) converges in vector norm asN-+oo to x, for 
allxeH. 

If S is any set of vectors in H, then S 1, the set of vectors 
orthogonal to all the vectors of S, is a closed subspace of H. In 
particular, if Pis itself a closed subspace of H, then the setp 1 

of all vectors orthogonal to those of P is a closed subspace of 
H, and H may be decomposed into the direct sum 

H=P(9P 1
. (3.11) 

Equation (3.11) means simply that every x E H may be ex
pressed uniquely as 

(3.12) 

wherexp EP andxpLEp l
. Clearly (xp lxp1 ) = O. Orthogo-

A A 

nal projectors P and P 1 are defined by 
A Ai 

Px=Xp , P x=xpL ' (3.13) 

and we have i =P +p 1
, p2 =P= P*, and 

A A A A 

(P~2 = (Pi) = (P 1
)., wherep. is the operator adjoint (dual) 

toP: 
A A 

(Pxly)=(xIP·y). (3.14) 

That is orthogonal projectors (from now on we drop the ad
jective orthogonal, it being understood unless we explicitly 
state otherwise, i.e., oblique projector =f orthogonal projec
tor) are characterized as being the self-adjoint idempotent 
operators on H. 

Since 

IIxll2 = IIPxll2 + IIP1xW, (3.15) 

it follows that 
A 

IIPxIl..;llxll (3.16) 
A 

and, therefore, that IJ.f II..; 1. !.l0wever we proved quite gener-
ally in Sec. II that if P ~O, liP II ~ 1: therefore, a nonzero pro
jector has norm unity, P =fO, liP II = 1. 

Since the orthogonal complement pi to a given subspace 
P of H is uniquely determined by P, we have a one-to-one 
correspondence between projectors and closed subs paces of 
H. (For the general oblique case the range subspace does not 
determine a unique complementary subspace, and, hence, 
the given range subspace does not determine a unique com
plementary oblique projector.) Ifthe closed subspace PI is 
contained in the closed subspace P2 (PI CP2), then the corre-

A A A A 

sponding projectors PI' P2 stand in relation PI < P2. 

If PI and P2 are projectors in H, then the necessary and 
"" ........ A. A A 

sufficient condition that P2 - PI be a projector is PIP2 = PI' 
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AA A A""'" A 

Proof If P 1P2 = PI' then the adjoint gives PzPl = PI' 
A A2 A A AA AA A A 

and (P2 - Pd = P2 + PI -P2PI - PIP2 =P2 -PI' 
Conversely, ifP2 - PI is a projector, then 

A A A A 

(P2 - P I )2 = (P2 - PI) yields 
A. A A. A A 

2PI = P IP2 + P2P I· 

If we multiply' the above equation first on the right, then on 
"'-

the left, with P2 we find that 
A.A A.AA AA 

PIP2 = P2PIP2 = P2PI· 
A AA. A. A.A AA 

Further 2PI = 2PIP2 and, therefore, PI = PIP2 = P2P I. 
A A AA 

If we are given two projectors PI' P2 on H, then PIP2 is 
A A A A 

in general not a projector. However, PIA P2 = P2 A PI is a 
projector; the projector on the subspace (we now drop the 
adjective closed for subspaces, it being understood unless 
otherwise stated) PI nP2, where PI and P2 are the subspaces 
PIHandP2H. 

A A A A 

Similarly, if PI and P2 are two pro~cto~ on H, PI + P2 
is not in general a projector. However, PI V P2 is a projector; 
the projector on the closure of the set PI + P2 (PI + P2 is the 
set of all vectors in H of the form XI + X 2 with xlEPI and 

x2EP2 ). The projectors PI AP2 and PI V P2 are related by the 
. . A A A 1 A11 

relatIOnship PI AP2 = (P I V P 2) . A A 

If we are given two projectors PI an<!...P2 on H, o1J..e may 
be interested in the result of first applyingP2 and theJ!-~I' We 
may ask for the projector on the closure of the set P IP2H. 
That PIP2H is not in general a closed subspace is shown by 
the following example: 

Let {en l;; = I and { Vn l;; = I be two infinite orthonormal 
sets in H which are orthogonal to each other, (en IVm) = O. 
Define the orthonormal set { Wn 1 ;; = I by 

Wn = (1 + lIn2)-1/2[ Vn + (lIn)en ], 

n = 1,2,3, .. ·, and projectors PI and P2 by 

and 

P2 = L IWn)(Wnl· 
n 

Then 

PIP2=~(n+ ~ )-I(len)(Vnl+ ~Ien)(enl). 
If now we set 

then (en IZN) = 0 and 

( 
1 

) 
= {I, n <N, 

Vn ZN 0 N , n> . 
We now construct a Cauchy sequency {YN Lv= 1 of vectors in 
P1P2H: 

Further, the limit ofy ofYN as N-.oo isjust 

""( 1)-1 Y= L n + - en' 
n= 1 n 
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AA AA 

We next show that yE£ PIP2H. Assume otherwise; Y = PIPzZ 
for some z E H. Then, 

y=~(n+ ! )-Ien =PIPzZ 

=~(n+ ! )-len(VnIZ) + ! (en1z»), 

and hence 

(Vn Iz) + J.. (en Iz) = 1, n = 1,2,3, .. ·. 
n 

However, the above relation cannot be satisfied by any z E H, 
since for all zEH (Vn Iz) and (en Iz) approach zero as n gets 

large. Therefore, P IP2H is not a closed subspace of H. Of 
course, the fact that H is infinite-dimensional was crucial in 
the above example. Since Wn ::::; Vn as n gets large, we can say 
that PI and P2 are nearly orthogonal to each other. 

A A A __ _ 

The projector L (PIP2) onto PIP2l!.... ~called theleftpro
jector or closed range8 of the operator PIP2• The nrojector 
A A A A AA~ A A 

L (PIP2) is the smallest projector L for which LPIP2 = PIP2, 
and it may be expressed as9 

A.AA A. A A 

L (PIP2) = PI - PI AP~, 

or equivalently by 
AAA A. A A.1 

L (PIP2) = PI A (Pi V P2) . (3.17) 
A AA AA 

The right projector R (PIP2) (or support) of P1Pz is the small-
A AAA AA 

est projector R such that P,P2R = PIP2, and is equal to the 
A AA A"""" 

left projector L (P2Pd of P2PI; 
AAA AAA A A A 

R (PIP2) = L (P2PI) = P2 - (P2 APi). (3.18) 
A A A 

We note that the support R (PIP2) is equal to the orthogonal 
A A A:. :........ AA 

comple~~ N J!'tP.;Y ofJ.he projector N(PIP2 ) onto the null 
space of P I P2, R + N = 1. 

For applications we are interested in the actual con-
A A 

struction of various projectors, such as PI AP2, etc. It is well 
A A 

known lO that PI AP2 can be expressed as a strong operator 
limit 

A. A • A.AA. N 
PI AP2 = s-hm(pIP2P I) 

N~"" 

which means that for all xEH 
A A • AAAN 

PI APzX = hm(PIP2PI) x. 

Less well known is an interesting exnression for PI V P2, giv-
A"-.;or AAA 

en by Hillll for the case that (PIP2PI)' (P2PIP2) are Hilbert-
Schmidt class operators: 

lCXlAAAAA..(riA 

+ - L P~PI(PIP2PdPIP~, 
2/=0 

For PIP2PI to be a Hilbert-Schmidt operator means that 
A A A 2 A 

tr[(PIP2Pd ] < 00, or if PI = l:;:: = I lem ) (em I, that 
A AAA 

l:m,n 1 (em IP21en) 12 < 00. So PIP2P I Hilbert-Schmidt is rath-
er special. On the other hand, Hill's formula can apply in 
other cases. 

We would like to have procedures which lend them-
A A A A 

selves to computation not only for PI A P2, PI V f2' etc., but 
also to more complicated projectors such as A ;P;, where i 

W. E. Brittin and A. Y. Sakakura 1280 



                                                                                                                                    

ranges over a countable set. Before taking up these and other 
related questions, we discuss the important concept of (par
tial) isometries. 

If P I and P2 are subspaces of H having the same dimen
sions (i.e., both have finite and equal dimensions or both 
have countablv infinite dimensions), then there exist isome-

'" x '" tries fl21 and fl 12 = fl!1 such that 

PI = nI~2 (3.19) 

and 

P2 = n21PI. (3.20) 
'" '" A If PI and P2 are projectors such that PI = PIH and 

P2 =P~, then 

(3.21) 

and 
......... A AA AA A 

fl!lfl21 =fl12fl21 = fl12fl r2 = PI' (3.22) 
A ,A 

That is, fl21• resp. fl 12. acts as a unitary map when restricted 
to PI' resp. P2. The simplest way to establish the validity of 
the above statements is through the introduction of ortho
normal bases [eJ(I)] and [eJ(2)] forP l andP2. Then we de-

A 

fine fl21 by 

(3.23) 

and 

'" fl2lx = 0, for x EPt. (3.24) 

It follows that 

'" eJ(I) = fl 11 eJ(2), 1=1,2,3,···, (3.25) 

and 

n !IY = 0, for Y E P~. (3.26) 

Therefore, n l2 satisfies the relations expressed by Eqs. 
'" '" (3.19H3.22) with fl 12 = fl 11 . 

The isometry connecting PI and P2 is not unique since 
any other orthonormal bases could be employed for PI and 
P2• This lack of uniqueness may be expressed in terms of 

A '" 
isometries fl I' fl2 defined by 

(3.27) 

and 
A A /'to.. A A 

n !fl2 = n 2n 1 = P2. (3.28) 

Ifn21 is an isometry connecting PI andP2, then the isometry 
'" A A A-

fl 21-fl2fl21fll (3.29) 

also connects PI and P2 • A 

If we are given a bounded operator non H for which 
A A A A A AA. A 

fl * fl = Pis a projector, then (fl *)* fl * = flfl *=P' is also a 
A '" 

Projector. That is, if n is any isometry, so is fl *. We nrove 
A "" A AA "-

this by first showing that fl * n = Pimplies that np = n, i.e., 
P is the right projector R (n ) of n. Let x be any vector in H, 

A A A A A 

and write x = Px + PiX, where pi = I - P. Then 
AA AA AA 

I/flP ixl/ 2 = (flPixjflP1x) 

= (pixjn *npix) = (PixjppiX) = O. 
(3.30) 

AA A"......... A AA 

Hence flP lX = n (1 - P )X==O and nx = flPx, V x E H, 
therefore, n = np. From the latter relation it follows that 
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A A. A A A A AAA A A A 

p'2 = (fln *)2 = nn * nn * = flPn * = nn * = P', and 
therefore P' is also a projector. Further, since In *)* n * 

AA AA AAA A 

= P',P'istherightnroiectorR (n*)offl *,n*p' = fl * and 
AA A A "';..{ A 

P' n = fl, or P' = L (n ). The projector P is also called the 
initial proiector of nand P , the final projector of n. We have 
A /"t.: A'A. A AA A A A 

n = P'nPandn* = pn*P',andsotherolesofPandP'are 
interchanged for n *. 

'" '" A In general, the product nan b of two isometries n a"... and n b is not an isometry. Howeve~ if the final projector ~f '1 b is 
equal to the initial projector of n a' then the Rro~uctp ap b is 
an isometrv. This statement follows from (naflb)*nJ1b 

A A -~ A A A A A A A A A ,,;A.. 

= fl rn :flaflb = n rR (na)flb = n rL (flb)flb = fl rnb 
AA AA AA 

= R (nb)' where Lin), resp. R (fl), stands for the left, resp. 
right, projector of fl. 

An important problem in applications is the construc
tion of an orthonormal set of vectors from a given set of 
vectors. The Schmidt construction is well known, but new 
and more useful constructions have been developed during 
the past few decades or so. We will discuss some of these in 
the next section. Before turning to these constructions, we 
present an account of a generalized Schmidt process 12 in 
which an orthogonal set of projectors is constructed from a 
given arbitrary countable set of projectors. 

Let [Pi] t'= I be a given set of projectors. We define for 
each n, n = 1,2,3, .. ·, new projectors Pn : 

_ n A 

Pn = V Pi' 
i= I 

_ A_ ......... A_ AAA 

(3.31) 

That is, PI = PI' P2 = PI V P2, P3 = PI V P2 V P3,···. It is 
clear that 

Pn <Pn + I' n = 1,2,3, .. ·, 

and therefore Pn defined by 

Pn Pn -Pn- I 

is a projector (Po-O). The Pn are orthonormal: 

(3.32) 

(3.33) 

PnP m = 8nm Pn· (3.34) 

Further, Pn wan t~e same~ubspacc:. of H that is spanned by 
the original Pi' If P ==:l:n Pn , then PH is the same as the 
closure of the set of all vectors x p of the form 

NA 
Xp= I PiX, X E H, N = 1,2,3,· ... (3.35) 

i=l 

We may discard all the Pn which are zero. Then the 
remaining set [Pn• ], say, are still orthogonal 

(3.36) 

and 

(3.37) 

We note again that it would be desirable and ~ractical to 
A A 

have explicit methods to compute Vi Pi and 1\ i Pi' We ad-
dress this problem in the next section. 

IV. CONSTRUCTION OF PROJECTORS 

Let {rpn J: = I be a countable collection of vectors in ~ 
separable Hilbert space H. We wish to find the projector P 
corresponding to the (closed) subspace P spanned by the vec
tors rp n • It may also be desirable to construct an orthonormal 
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set of vectors spanning P. Of course, the Schmidt process 
may be applied to the latter problem, but this procedure 
requires the selection of the first, second, ... , vector of the 
given collection. We would like a more democratic process 
in which the given vectors are all treated on the same basis. 

First, assume that the set! ¢n J:: ~ 1 is linearly indepen
dent. We then know that there exists a set {¢n 1 :: ~ 1 of vec
tors which are biorthogonal to [ ¢n J:: ~ 1 • That is there are 
vectors ¢n which satisfy the relations 

(¢nl¢m) = (¢ml¢n) =8n
m, alln,m. (4.1) 

Further, the projector P on the span of ! ¢n J is just 

(4.2) 
n 

so if ltP") can be found, ~e have a construction for P. Let 
P = PH; then, if </1 E Pl, P</1 = 0 or, equivalently, 
(¢n 1</1 ) = 0, all n, which is equivalent to 

k</J=O, (4.3) 

where 

g=II¢n )(¢n I· (4.4) 
n 

The sum in Eq. (4.4) is the strong limit of the sum };~ ~ 1 as 
N~ 00 • In order for g to exist, some growth property of ¢ n as 
n~oo must be assumed. It is clear that the vectors ¢n can 
always be renormalized to satisfy any desired features of 
growth and still span the same subspace P. For mathemat
ical convenience we make the mild technical assumption 
that 

lI¢n II,,;;A In, n = 1,2,3,.··, (4.5) 

whereA is a positive constant. This assumption is not neces
sary for certain of our results and can be dispensed with in 
many instances if one is careful. It follows from Eq. (4.5) that 

N N A 2 

= I II ¢n 112,,;; I -2 ' (4.6) 
n~1 n~1 n 

so thatg defined by Eq. (4.4) is the uniform limit as N~oo of 
};~ ~ 1 I ¢n) (¢n I· The latter sum is a positive finite rank oper
ator, and, therefore, g exists as a positive compact operator. 
This means in tum that g has a discrete spectrum 
,i 1 > A2 > ... > 0, with no accumulation points, except possi
bly A = O. Further, the eigenspace p;. for a given A #0 is 
finite-dimensional. The spectral resolution of g is given by 

(4.7) 

where Pr is the projector onto the eigenspace of g spanned by 
the eigenfunctions of g having eigenvalue Ar (Ar #As ' r#s). 
We note that A = 0 does not appear in Eq. (4.7). 

Let g, = g + El, E> 0, so that g, is a strictly positive 
operator. The product g; Ig may be expressed by 

A A 
AA_I A_IA " r P gg, =g, g = L.,--- r' 

r Ar + E 

(4.8) 

Since Ar = ° does not contribute in Eq. (4.8), we may safely 
allow E to to find 
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the sum being the strong limit of a su~ of orthogonal ~rojec
tors is itself an orthogonal projector P. The projector P is the 
projector on the subspace of H spanned by the vectors 

r¢n J::= I' 
The prescription given by Eq. (4.9) is valid even if the 

vectors ¢n are dependent, so long as g exists as a suitable 
limit. In fact, 13 it can be established rigorously that if A is any 
bounded nonnegative operator, then 

P = s-lim(A ,- IA ) (4.10) 
,10 

exists and is the projector on the support ofA. Similarly 

Q = s-lim(EA ,- I) (4.11) 
'10 

exists and is the projector on the null space <i A. !he s~m of 
the projectors, PIl. (4.10) and 14.11), is unitv,P + Q = I H . In 

AA AA. A AA AA:;"<' A 

addition AP = PA = A and AQ = QA = 0, where 0 is the 
zero operator on H. 

Now define l4 

¢n -lim g,- l¢n. (4.12) 
<10 

Lemma: t ¢m I forms a biorthogonal set to ! ¢n l, 
(¢ml¢n) = 8m

n, m,n = 1,2,3,. ... 

Proof 

A ...... "'-1 
P = s-hmgg, 

,10 

=s-limII ¢n)(¢nlg.-I=II¢n)(¢nl· (4.13) 
f"! 0 n fZ 

Since ¢r E P, P¢r = ¢" and 

=I8n
r¢n' (4.14) 

n 

Therefore, 

2.: ¢n I (¢nl¢r) - 8~1 = 0, (4.15) 
n 

and, since the ¢ n are linearly independent. 

(4.16) 

We may write Eqs. (4.16) as the limit as E ~ 0 of 

(¢nl¢m) = (¢n Ig;- II¢m) = (¢n Ig,- 1/2Ig,- II2¢m) 

= (;Pnl;Pm) =8n
r, (4.17) 

where 

;Pm =g,--112!/Jm' E ~ O. (4.18) 

Clearly, 

2.: l;Pm) (;Pm I = s-lim Lk,- 1/2 I¢m) (¢m Ig,- 112 
m flO m 

1· A - 112 A A - 1/2 _ P = s- 1m g, gg, -. (4.19) 
, 10 

Operators such as g,- 1/2 are somewhat unfamiliar ob
jects in physics although operators such as g,- 1 appear fre-
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quently. There are known expressions for ge- 112 and we men
tion two. The first, given by Kato,15 is expressed by the 
integral, 

A -1/2 = 1.. ;O/2Ia'" dA I;;' +A ;0)-1 ge e 1 1/2 \6e e , 
1T' 0 /L 

(4.20) 

where (J is fixed and I(J I < 1T'/2. The integral in Eq. (4.20) is 
absolutely convergent. The second is based on a suggestion 
by Montroll. 16 If 0 < a, then (ge) - a may be expressed by the 
integral, 

(4.21) 

Since our ge is a positive self-adjoint operator, so is (ge) - a, 

O<a. 
If l!/J" } is _not a_linearly independent set, the cont~truc

tion of P as ~ I!/J n ) (!/Jill is still valid,;.. however, the set ! !/J II ) is 
no longer orthonormal. Similarly, P = ~11/I')(!/JII I; however, 
! 1/1'} and !!/J II } are no longer biorthogonal sets. 

We now let!!/JII } be a linearly dependent set and for 
convenience assume the same type of growth as before so 
that 

(4.22) 
II 

is a compact positive (nonnegative) operator. First note that 
any eigenvector of g belonging to the eigenvalue zero lies in 
P 1 the subspace of H orthogonal to all vectors in P (spanned 
by the !/In). Then if ! ¢n } is the complete orthomormal set of 
eigenvectors of g, 

(4.23) 

We have as before 

(4.24) 

with the sum including multiplicity of eigenvalues. Since !/In 
span P, ¢ E P, may be expanded (nonuniquely) 

(4.25) 

with 

(4.26) 
m.n 

whereg mn = (!/Jml!/Jn) =gnm· The matrix (g)=={gmn) is 
called the overlap matrix. Ifwe require the an in Eq. (4.25) to 
satisfy the eigenvalue equation, in 12 , 

n 

k = 1, 2, ... , (4.29) 

normalized to unity, 

II 

Then 

n 

are eigenvectors of g. We choose Nk so that 

(¢A
k 

I¢A
k
.) = O(Ak' Ak ,), 

which means that 

(4.30) 

(4.31) 

(4.32) 

1 = II¢A.II 2 = INk 12 IOm(Ak)gmnan(Ak) (4,33) 
mn 

=Ak INk 12 I lan(Ak) 12 =Ak INk 1
2

, (4.34) 
II 

or 

(4.35) 

Thus 

(4.36) 

The sum in Eq. (4.36) can be extended over all A since 
¢ A = 0 =0. The construction of the orthomormal set {¢).} of 
eigenvectors of g is known as canonical orthogonalization 
while the construction of the orthonormal set fpll' when they 
exist (i.e., when !/JII are linearly independent), is known as 
symmetric orthogonalization,17 

'tie may exploit the overlap matrix g = (g mn) to com
pute P in another way, even when the!/Jn are linearly depen
dent. We have from the definition of g, 

g!/Jn = I I !/Jm)(!/Jm I!/Jn 
m 

(4.37) 
r,m m 

whereg;,n is the m, nth matrix element of the square of the 
matrix g, and, if F (g) is any well-defined function of g, 

(4.38) 
m 

(4.27) Now let F(z) = (z + €/)-I in Eq. (4.38); then 
n 

then 

M=A¢. (4.28) 

Hence solutions ofEq. (4.27) yield eigenfunctions ofg via Eq. 
(4.25), except when A = o. When A = 0, ¢ E P, and also 
¢EP\SO¢=O. 

The construction ofPmay be computed from the non
zero eigenvalue solutions of Eq. (4.28). Let an (A.k)' Ak ;l0, 
be solutions of 
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1/1' = limge- I!/JII = lim I !/Jm{ge-I)m,,' (4.39) 
ElO ElO m 

where (ge- I) is the inverse of the matrix 
(!/Jm I!/J,,) + €(omll))={ge)· 

Thus we find the following expression for P: 

in terms of the given set! !/J" }. Equation (4.40) generalizes the 
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formula of Feshbach, IS,I'} to which Eq, (4.40) reduces when 
the rpn are linearly independent, namely, 

(4.41) 
mn 

since in this case the matrixg is nonsingular. The vectors Ipn 
may also be computed from 

;" l' ~ - 112./, l' ~ ./, (g - 1/2) 'l'n = 1m g< 'l'n = 1m k,. 'I'm < mn' 
E!O ~JO m 

(4.42) 

The latter Ipn are orthonormal if and only if rpn are linearly 
independent. The projector P may in any case be expressed 
in terms of lpn' 

(4.43) 
n 

Since 

Ipn = Plpn, 

IIlpn 112 = (lpn IPlpn) 

= II (lpnllpm) 12 
m 

= IIlpn \1
4 + I I (lpn Ilpm) 1

2, 
m#n 

we must have for the linearly dependent case ( (Ip n lip m ) # 0, 
some n, m, n#m) 

Illpn II < 1, some n. (4.44) 

The closer the IIlpn II are to unity, the closer Ipn are to being 
orthonormal. In fact, we can characterize a measure of inde
pendence of the set {rp n J by means of the smallness of 
l:n (1 -:::::: IIlpn 11

2). The dimension of the subspace Pis given by 
trace (P) (positive integer or + (0). Thus 

dimP= tr (~Ilpn>(lpn I) = ~ (lpn I¢n> = ~ II¢n 11
2
, 

(4.45) 

and l:n (1 - Illpn 112) is the "total number" of rp/s minus the 
dim P (possibly + (0). The rpn's are linearly independent if 
and only if this sum is zero. 

We now proceed to construct various combinations of 
projectors. Given an arbitrary countable set t P n 1 ;;" ~ I of pro-

A 

jectors, we would like to find expressions for V nPn and 
A. A. A. 1 A" A 

f\nPn' Since f\nPn = (V n P~), whereP~ = I-Pn, we 

need only to compute V nPn. The subspace P = PH where 

P= V nPn consists oflinear combinationsofPnx, x E H, to
gether with the closure of the set of such linear combina
tions. If {xn J is a complete orthonormal set of vectors in H, 
we define rpnm by 

(4.46) 

where an E C, l:n I an 12 < 00. Then let g be defined by 

A A 

g= I I rpnm)(rpnm I = IlanI2Pnlxm>(xmIPn 
n. m n,m 

(4.47) 
n 

Since IIPn II,;;; 1, Ilgll,;;; I I an 12 < 00 sogis a bounded positive 
n 
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operator. If grp = 0, then Pn rp = 0, n = 1,2, 3, ... , which is 
proved as follows: Let 

grp = I I an 1
2Pn rp = 0. 

n 

Then IIg1/2rpl12 = (rplgrp> = l:n Ian 1211Pn rpl12 = 0, 

~nd hen~e IIPn rpll = 0 V n, so Pn rp = O. Therefore, 
P = V n Pn is just the support of g: 

V nPn = s-lim (g; Ig), (4.48) 
< j 0 

g=l:n Ian 12pn, l:n 1 an 12 = 1, say. 

Since s-lim).~ = exp( - 4g) = Po = I - p, the projector 
on the orthogonal complement of P, we may also write Eq. 
(4.48) as 

V nPn = I - s-lim(€g<- I) = i - s-lim exp( - 4g). 
£10 A----J>OO 

(4.49) 

More general collections of projectors arise in applica
tions. For example, {Pz LEe, where Pz = Iz)'<zl , and Iz> is a 
coherent state. If we are given a collection {P a J a E I (I a mea
surable set) of projectors P a' we may use a similar technique 
to compute V aEI Pa to that expressed by Eq. (4.48). Let 
dJ.l(a) be a positive measure on I with S aEI dJ.l(a) < 00, then 
we defineg similarly to that given by Eq. (4.47), 

g= r dJ.l(a) Pa, (4.50) 
JaEI 

and show thatg>O, M = ~pa¢) = O,~tc. Then we use 
argumen ts similar to those used for V n P n' to show that 

A • A_I .... 
V aEI Pa = s-hmg. g. 

< j 0 

V. MEASUREMENT THEORY AND STATISTICAL 
MECHANICS 

(4.51) 

Pure states in quantum theory are represented by unit 
vectors I rp) in a separable Hilbert space H. Since I rp) and 
4 I rp), 14 I = 1, representthe same state, it is more accurate to 
say that a pure state is represented by a unit ray 
(4 I rp) J I). 1 ~ I in H, or more concisely by a one-dimensional 
projector p( rp) = I rp) (rp I. The projector p( rp) is independent 
of which vector is selected from the ray representation, for 

(5.1) 

A pure state is regarded20 as containing information relating 
to potential or propensity probabilities concerning the out
come of measurements which can be performed on an en
semble of systems represented by p(rp). 

More general states involving incomplete informational 
probabilities also occur in quantum theory. Such states are 
represented by (positive) self-adjoint operatorsp of trace uni
ty. The operatorsp are called statistical operators (or density 
matrices). If the system is in a state represented by p and if A 
is a bounded self-adjoint operator representing an observa
ble (also denoted by A ), then the average (A) of A when 
measurements are made on the ensemble represented by p is 
given by 

(A) = r(pA) (5.2) 
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where r represents trace. 
Not all states can be represented by a statistical opera

tor. For example, an equilibrium system having finite vol
ume r and finite number N of degrees of freedom is repre
sented by the canonical 

piN, V)=e- f3HNIZ(N, V), (5.3) 

where H N is the Hamiltonian of the N degrees of freedom in 
Vand,B = l/kT. In the limit N, V -+ 00, N IV -+ const 
(thermodynamic limit), limN~ '" pIN, V) does not exist. 

V~'" 

However, for certain observables C it can happen that 

lim 1'(Cp (N, V))=(C) (5.4) 

V-", 

NIV-const 

exists, and this limiting form defines then a state as a linear 
functional1T(C) = (C) on the observables c.ZI Thus more 
generally states will be represented by positive [1T(C *C »0] 
linear functionals 1T on the algebra A (C) of certain observa
bles C. We will not consider further such general states, but 
wiIl restrict our discussion to states represented by a statisti
cal operator p. (This in no way is meant to minimize their 
importance for certain aspects of modem statistical mechan
ics.) 

The statistical operator p satisfies 

1'(p)=I, 0<p2<p<I, (5.5) 

where the latter inequality means that for any It/!) E H 

0..; (t/!lp21t/!)..; (t/!Iplt/!)..; 1. (5.6) 

Statistical operators have the nice mathematical property of 
belonging to the class of compact operators and thus have a 
discrete spectrum22 which has at most one accumulation 
point, zero. That is, ifpk are the eigenvalues ofp, then 

I>PI >P2 ... >Pk > .,. >0. (5.7) 

If P k is the projeS!or onto the k th eigenspace of p, then 
the dimension dk =r(Pk ) of the k th eigenspace is finite, 
d k < 00. Thus 

(5.8) 

(strong limit), and 
00 

1= 1'(p) = L Pkdk' (5.9) 
k=1 

A A A A A 

Further, since Pk PPk = PkP = PPk = PkPk' 

(5.10) 

Let A be a bounded observable having a discrete spec
trum. Further let A co~mute wit~. Then 
0= [p, A] = l:aa[p, Pa ], where Pa is a spectral projector 
and a the corresponding eigenvalue of A. Since 
A A A 

PaPb = {jabPb' 

a 

and 

(5.12) 
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We now derive what can be called the canonical theory 
of the quantum mechanical measurement process. This the
ory was apparently first formulated by Luders. However, we 
base it upon the principle a/minimum disturbance due to 
Goldberg and Watson23 (anticipated by Wigner), but follow 
the presentation of Herbut.24 

The principle of minimum disturbance states that in an 
ideal measurement the state immediately after the measure
ment is as close as possible to the state just prior to the mea
surement, subject to the constraints given by the measure
ment. For pure states the principle states that the overlap 
I (t/!' I t/!) I is as large as possible, where It/!) is the state just 
before the measurement is made and It/!') the state immedi
ately after the measurement. The principle of maximum 
overlap is equivalent to the minimization of the distance 
d (t/!, t/!') between states, where d is the positive square root of 

d(t/!, t/!,)2=2(1-1(t/!'It/!W)· (5.13) 

This distanced (t/!, t/!')hasitsmaximumv1when It/!') and It/!) 
are orthogonal and is zero when It/!') = A It/!), IA I = 1, i.e., 
when the states are the same. 

Since p is trace class, .Jii is Hilbert-Schmidt. The set 
B2(H ) of all Hilbert-Schmidt operators forms a Hilbert space 
on which the inner product, (A IB )2' between any pair A, B 
of operators in B2(H) is defined by 

(AIB)z=r(A*B). (5.14) 

Be definition A E B2(H ) implies that 

IIA II; =(A IA)z = r(A *A)< 00. (5.15) 

The positive square root of IIA II~ is the Hilbert-Schmidt 
norm of A . For trace-class operators A (such as p) the natural 
norm is the trace norm IIAIII which is defined as 

IIA 111=r(IAI), (5.16) 

where IA I is the unique positive square root of A * A. It would 
then be natural to define the distance between states PI and 
P2 by means of IIPI - PzIII' However, the trace is technically 
more difficult to handle than the Hilbert-Schmidt norm 
IIPI - Pz112' The operator, Hilbert-Schmidt, and trace norms 
stand in relationz2 II . II < II . liz < II . III' Nevertheless, we 
take IIPI - Pzllz as the distance between states, realizing that 
there may be other, and for some purposes, more suitable 
distance functions. 25 In fact, another candidate for the dis-

tance between statesp andp' is di(p,p')=II.Jii - ijll~ 
= r((.Jii - ij)Z) = TIP + p' - 2/Pij) 
= 2(1 - r(/pij)). This distance is analogous to the dis

tance given by Eq. (4.11) for pure states with the overlap 

given by T(/pij). Since for pure statespz =p andp'z =p', 

we have in this case II/P - ijllz = lIP - p'l/z' 
We now apply the above concepts to formulate the ca

nonical theory of measurement. If A is an observable (for 
simplicity assume that A has a discrete spectrum), and if a 
measurement on the system yields an eigenvalue am of A, 
then if the measurement is immediately repeated the result is 
again am' This statement is a basic assumption of measure
ment theory. Further the state p ju~t aft<;[ the first ~easure
ment must satisfy the relation p = Pm P Pm' where Pm is the 
projector on the eigenspace of A corresponding to the eigen
value am' We demonstrate the above statement by observing 
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that the probability, after the first measurement, of finding 
the value an' n#m, must be zero: 

Pn = (PnP) = 7(PnP) = 0, n#m. (5.17) 

Therefore, 

0= 7(Pn p) = 1'(Pn pPn) = 1'{ Ip I12Pn )*( pl/2Pn)) 

= II pl/2Pn II~. (5.18) 

Thus 

pl/2Pn = 0 

and 

P Pn = 0, n#m. (5.19) 

The acJ.ioint ofEq. (5.19) yields Pn p = 0, n#m and since 
1 = ~Pn' 

(5.20) 
n, , 

Hence, the necessary and sufficient condition that p repre
sent a state for which the value of A is with certainty am' is 
expressed by Eq. (5.20) above. 

Now letp represent a state just before a measurement 
on A is made. Let P n be the fraction of the measurements 
which yield the value an (a measurement means determining 
the values of A on the ensemble of systems represented by pl. 
We expect, if the measurements are precise, that 
Pn = 1'(Pn pl· We now seekp' the state of the ensemble just 
after the measurement. We may decompose p' 

(5.21) 
n 

where w n >0 and p~ is a statistical operator for which the 
value of A is an with certainty. From Eq. (5.20), 
p~ = Pn p~ Pn , and we have 

(5.22) 
n 

A 

If Eq. (5.21) is pre- and postmultiplied by Pm' we find 

(5.23) 

and, since p~ = Pn P~Pn' 
A A A 

Pm p'Pm = WmPm p'",Pm, (5.24) 

or 

(5.25) 
n 

We now interpret the principle of minimum disturbance as 
the requirement that24

1In ' - pli2 should be a minimum sub-
If' "'A ""-"'" 

ject to Eq. (5.25). Sincep = ~"s P, PPs ' and sinceP mAPn is, 
with respect to the Hilbert-Schmidt inner product, orthogo
nal to Pm' BPn" form#m' orn#n', i.e., 

A A A A 

(P mAPn IP m,BPn')2 

= (7(PnA *PmPm,BPn,) = 7(Pn,PnA *PmPm,B) 

= Onn' 0mm' 7(PnA *PmB), 

we have 
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(5.26) 

The terms in Eq. (5.26) for m #n are fixed, so I~ - p'112 
attains its minimum for 

IIPm(p -p')Pm 112 = 0, m = 1,2,3, ... , 

and since IiA 112 = O=>A = 0, 

Pm(p - p')Pm = 0, m = 1,2,3, .... 

Therefore, 

(5.27) 

(5.28) 

(5.29) 

This is the result achieved by Liiders. It is assumed that no 
selection is made after the measurement. That is, all ele
ments in the ensemble are measured for A and that the result
ing ensemble represented by p' consists of all elements of the 
ensemble (no selection of sub ensemble corresponding to, 
say, specific values of A ). If a selection of the measured en
semble were to be made and the selected elements used to 
form a new ensemble, then the sum over m in Eq. (5.29) 
would be restricted to the subset M of { 1,2,3, ... ) corre
sponding to the selected values of A. The resultant p' would 
then have to be normalized [p' in Eq. (5.29) is already nor
malized, l' (p') = 1], 

(5.30) 

where 

N= I 1'(PmpPm)= I IlflJPmll~. (5.31) 
meM mEM 

We may regard Eq. (5.29) as a special case ofEq. (5.30) by 
selecting M to be all {1,2,3, ... ). The case of selection of a 
single eigenvalue m in Eq. (5.30) leads to 

(5.32) 

which was established by Goldberger and Watson, Wigner, 
and possibly by earlier authors. Goldberger and Watson ar
gued that even if only a single measurement is made and an is 
obtained, Eq. (5.32) should still be used. This choice was 
called by Wigner the moral or ethical choice. (Some might 
use the term democratic. However, the states have no vote.) 

Many operators (q and p, for example) are unbounded 
and yet represent observables. We take the view that any self
adjoint operator, bounded or unbounded-with discrete or 
otherwise spectrum, may represent an observable. This may 
be debatable. Wigner used to go around asking, "How would 
you measure the self-adjoint "observable" aq + {Jp, a,/3 real 
numbers?" The direct measurement of observables is gener
ally beyond present ingenuity, e.g., "How does one measure 
directly L 2, the total orbital angular momentum?" If A is a 
self-adjoint operator (unbounded or not), then for any (Borel) 
set S in the real line R, there exists a projector PA (S) having 
the properties26

: 

PA(¢)=O, PA(R)= 1 

PA (StlPA (Sz) = PA (S2)PA (SI)' 

PA (SI U Sz) = PA (S)) + PA (Sz) - PA (SI n S2)' 

PA(SI nSz) = PA(StlAPA(S2) = PA (StlPA (S2)' 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

If the system is represented by a state p, if a measurement of 
A finds a E S, and if the measurement is of minimal distur
bance type, then the same arguments which led to Eq. (5.30) 

W. E. Brittin and A. Y. Sakakura 1286 



                                                                                                                                    

lead to the following expression for p', the state immediately 
after the measurement: 

p' = (lIN)PA (S)PPA (S), 

N = r(PA(S)p). 

(5.37) 

(5.38) 

In general measurements are not precise and not of 
minimal disturbance type. Further, it is sometimes desirable 
to make measurements on several noncommuting observa
bles. For example, if the observables x, p, position and mo
mentum, are simultaneously measured .:ix.:ip:;;di/2, and 
usually.:ix.:ip is much larger than "/2. If a precise measure
ment yielded xo, Po with .:ix.:ip = "12, then the system would 
beapurestate27 Ia), where la) is a coherent state centered at 
xo, Po in phase space and with .:ix, .:i p the spreads in x and p. 
Suppose, however, that a measurement determines only that 
x and p are in some region (U in phase space. We argue that (U 

should be covered in a minimal way with elementary areas 
a K each having .:ix.:ip = "/2, (U E UaK • Then to each ele
mentary area a K we may as~gn a coherent state laK ). We 
then construct the projector P OJ corresponding to the span of 
{ laK ) J. If p is the state before the measurement and p' the 
state immediately after, then we expect that 

p' = (lIN)P", pP"" 

N= r(P", p). 

(5.39) 

(5.40) 

The construction of P", is performed using the methods de
veloped in Sec. IV. We first form (assume, for convenience, a 

A 

finite covering) g=~K laK) (aK I, then find P", through 

A ..... -1" 
P", = s-hmgE g. (5.41) 

EIO 

There is a question oflack of uniqueness of such ap', which 
we do not address here. There are other approaches to the 
question of imprecise or fuzzy measurements28 and to mea
surements29 which correspond to areas (volumes for three
dimensional or multiparticle problems). They are not simple 
and there is always the question of uniqueness-indeed even 
whether or not one should expect uniqueness. 

The question of measurement of position alone (or of 
momentum alone) is much more clear cut. We consider a 
single particle moving in three-dimensional Euclidean space 
E 3, and we neglect other than position degrees of freedom. 
Such a particle in a pure state may be represented by its 
Schrodinger wave function tP(x,t). The time evolution of 
tP(x,t) develops via a unitary transformation v(t ) 

tP(x,t) = v(t )tP(x,O) (5.42) 

where v(t) is the extension (by continuity) of the operator 
e - ;Ht I" and where H is the self-adjoint Hamiltonian. (The 
operator e - iHt I" may be defined by its Taylor series expan
sion on a suitable dense set of the Hilbert spaceH). If Vis any 
(Borel) volume in E 3, the projector Pq(V) corresponding to 
those described by Eqs. (5.33),(5.34), ... ,(5.36) and represent
ing the self-adjoint position operator q is very simple; Pq ( V) 
acts on tP as a multiplication operator (suppressing t) 

(Pq(V)tP)(x) = Xv(x)¢,(x), (5.43) 

where X v(x) is the characteristic function for the volume V 

{
I, XEV, 

Xv(x) = 0, xEEV. (5.44) 
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This means, of course, in keeping with the standard interpre
tation, that if the state of the particle is tP, then the probabil
ity p(V) of finding the position q ofthe particle in Vis just 

p(V) = (tPIPq(v)tP) = f ¢(x)tP(x) d 3x. (5.45) 
)XEV 

If the particle is in a mixed state represented at time t) by a 
density operator p(t)) and if a measurement of minimal dis
turbance type reveals only that the particle is in the volume 
V)' then the state pIt t ) just after the measurement will be 
given by 

pIt n = (liN)) Pq(v)lo(t)) Pq(V)). (5.46) 

The state will then evolve according to 

p(t)=D(t-tIlp(tnv"'(t-t1), t>t), (5.47) 

until a further measurement is made. If at that time t2 > t) a 
measurement is made and reveals the particle to be in V2, 

then the statep(t 2+ )just after that measurement will be given 
by 

pIt 2+) = (lIN2 ) Pq(V2)P(t2 ) Pq(V2 ) 

The above development clearly extends to any number of 
successive measurements. 23 

If a volume V is rotated and translated 

V-->-V' = RV + a 

i.e. XE V undergoes a Euclidean transformation 

x-->-x' = Rx + a E V' 

(5.49) 

(5.50) 

where R is a rotation and a a translation, then there is a 
unitary v(a,R ) such that 

Pq(V') = v(a,R) Pq(V)v(a,R )*. (5.51) 

This expresses the Euclidean in variance of the notion of po
sition measurement. If "" = u(a,R )'" = utP, then 
<""IPq(v')""), the probability that a measurement ofposi
tion for the state "" will find the particle in V', is the same as 
the probability, for the state tP, that the particle is in V: 

<""IPq(v')"") = <""Iv Pq(V)v*",') 

= (v"'",'1 Pq(V)v*",') = <"'I Pq(V)tP). (5.52) 

The unitary maps {u(a,R ) J form a representatio~ of the Eu
clidean group in E 3, and the system of projectors Pq (V) obey
ing all of the above conditions is referred to by Wightman as 
a system of imprimitivities (due originally to Mackey). We 
refer the interested reader to the elegant paper30 by Wight
man, where many further aspects on the general question of 
localizability in quantum theory may be found. 

Projectors have many other applications one of which is 
to the statistical mechanics of irreversibility. Here one may 
wish to project out of the full time developing statistical oper
ator (or in classical theory, the phase space distribution func
tion) a statistical operator corresponding to a reduced, or 
substatistical operator (such as a diagonal part). Zwanzig3

) 

has given a concise treatment of such problems in which he 
treats classical and quantum mechanical problems on the 
same footing. We follow his development. 
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Classical statistical mechanics makes use of a statistical 
distribution frunctionf(q, p,t ) whereq stands for coordinates 
12 f~'al d'h q ,q , ... ,q ,plorcanoDlc momentapl,P2,,,,,Pf,an t1st e 

time. The distribution function is a non-negative function in 
L 1(11 ) where 11 is the 2 f-dimensional phase space. It satisfies 
the Liouville equation 

iaf = _ i{f,H JpB=Lf 
at 

where PB stands for Poisson bracket: 

(5.53) 

{A,B JpB= L (aA aB _ aA aB), (5.54) 
i aqi api api aqi 

and L is the linear operator defined by Eq. (5.53). Iffis a 
positiveelementinL 1(11 ),thenfI/2 isanelementofL 2(11 land 
conversely if l/JeL 2(11), "'.'" = fis an element of L 1(11 ). If 
l/JeL 2(11 ) and satisfies 

i ~~ = L"" (5.55) 

then "'.'" = fisinL 1(11) and satisfiesEq. (5.53). Regarded as 
an operator in L 2(11 ), L is self-adjoint and e - iLl is unitary. 
The similarity between p andJ, B I (H) and L 1(11 ), and B2(H) 
and L 2(11 ) is striking. For an operator X E B2(H) which satis
fies 

.@K -L = [H,X] - X- , 
at Ii 

(5.56) 

where H is the Hamiltonian operator for the system, [H,X] 
the commutator, X ·X ==p is a positive operator inBI(H) and 
also satisfies 

lOp =Lp= [H,p] . 
at Ii 

(5.57) 

On operators XE B2(H), L may be considered to be self-ad
joint and e - iLl unitary. Thus both the classical and quantum 
mechanical equations of evolution can be written in the form 

!!!x. - L - X, 
dt 

(5.58) 

where X is an element of a Hilbert space [B2(H) or L 2(11 )] and 
L is a self-adjoint operator. The solution to Eq. (5.58) is given 
by 

X(t) = e - iILX(O), 

and L self-adjoint implies that 

<X(t )Ix(t) = <x(Olix(o), 

for the appropriate inner product. 
'" '" 

(5.59) 

(5.60) 

Now if we are interested in PIX XI' where PI is a pro-
jector on the Hilber space (i\ not necessarily an orthogonal 
projector), then we may write 

X=XI +X2' 
where 

X2=P2X X - PIX· 

(5.61) 

(5.62) 

We take Pi> i = 1,2, to be independent of time so that from 
Eq. (5.58) it follows that 

and 

1288 

iaxi L L -- = JlXI + 12X2 
at 
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(5.63) 

(5.64) 

whereL'j PjL~, i,j = 1,2. The idea now is toeliminateX2 
and obtain an equation involving Xl alone [and, in general, 
an initial value of X 2, X 2(0)]. Let 

(5.65) 

so that from Eq. (5.64), 

-;L I iaU2 L 
e "---at = 2IXI' (5.66) 

Then 

U2(t) = U2(0) - i f eiL,,7L2 IXI(r) dr 

= X2(0) - i L eiL"7L2IXI(r) dr, (5.67) 

and if we substitute X2 from Eq. (5.65) using the above result, 
we find the following integrodifferential equation for Xl: 

iav
i 'L --t- = Ll\XI + L I2e-' "IX2(O) 

- iL12 fe -iL"rL2tXl(t - 1') dr. (5.68) 

A """"2 A . • 

Because PiX; = Xi and Pi = Pi' I = 1,2, we may wnte Eq. 
(5.68) in Zwanzig's form 

iav (t) A A ~ T =PILXl(t)+PILe-iIP,LX2(O) 

- i L dr PILe - p,LrP2LX I(t - 1') dr. (5.69) 

This equation has been used as a starting point for statistical 
mechanical theories of irreversibility, although as it stands 
no irreversibility has yet been introducted. 

Measurement theory can also be considered from the 
standpoint of the quantum theory of scattering in which pro
jectors and isometries play an important role. We content 
ourselves to refer the reader to some modern references. 32 

VI. CONFIGURATION SPACE AND SECOND 
QUANTIZATION 

Fock in a classic paper33 showed clearly and explicitly 
the relationship between configuration space and the space 
of second quantization for a system of identical elementary 
particles. We show this same relationship through the use of 
simple mapping and projector techniques. Although no new 
results are obtained, new insights and procedures are ob
tained which can be applied to more complicated situations. 
Further, Fermi-Dirac and Bose-Einstein particles are treat
ed on the same basis, so a single formalism applies to both. 

Configuration space in quantum theory refers to the 
positions (and spins) x of particles in a given system. Fock 
space F refers to a Hilbert space consisting of sequences 
"'={ "'n(xw .. ,xnll:" = 0 of wave functions ("'0 = a complex 
number). The inner product in F is given by 
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00 

= L (If'nllf2n)' (6.1) 
n=O 

We may generate F from a complete orthonormal set of one
particle wave functions ¢i(X)==,¢ (i), i = 1,2,3,.··,. Set 

Ini) = li" ... ,in)=¢(id ... ¢(in), (6.2) 

where the arguments in the function have been suppressed 
for printing convenience. So ¢ (il, ... ,in ) is a function of 
x l ,x2, ... ,xn' and for n = 0, ¢o=l. The set offunctions Ini) 
are orthonormal and complete. We represent the complete
ness by 

L Ini) (nil = IF' 
ni 

Matrix elements of operators are most simply computed us
ing this fully unsymmetrized basis {Ini) J, whereas physical 
symmetry can be handled simply and automatically through 
the use of second quantization. 

Let S (space of second quantization) be the Hilbert 
space generated from a unique vacuum state 10) by the appli
cation of the usual particle creation operators 0(1)·. The op
erator ali)· creates a particle in the state whose wave func
tion is ¢ (i). The operators ali)· and their ad joints all} satisfy 
canonical commutation relations for bosons and anticom
mutation relations for fermions: 

[a(i),a(j)·] =t= = 8(i,j). (6.3) 

We introduce a set of vectors inSwhich is overcomplete but 
which has very simple properties. Let 

In,i;S) = li
" 

... ,in;S)=(1I{nT)a(id·a(i2)· .. ·a(in)·10). 
(6.4) 

Then the inner product of two such vectors is given by 

(n,i;S In',i';S) = 8nn,8~(i,i') (6.5) 

where 8~ is the completely symmetrized Kronecker 8 for 
bosons: 

8~ (i,t) = ~ L 8(i I' Pi; )8(i2' Pi; ) .. ·8(in' Pi~), 
n! p 

(6.6) 

and the completely antisymmetrized Kronecker 8 for Fer
mions: 

8~(i,i') = ~ L €( P)8(i
" 

Pi; )8(i2, Pi;) .. ·8(in' Pi~). (6.7) 
n! p 

In the above two expressions the sum l:p goes over all per
mutation Pof(1,2, ... ,n) and E(P) is the signature of P. The 
vectors In,i;S) have the nice property34 that 

(6.8) 

where Pn is the projector on the n-particle subspace of S. 
Clearly34 

(6.9) 

A A 

ali) Pn = Pn _ 10(1) (6.10) 

and 
A 

a(i)·Pn =Pn+,a(i)·, (6.11) 

as is directly verified by using elements of the defining set 
{ I ni;S ) J • Since every vector IS ) in S is a linear combination 
ofthe Ini;S), we see that IS) satisfies 

PsiS) = IS), (6.12) 

where Psis defined by its action on I ni;S ): 

Psln,i;S)= ~ LAp P Ini;S) 
n! p 

= ~ LApl Pil , Pi2, .. ·, Pin;S), (6.13) 
n! p 

where A p = 1 for bosons and A p = E( P) forfermions. Thus 
A 

Psln,i;S) = In,i;S), (6.14) 

and Eq. (6.12) follows. 
We now introduce a map n·: F-8, by means of the 

expression: 

Q. = L In,i;S) (n,il· (6.15) 
n.; 

The adjoint (n .). = n is given by 

n = L In,i) (n,i;S I· (6.16) 
n,; 

We observe that n • is onto Sand n is into F. It is established 
directly from Eqs. (6.15) and (6.16) that 

n·n= Is. (6.17) 

That is n is an isometry from S to F. Therefore, n • is a 
partial isometry from F to S 

(n ·)·n· = nn· = P, (6.18) 

where P is a projector, the projector onto the completely 
symmetric (bosons) or compl~ely antisymmetric (fermions) 
subspace of F. The projector P satisfies 

(6.19) 

and 

(6.20) 

Thus P projects F onto the physical states in F. That is 

(6.21) 

Sn being the symmetric permutation group on n elements. 
A 

If I ifF) is a physical state in F, P I ifF) = I ifF), or 

IlfF) = n (n ·llfF») = n IlfS) (6.22) 

where 

IlfS) = n ·llfF). 

Conversely, if IlfS) is any vector in S, 

IlfF) = n IlfS) 

(6.23) 

(6.24) 

is a vector in F; in fact, I ifF) is in PF, the physical subspace of 
F. That is the case follows from 

A A 

TheprojectorsP
n 

have the following properties with respect PllfF) =pn IlfS) =n IlfS) = IlfF), (6.25) 
to ali) and a(i)·: where we have used Eq. (6.19). 
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We observe that PF and S are unitarily equivalent. That 
~ ~ 

is, if n • is restricted toPF, it be~mes a unitary map from PF 
to S. This equivalence between PF and S expresses concisely 
the relationship between configuration space and the space 
of second quantization. 

If ''''Ft ) is a physical state in F which satisfies Schro
dinger's equation 

ili~ ,,,,Ft) = HF'",Ft), at (6.26) 

then, since P I "'Ft ) = nn ., "'Ft ), 

or 

iii ~ [n ., "'Ft ) J = (n • H Fn H n ., ",Ft) J, at 

iii ~ ,,,,St) = Hs ,,,,St), 
at 

(6.27) 

(6.28) 

where I",St )-n ·1",Ft) is the second quantized expression 
for the time evolving state. The Hamiltonian in second quan
tized form is just 

Hs =n·HFn (6.29) 

and H F may have any form on its domain in F so long as it is 
self-adjoint. That is, H F may create or destroy particles. The 
second quantized form for other operators may be obt~ined 
in a similar manner. Note that n • is not restricted to PF in 
Eq. (6.29) which makes the computation of Hs simple, since 
Hs may be expressed in terms of matrix elements of HF 
between states 'in): 

Hs = LL-I-a(id····a(in)·Po 
ni n'i' ~ n!n'! 

X (il, ... ,in IH F Ii; , ... ,i~, )a(i~, )··.a(i;), (6.30) 

wherePo = 10) (0, is the projector on the vacuum state ,0) of 
S. The matrix elements (il, ... ,in IHFli; , ... ,i~,) are simply ex
pressed, using Eq. (6.2): 

= J ... J dxl .. ·dxn dx; ... dxn, 

X¢i (Xd"'¢i (xn)HF¢J·,(x;) .. ·¢Jt(xn,)· 
I " I J n 

(6.31) 

The second quantized form of H given by Eq. (6.30) is ex
tremely general. Let us examine a fairly general, but typical 
H F, which is the sum of HF(/), 1 = I, ... ,m, eachH~) preserv
ing the number of particles, 

H~)li(I),i(2), ... ,i(n) = L L 
k, < k, < ... < k/ ilk,)',ilk,)', ...• ilk/)' 

lit 1 ),i(2), ... ,i(k d' , ... ,i(k2), , ... ,i(kl ), , ... ,i(n) 

X (i(kd',i(kX, ... ,i(kd" V(1)li(kd, ... ,i(kd), (6.32) 

where Vii) acts only on the kl, ... ,kl variables. The above 
equation looks somewhat complicated, but it has a simple 
structure. We write i(k) rather than i k in order to avoid dou
ble subscripts in printing. 

Before proceeding to the general case, we treat the case 
I = I in complete detail. The general case is algebraically 
more complicated, but is not complicated in principle, and 
can becarriedoutina similar way. Fori = I,HF = l:r VIr), 
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where V (r) acts only on the coordinates and spin X r • Thus the 
matrix element in Eq. (6.32) becomes (i(k;), Vlli(kd) and 
Eq. (6.32), for I = 1, becomes 

H~)li( 1 ),i(2), ... ,i(n) 
n 

= L L li(I),i(2), ... ,i(kl )" .. ·,i(n)(i(kd'JVlli(kl ), 
k, = I ilk,), 

where i(kJ!' is in the kIth place. From the above result it 
follows that [i(k) i k ] 

(il,···,in IH~)\j»" .. ,jn) 
n 

= L L 8(il ,jd8(i2,j2)'" 
k=1 A. 

Therefore, from Eq. (6.30) one obtains 

1 n ~ 

H~) = L - L L a(il)·· .. a(ik)· .. ·a(in)·Po 
n,i n! k = I ik 

Since the a· all commute (bosons) or all anticommute (fer
mions) and since a(id· and a(jk) are similarly positioned 
relative to a(i l )·, resp. a(id, each of the terms in the sum over 
k is the same. Hence 

H~) = L L a(i)·(iJVllj) 
i,} tI> I 

However, 

1 L a(i2)·· .. a(in ).p oa(in ) ... a(i2) 
(n - I)! i" ...• i. 

is just Pn _ I' the pr54iector 01} the (n - 1 I-particle subspace of 
S, and since l:n> I Pn _ I = Is, we have the well-known re
sult 

H~) = L a(i)·(il Vllj)a(j). 
i,j 

This method of deriving results in second quantized form is 
direct, unambiguous and purely algebraic. All combinator
ics are incorporated in the foundations so all one need do is 
"turn the crank." We now proceed to the general HI/) case. 

We now use Eq. (6.32) in Eq. (6.30), use the orthogona
lity of 1 ni), and collect n(n - I )···(n - 1+ 1 )/I! = (7) equiva
lent terms to obtain 

H~) = L (/)~a[i(I)]·a[i(2)]· ... 
ill) •... ,i(n),n n! 

X a [i(n)]·Poa[i(n)] ... a[i(J + 1)] 

X a[i(J)']a[i(I- 1)'] ... a[i(I)'] 

X (i(I), ... ,i(1)1 V(1)li(I)"i(2)" ... ,i(I)'). (6.33) 

Next, observe that 
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Pn -1= 1 I a[i(1 + 1)] * ... a[i(n)] * 
(n - I)! i(l + ll •.... i(nl 

XP<f1[i(n)] ... a[i(1 + 1)] (6.34) 

is just the projector on the (n - I )-particle subspace of Sand 
that, since a*Pn -I = Pn -I + I a*, etc., Eq. (6.34) becomes 

(. 'IV(!)I" ") (") (") X 1), ... ,11 I) , ... ,11 a II ···a I) • (6.35) 

This well-known result, Eq. (6.35), holds for bosons and fer
mions alike. 

In particular, for I = 2, 

1 
H~) = - I ara! (Iml V(2)I/'m')am·al ·, (6.36) 

2 

where 

(ImlV(2)I/'m') = f f dxdy¢/(X)¢m(Y)V(x,y) 

x<ft ;(x)<ft ;"(y). (6.37) 

We have shown that the relation between configuration 
space and the space of second quantization is effected by a 
simple map n • from the Fock space F to the space of second 
quantization S and that S is isometrically isomorphic to a 
subspace P = nn * F of F. The subspace P consists of com
pletely symmetrized (bosons) or completely antisymme
trized (fermions) Fock vectors. The mapping then allows a 
simple transformation to be made from physical expressions 
in F to physical expressions in S. 

VII. GENERALIZED WANNIER AND BLOCH FUNCTIONS 

In this section we will discuss symmetrical orthogonali
zation as developed by Lowdin35 and later by others.36 Sur
veys on this procedure are given by Lowdin37 and more re
cently by J0rgensen. 

Consider a set of states Iv), v = I, ... ,M. The vectors are 
normalized (vlv) = 1, but are not necessarily linearly inde
pendent. The index v may be considered as specifying local
ization sites and the bound states at those sites. The closed 
span of these vectors is denoted by M. In the manifold M, we 
define the bounded strictly positive operator 

M 

g- I Iv)(vl· 
v=l 

According to the results in Sec. IV, 

s-lim (g + E)-)g = PM' 
EID 

(7.1) 

(7.2) 

where PM is the projector onto M. Further, if we define the 
vectors I vi by means of 

Iv) = lim (g + E)-) /2 Iv), (7.3) 
EID 

then 
M 

I Iv)(vl =PM • (7.4) 
v=l 

Ifthe vectors Iv) are linearly independent, then we know 

1291 J. Math. Phys .. Vol. 25, No.5, May 1984 

that the set [Iv) J~=) is an orthonormal set. In this case we 
call the vectors Iv) generalized Wannier functions. They are 
the usual Wannier functions of solid state physics when the 
sites correspond to a periodic lattice, whereas for a few sites 
the Iv) are atomic orbitals. 

As we previously pointed out, the Schmidt process for 
orthogonalization of a set of vectors is undemocratic, being 
highly dependent upon the order of vectors in the selection. 
In symmetric orthogonalization, the overlap matrix (Gram 
matrix) with elements (vlv') plays a central role. If we set 

M 

l<ft )= I Iv)<ft (v), (7.5) 
v=I 

then the inner product of two such vectors l<ft ), l<ft ') is given 
by 

M 

(<ft l<ft ') = I ¢ (v)(vlv')<ft '(v'), (7.6) 
v,v' =) 

which we will use later. 
Now let!. (v) be the orthonormalized eigenvectors of 

the overlap matrix: 
M 

I (vlv')f,,dv') = m"f,,(v), (7.7) 
v'= 1 

A. = I, ... ,M, v = I, ... ,M. Since (vlv'») is a positive semide
finite Hermitian matrix, m" ;;;.0. Thef" satisfy 

M 

I I" (v)f,,· (v) = {j (A., A. ') (7.8) 
v=l 

(orthonormality) and 
M 

I f,,(v)h(v') = {j (v, v') (7.9) 
,,=1 

(completeness). 
In Eq. (7.5) we put <ft (v) =!. (v}c" and define the corre

sponding l<ft ) to be IA. ) [i.e., IA. ) = ~~= I Iv) f" (v)c" ]. Then 
Eq. (7.6) becomes 

M 

(A.IA. ') = I c"I"(v)(vlv')f,,·(v')c,,. 
V,v' = 1 

= I c" c". I" (v)m" f,,· (v) = m" Ie" 12{j(A., A. '). 

(7.10) 

Vectors IA. ) for which m" = 0 are null vectors, since from 
Eq. (7.10) IliA. ) 112 = 0, and therefore IA. ) = O. Let the null 
space of the overlap matrix have dimension d, and label m" 
= 0 by A. = I, ... ,d. Then 

M 

I Iv) f,,(v) = 0, A. = 1, ... , d. (7.11) 
v=l 

Each nonzero eigenvalue m" of the overlap matrix gives rise 
to a normalized state IA. ) in M given by choosing c" 
= m,,-1I2; 

M 

IA.) = I Iv)!.(v)miIl2, A. =d + 1, ... ,M. (7.12) 
v=l 

The orthonormal set of vectors IA. ) defined by Eq. (7.12) will 
be called Bloch vectors (or functions) in the generalized 
sense. For periodically arranged sites these vectors are the 
usual Bloch functions of solid state physics while for a few 
sites they are the molecular orbitals. 
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The states IA ), M - d in number are complete in M, so 
any If/!)EM has the expansion 

M 

If/!) = I IA )(A If/!)· 
A=d+1 

From Eq. (7.12), 

(ViA) = my2 f,dv) , 

and from Eq. (7.13), 
M M 

(7.13) 

(7.14) 

Iv) = I IA )(A Iv) = I IA )]A(v)mY2. 
A=d+1 A=d+1 

(7.15) 
It then follows directly that 

Iv) = lim (g + €)- 1/2 Iv) 
,10 

M 1 
= lim I IA )(A Iv) 

EIO A=d+ I ~mA + € 

M 

I IA )]A(V), V= 1, ... ,M. (7.16) 
A=d+1 

The above equations may be inverted with the result 
M 

IA)= I Iv)fA(v), A=d+l, ... ,M. (7.17) 
v=1 

Therefore, 
M M 
I Iv)(vl = I IA )(A I =PM (7.18) 

y=1 A=d+1 

and 
M 

(vlv') = I fA (V)]A(V'). (7.19) 
A=d+1 

We observe that 

I (vlv') (v'lV") = (VIPMV") = (vIV), 
y' 

so that ( vlV'») is the (matrix) projector on the support of the 
overlap matrix. 

If the set Ilv) 1 is linearly independent (d = 0), then Eq. 
(7.19) becomes 

(vlv') = 0 (v, v'), (7.20) 

and Eqs. (7.16) and (7.17) become the statements ofthe iso
metric transformation between the IIV') 1 basis (Wannier) 
and the IIA ) 1 basis (Bloch) for M. 

We now illustrate that we have given the appropriate 
names (Wannier and Bloch) to these vectors. Consider the 
example of bound states la,., R;), localized at N sites R,., 
i = 1, ... ,N, in a periodic lattice of volume V. The indices a; 
each ranges from 1 to b, so our previous index v corresponds 
to the pair (a;, R i ) and M = bN is the total number of states. 
We suppose that the bound state wave functions satisfy peri
odic boundary conditions over the volume V. That is, 

f/!(a,R,I(r)= (rla;R;) = ~ I<Pa;(k)i
k
-(r-R,1, (7.21) 

vV k 

where k is the usual wave vector for periodic boundary con
ditions (over the entire volume V). At a given site R; we 
assume orthonormality, 
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(a, R;la', R;) = I~a(k)<Pa,(k) = o(a, a'). 
k 

The overlap matrix elements are given by 

(a, R; la', RI") = I ~a(k)<Pa,(k)e'··(R,-R"1 
k 

= I (M(k ))aa,e,··(R,- R,.l 

kEFBZ 

where FBZ means the first Brillouin zone and 

(M (k))aa' = I ~a (k + K)<Pa' (k + K), 
K 

(7.22) 

(7.23) 

(7.24) 

where K runs over the reciprocal lattice vectors. The compo
nents fkP (aR; ) of the eigenvectors of the overlap matrix are 
given by 

• ( R) 1 ,.·R· JkP a ; = --e 'gkP(a), 
Pi 

where gkP satisfies 
b 

kEFBZ, (7.25) 

I (M(k))aa,gkP(a') = mkPgkP(a), P = 1, ... , b. (7.26) 
u'= 1 

The f kP are orthonormal, 
_ b 

I fkP (aR;)fk'p ' (a, R;) = o(k, k') I gkP(a)gkP,(a) 
~ a=1 

= 0 (k, k')o (P, P '), (7.27) 

and complete, 

IfkP(aR;)]kP(a', RI") = o(a, a')I N1 
e,··(R,-R,.1 

kP k 

= o(a, a')o(R;, RI")' (7.28) 

Because of the linear independence of the laiR; )=Ia,., i), 
none of the mkP vanish. Hence from Eq. (7.12) we find the 
orthonormal and complete set of vectors 

IkfJ) ~ I') 1 ,.·R = £.. al e 'gkP(a), kEFBZ. 
a,; ~NmkP 

(7.29) 

These vectors clearly have the Bloch form. On the other 
hand, by Eq. (7.16) 

laR;) = I IkfJ) _1_ e -'.'R'gkP(a), (7.30) 
P,kEFBZ Pi 

which can be recognized as the original Wannier38 form, 
since, for a single band b = 1, gkP (a) is simply 0 (P, a). 

Further insight into the construction of laR;) is ob
tained by starting from definition, Eq. (7.3), for the tilded 
states. We first find the result of applying g to the vectors 
laR;): 

glaR;) = I la'RI") (a'RI" laR;) 
a'i' 

Let M (k) -1/2 be the inverse of the matrix 
M(k) = (M(k)aa,)1/2. Then 
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laRi ) =g-'/2IaR) 

= L la'Rt ) ~ L eik'(R .. - Ri)(M (k) -1I2)a'a' 
a't N k 

(7.32) 

Next expand M -1/2 in terms of the eigenvectors of M and 
make use ofEq. (7.3) to obtain 

1
- R ) - ~ I 'R ) 1 ~ 'k-{R .. - R i ) (') - 112- ( ) a i - L a t - L e gk/J a mk/J gk/J a 

a' N 

= L 1k/3) _1_ e,k.R'gk/J(a). (7.33) 
k/J IN 

We emphasize that Eqs. (7.29) and (7.32) are in particu
larly simple form, this being due to the fact that the 
(bN) X (bN) matrix problem reduces to just a (b ) X (b ) matrix 
problem. This reduction was possible because the sites were 
periodically arrayed and because we imposed periodic 
boundary conditions over the entire volume V. The first con
dition precludes disordered systems, and the second condi
tion precludes the consideration of surface states. If either of 
these restrictions is removed, we return directly to the full 
(bN) X (bN) matrix problem. In that case, the direct calcula
tion ofWannier functions by means ofEq. (7.3) is more effi
cient, since the operator (g + €) - 1/2 can be expanded system
atically and simply in a cluster expansion. 

As an example of the direct use ofEq. (7.3), we consider 
now the computation of the Wannier functions for an infi
nite linear lattice of Gaussians. This problem was studied in 
detail by Wannier. 39 Our result differs from that of Wannier 
in that the Wannier functions studied here are reflection
invariant about their respective localization sites. This is 
brought about because the phase is fixed by the symmetrical 
orthogonalization process. 

Consider the normalized bound states Ii) localized at 
Ri = ai, i = 0, ± 1, ± 2, ... , with wave functions rPi given by 

.1. ( ) _ ( I') - 1/4 -17{'(x-Ri)'/2 
'Pi X - X I - Y e 

=_1_ foo dk ifJ (k )/k(X - Ri), (7.34) 
fiii - 00 

so that the k-space wave functions (k Ii) are given by 

(k Ii) = ifJ (k )eikRi = e - (1I21T'J'lk'e - ikRi/[ii y1/4. (7.35) 

Then 

(k Ig/i) = (k 1~1i')(i'li» = ~ (k In (i'li) 

= ifJ (k)t ~~ 00 e - ikRJ: 00 dk' lifJ (k') 1
2eik '(R,. - Ri) 

=ifJ(k) 2: n~~oo lifJ(k+ 2:n)12e-ikRi, 

(7.36) 

where the last line results from performing the sum over the 
lattice in the convergence strip of ifJ. We have, therefore, 

(k Ii) = (k Ig-"2Ii) 

=ifJ(k)e-
ikR

{2: ~lifJ(k+ 2:n)n-
1I2

. (7.37) 
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This result may now be expressed in terms of the theta func
tion 0 3, since40 

= 1 ~ e - (1I21T'J'Hk + 21m/a)' 
1- 1/4 L 

v1Ty n=-oo 
e- k'/1T'J' (. 2k 14i) - 0 3 1----

- [iiy1/4 1Tay a2y . 
(7.38) 

Hence 

- - 1 foo h rPj(X) = (xli) = - (k li)ei dk 
fiii - 00 

a l/2 foo ejk(x-R.,) 

= 21T _ 00 [03(i2k/1Tay/4i/a2y)J1/2' (7.39) 

The integral in Eq. (7.39) is invariant under inversion in k of 
the integrand, so ¢j(x) is invariant under reflection ofx about 
R j • The orthonormality of the Wannier functions ¢j is as
sured since the infinite lattice of gaussians forms a linearly 
independent set. 

Another simple, but important, example consists of the 
two site problem first treated in the case of the hydrogen 
molecule by Heitler and London, and later by Hund and 
Mulliken.41 We consider now two hydrogen s-states cen
tered at R, and R2• The solutions to the overlap matrix prob
lem [Eq. (7.6)] are 

I 
f± (I) = v2 = ± f± (2), (7.40) 

where m ± = 1 ± liJ, liJ being the positive real matrix (112). 
The corresponding "Bloch" functions are 

I ±) = (11) ± 12»)1I~2(1 +liJ) (7.41) 

and the "Wannier" functions are 

Ii) = I +) _I + I _ ) _1 
v2 v2 

= ~( I + I )11) 
2 ~1 +liJ ~1-liJ 

1 (1 1) 12) 
+2 ~1 +liJ ~1-liJ 

and 

12) = I +) ~ - I -) ~ 

= ~( 1 _ 1 )10 
2 ~1 + liJ ~1 - liJ 

+ ~( 1 + 1 ) 12). 
2 ~1+(i) ~1-(i) 

(7.42) 

The former (Bloch) are called molecular orbitals and the lat
ter (Wannier), atomic orbitals. 

The relations inverse to Eqs. (7.42) and (7.41) are 

I ± ) = (Ii) ± 12»)(1Iv'2), 

11) = I + )~!(1 +liJ) + 1- )~!(I-liJ) 

= I i)!(~1 + (i) + ~1 - liJ) + 12)!(.Jl + (i) - ~1 - (i)), 
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and 

12) = I + )~!(1 + w) - I - )~!(1 - w) 

= I i)!(~l + w - ~1 - w) + 12H(~1 + w + ~1 - w). 
(7.43) 

Let la/3), a/3 = 1,2, be the vector for which the first 
electron is in state la) and the second in state 1/3 ). Then the 
spatial part of the two electron singlet states is spanned by 
the following states: 

r--:! ~ i""J 
1+ +) = [112(1 +~)] Ill) + 112) + 121) + 122») 

= !( Ill) + 12) + 121) + 122»), 

(I + -) + I - +»)( 11\'1) 

= [1I~2(1 - ( 2)] (111) - (122») 
i""J f',J 

= (11\'1)(110 -122»), 

1- -) = [112(1 - w)](111) - 112) - 121) + 122») 

= !((u'> - (i2) - (21) + (22»). (7.44) 

The first and third states in Eq. (7.44) are Il:g states, and the 
second state is a Il:u state. The original Heitler-London 
state is 

112) + 120 

~2(1 + ( 2
) 

= {I + +)(1 + w) -I - - )(1 _ w)} 1 , 
~2(1 + ( 2

) 

(7.45) 

whereas the original Hund-Mulliken state is I + + ) ofEq. 
(7.44). Clearly each is an arbitrary linear combination of the 
two I l:g functions and thus would yield a higher value of the 
energy than the lower of the two energies obtained by dia
gonalizing the two electron-two fixed proton Hamiltonian, 
the diagonalization being done with linear combinations of 
I + +) and I - -). 

We conclude this section by analyzing a somewhat non
physical problem, that of a spatially uniformly continuous 
distribution of bound states. Consider the case for which the 
site index i is replaced by a continuous variable R, which is 
uniformly distributed over all space. We take a normalized 
bound state wave function centered at R to be 

"'(r - R)=(r IR)=_l_I¢ (k)eik.!r-R) d 3k. (7.46) 
'I' {21T)3/Z 

Then the r, r' matrix elements of g are given by 

(rlglr')== I ¢ (r - R) d 3R ~ (r' - R) 

= II¢ (kWe'"k1r-r') d 3k, (7.47) 

and g to any real power a has matrix elements 

(rlgalr') =_1_I[(21T)31¢(kWlael"k1r-r')d3k, (7.48) 
(21T)3 

provided the integral exists. We see that 

1 I 
e,"k'!r - r') d 3k 

( It:> )-I/ZI ') - (749) 
r \15 + E r - (21T)9/2 (I¢ (kW + E)1/2' . 

Now, 
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(r'l R) = _1_ I e,"k'·!r - R)¢ (k') d 3k', 
{21Tf/2 

and hence, 

(rllk + E)- 1/2 IR) = (rIR) = ¢R{r) 

= (2~)6 I I I e'"k·re - l"k'r' d 3k 

Therefore, 

¢R{r) = lim (rllk + E)-I/ZIR) 
EIO 

= _1_ I ¢ (k) e'"k1r - R) d 3k. (7.50) 
(21T)3 I¢ (k)1 

We observe that ¢R (r) is not inL Z(R 3, d 3X) as could have been 
anticipated since in the expression 

(7.51) 

the total measure S d 3R = 00. 

Even though we are dealing with improper functions in 
the L 2 sense, nevertheless, 

I ¢R {r)¢R (r')d 3R 

= _1_ II ¢ (k) e,"k'!r - R) 
{21T)6 I¢ (k)1 

Xe -,"k"!r' -R) ~ (k) d 3R d 3k d 3k' 
1¢(k)1 

= _1_ II ¢ (k) e,"k·r8 (k' - k) ~ (k') d 3k' d 3k 
{21T)3 I¢ {k)1 I¢ (k')1 

= 8(3)(r - r'), (7.52) 

which represents the unit projector on H. This result could 
have been anticipated, since the functions given by Eq. (7.46) 
are total for any reasonable choice of ¢ (k), i.e., a Gaussian.42 

VIII. CONCLUSIONS 

We have presented in an elementary manner some of 
the basic principles having to do with projection operators. 
In addition, we have shown how to apply these basic tech
niques to a variety of problems occuring in theoretical phys
ics. We make a case for the unity of the subject and try to 
show the great utility of this unified approach. 
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We describe and analyze a parametrization offractal "curves" (i.e., fractal of topological 
dimension I). The non differentiability of fractals and their infinite length forbid a complete 
description based on usual real numbers. We show that using nonstandard analysis it is possible to 
solve this problem: A class of nonstandard curves (whose standard part is the usual fractal) is 
defined so that a curvilinear coordinate along the fractal can be built, this being the first step 
towards the possible definition and study of a fractal space. We mention fields of physics to which 
such a formalism could be applied in the future. 

PACS numbers: 02.40. + m 

I. INTRODUCTION 

The concept of fractals, introduced by B. Mandel
brot,I-3 applies to any curve, object, or set "whose form is 
extremely irregular and/or fragmented at all scales." More 
precisely, let D be the fractal dimension (e. g., the Hausdorff
Besicovitch dimension); a fractal is defined2,3 as a set for 
which D is greater than the topological dimension DT . 

Nowadays this concept is increasingly considered in 
physics for several reasons: 

(i) Fractal curves are functions which are continuous 
but nowhere differentiable; this property has already been 
observed for some natural phenomena, such as particle tra
jectories in quantum mechanics.4

,5 

(ii) The length of a fractal curve is dependent on the 
resolution with which it is measured and diverges when the 
resolution tends to be infinite. 

(iii) A fractal dimension can be any real number, so this 
concept may apply to fields of physics such as critical behav
ior phenomena, where noninteger dimension has become a 
necessity. 

Mandelbroe-3 pointed out many examples of the con
tribution fractals can bring to the description of natural phe
nomena such as the length of a coastline, the distribution of 
matter in the universe, turbulence, moon craters .... Further
more, the concept of Haussdortf dimension has been applied 
to QCD jets,6 gauge theories,? critical behavior,8 fluctu
ations of the early universe,9 or quantum-mechanical paths.5 

However, in most cases, the authors limit themselves to 
the calculation of a fractal dimension or use fractals in a 
purely descriptive way (but see Le Mehaute et al. IO

•
II

). Be
cause of the wide domain where phenomena seem to exhibit 
a fractal behavior, one is entitled to wish that a more thor
ough use of this concept would be possible, e.g., by building a 
formalism based on fractals and suitable for physics. In fact, 
no explicit calculation is presently possible on the fractal 
itself (i.e., the limit object instead of one of its approxima
tions). It is the aim of this paper to show that nonstandard 
analysis, as built up by Robinson l2 is well adapted to such 
calculations. 

In this paper, we first parametrize fractal "curves" (i.e., 
fractals of topological dimension 1) in the Cesaro l3.2 way 
(Sec. II). Then some paradoxical properties of fractals are 
evidenced and are clarified by the use of nonstandard analy-

sis (Sec. III) as a way to build intrinsic curvilinear coordi
nates along a fractal curve (Sec. IV). This is hopefully a first 
step towards the definition of a fractal space by its own, 
while so far fractals have been considered as subsets of an 
integer-dimensional space. 

II. PARAMETRIC EQUATION OF A FRACTAL CURVE 

Consider a generalized von Koch curve in the R2 (or q 
plane. It can be built from an initial curve FI made up of p 
segments of equal length 1/ q which connect the origin to the 
point [0,1] (see Fig. I). Let lUj+ I be the polar angle ofthejth 

segment and Zj = Xj + ilj = (l/q) ~t~lo /Wk the complex 
coordinate of a breaking point Pj • Two conditions hold 
between these data: 

(2.1) 

A curve F2 is obtained by substituting each segment of FI by 
F2 itself, scaled at its length 1/q, as illustrated in Fig. 2. The 
resulting curve of an infinite sequence of these steps (substi
tution of each segment of Fn by q - n FI giving Fn + I ) is the 
fractal F. 

As indicated by Mandelbrot3 in the case of the Peano 
curve, F can be parametrized by a real number x E [0,1] de
veloped in the counting base p in the form (see Fig. 2): 

00 

x = 0.X I X 2 ••• = I X k P - k. (2.2) 
I 

The fractal will apparently be completely defined when the 
complex coordinate Z (xl ofthe point on Fparametrized by x 
is known. Z (x) can be easily obtained, thanks to the above 
building process of F, under the form 

y 

F, 

\ 
\ 

~~~~~------------~----~ X o 

FI G. I. Building of the basic structure of a fractal curve. 
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~1\'-"--3 _ 

FIG. 2. Parametrization of a fractal curve. 

Z(x) = ZX, + q-I/"'x, [ZX, + q-liWX
,[ zx, + ... ]], 

(2.3) 

so that we finally obtain 

Z(x) = q i: ZXk ei:r.~;;" W
X

/ q- k. 

k=1 

(2.4) 

If one defines new variables Pj' OJ' and rp Xj by writing 
j-I 

Z _ ilJj _ 0 + ~ j - qpje , rpx
j 

- Xj £.. w X /' 

1= I 
(2.5) 

another interesting form for the parametric equations of a 
fractal can be given 

XIx) = i: PXk cos (rpx.)q-k, 
k=1 

(2.6) 

Y(x) = i: PXk sin (rpx.)q - k. 
k=1 

It is well known that, with its dimension lying between 1 
and 2, a fractal curve within a plane is intermediate between 
a line and a surface. Indeed, while it may be built by adding 
segments it may also be obtained by deleting surfaces. 2.3 This 
construction allows dealing with the problem of multiple 
points. Given an initial curve F I , consider a polygon Po of 
surface .Yo with one of its diagonals being the segment [0,1] 
and in whichFI is included. Then build around each segment 
of FI a q-reduced scale version of Po: We obtain a figure PI 
(for example of such a construction, see Fig. 3). An obviously 
sufficient condition for the absence of multiple points is that 
all polygons of PI are disjointed, since this will remain true in 
the figures P2, P3, ... , Pn .... Let oWj = Wj - Wj _ I be the an
gle between two segments in FI (see Fig. 1). Then for two 
adjacent segments, the above condition leads to (angles a, /3, 
yare defined in Fig. 3) 

a+ + /3 + < 1T - ow}' a- + /3 - < 1T + ow}' (2.7) 

so that we get for all values of} the sufficient conditions 

- y- < ow} < y+. (2.8) 

Let us now illustrate the nonstandard character of fractals, 
answering (by the negative) the question: Do Eqs. (2.2) and 
(2.6) characterize all properties of Fin the H2 plane? 

1297 

FIG. 3. Building of a fractal by delet
ing surfaces. 
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We first recall that, with its fractal dimension2
•
3 

D = logp/log q, the length ofthe fractal is infinite and its 
surface vanishes since the Fn length and surface are 

.!f nl.!f 0 = (plqt = qnID-II, 

(2.9) 
Moreover, however small the difference of parameters 

x(2) - x(l) for two points M2 and MI on the fractal, though 
the distance in the plane IZ(x2 ) - Z(xl)1 vanishes, the dis
tance along the fractal remains infinite. 

However, let us build the following sequence: 

U' - I ( n)p - h 0 an = a..z n = aq = .anl an2 ... anp' (2.10) 

where a is a nonzero number. Assume now that the an's are 
the parameters of a given sequence of points Mn on the 
curves Fn. The curvilinear coordinates of these points along 
Fn are equal to 

(2.11) 

For example, in Fig. 4 the sequence of parameters 0.1, 0.03, 
0.021,0.0123, ... defines points at a constant distance 0.1 
from the origin on the respective curves F I , F 2, F 3, F4 .... Let 
now n - 00 and consider the limit point M of the sequence 
Mn onF. FromEq. (2. 10) its parameter is lim (an) = 0, i.e.,M 
coincides with the origin 0; however, from Eq. (2.11), the cur
vilinear distance between 0 and M on the fractal is a =1= O. 

From this "paradox" we conclude that the real coordi
nate x is insufficient to describe thoroughly the fractal curve 
F: the distance along Fbetween two points parametrized by 
two different x's is infinite, while points separated by a finite 
distance along F correspond to the same values of x. Thus 
another formalism is needed, and more precisely a set "larg
er" than R: Nonstandard analysis l2 which allows dealing 
both with infinitesimals and infinite numbers, provides such 
a frame, well adapted to the study offractals, as we show in 
the following sections. 

III. NONSTANDARD ANALYSIS: A REMINDER 

Nonstandard analysis (NSA) may be considered as the 
solution A. Robinson worked out for the old problem of 
infinitesimals. Leibnitz, founder of differential calculus, 
thought of "infinitely small" and "infinitely large" numbers 
as ideal numbers to which operations on usual numbers 

F, ~ 
~ 
~'i'?_ ... _ .. 

>:---'/\\---.-. 

..nJ"-v...,.'> ( 

a, = 0.1 

a 3 = 0.021 

a4 =0.0123 

FIG. 4. A sequence of points on F. with constant curvilinear distance to the 
origin. 
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would apply, though he was unable to build a coherent sys
tem: In fact the up to now accepted signification of these 
expressions involves the theory of limits and the so-called 
epsilon-delta method according to the works of Cauchy and 
Weierstrass. However, Robinson l2

•
14 has demonstrated that 

real numbers R can be extended to *R which contains infi
nitely small and infinitely large numbers. 

We will not try here to present a detailed description of 
NSA, but only recall some basic results useful in what fol
lows independent of the precise way the theory is evolved, 
using, e.g., free ultrafilters and equivalence classes of se
quences; see Robinson,14 Stroyan and Luxemburg, 15 or us
ing an axiomatic extension of the Zermelo set theory, see 
Nelson. 16 

The set R of hyper-real numbers is a totally ordered and 
non-Archimedean field. The set R of standard numbers is a 
subset of *R. *R contains infinite elements, i.e, elements A 
such that Vn E N, IA I> n. It also contains infinitesimal ele
ments, i.e., B such that V n E N (n #0), IB I < lin. A finite 
element Cis defined: 3 mEN, IC I <m. The set of in finites i
mals is denoted by 0, the set of finite numbers by () and the 
set of infinite numbers by *Roo . Any finite number a E () can 
be split up in a single way as a = r + €, where r E Rand € E o. 
In other words, the finite hyper-reals contain the ordinary 
reals with new numbers a clustered infinitesimally closely 
around each ordinary real r. Their set I a I is called the mo
nad of r. The real r is said to be the "standard part" of the 
hyper-real a, a function denoted by r = st(a). The "st" func
tion is very useful for nonstandard demonstrations of stan
dard theorems. For instance a sum ~o In is said to converge 
if for different .tl 's belonging to the set of infinite hyperna
tural numbers *N 00 , st (~~ In) are all equal to the same finite 
number. Apart from the strict equality" = ", one introduces 
the equivalence relations"::::;" meaning "infinitely close to," 
i.e., a::::;b (<=»st(a - b) = 0, and the relation "~" meaning 
"of the order of," i.e., a-b (<=» 3 k E R, k #0 such that 
a=kb. 

Formal descriptions ofNSA may be found in Refs. 14-
17. There have also been some attempts of applications of 
NSA to physics, e.g., Kelemen and Robinson, 18.19 Moore,20 
Anderson. 2 

I 

IV. NONSTANDARD COORDINATES ALONG 
FRACTALS 

In Sec. II, a fractal in R2 was parametrized by a real 
number belonging to the interval [0,1]: 

XI X2 Xn X=-+-+ ... +-+ .... (4.1) 
P p2 pn 

Let us generalize the usual fractal by introducing a curve Fw 
in *R2, parametrized by an hyper-real number x* E*[O, 1], as 
defined by the *-finite power series expansion 

Xl Xn XlV_m XlV 
x*=-+ ... +-+'" +--+ ... +-, (4.2) 

p ~ ~-m ~ 

where lU E*N 00 • In other terms, Fw may be obtained by ap
plying the building process in Sec. II (Le., build Fn + I by 
substituting to each segment of Fn, F J scaled by q - n) lU 
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times. It should be noticed that Fw is not a fractal in the 
nonstandard sense (since the fragmentation is * limited up to 
lU) but its standard part is identical to the usual fractal, i.e., 

F st(F,u)' (4.3) 

Then the study of Fw allows us to study the properties of F, 
thanks to the standardization axiom. 

A first advantage is that, while the length of Fwas unde
fined, the length of F,u is defined: 

!f,u = (p/q)'u = qwlD- 11. (4.4) 

While the surface of Fwas zero, the surface of Fw is an infini· 
tesimal: 

(4.5) 

The curvilinear coordinate S of the point parametrized by x* 
is now also defined on F,u: 

S=x*!fw =q',ul xw +xw_1p+ .. ·+xIP"'-T (4.6) 

This verifies that Fw is built up with elementary segments of 
length q - "'. By using an infinitely great magnifying power, 
Fw can be drawn exactly (while this was not the case for F) as 
in Fig. 5. The fractal is no more a limit concept. 

Let us now utilize the new concept of F", to study or 
clarify some problems specific of fractals, which may be rel
evant for physical applications. 

A. Finite distance along the fractal 

In Sec. II we obtained a point separated from the origin 
by a finite nonzero distance along the fractal, while its pa
rameter was X = O. This situation may be clarified by defin
ing M such that 

SM = !f,u p-M = 1. (4.7) 

Then M is a solution of the equation 

(4.8) 

so that 

M = lU(1 -logp/log q) = lU(l - liD). (4.9) 

Generally M is not an integer; therefore we define A E *N oc 

as 

A = Int(M) = Int[lU(1 - liD)], (4.10) 

where Int(X) is the integer part of X (it is straightforward to 

FIG. 5. Infinite magnification of curve Fw. the standard part of which is the 

fractal F. 
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verify that this function is still defined in *H). For any A. I such 
that.1 I -A. (the relation - "of the order of" has been defined 
in Sec. III), the curvilinear distance along the fractal SA' 
= !e '" p - A • belongs to R. However, and this allows one to 
understand why x = 0 while S #0, the corresponding dis
tance in the H2 plane is an infinitesimal, q - A', the standard 
part of which is thus zero. 

Consider two points on F", separated by a curvilinear 
distance S. Depending on the power n of p in the expression 
(4.6) of S, three levels may be distinguished on F",: 

-n EN: Finite distance in the H2 plane, infinite along 
the fractal. 

-n-.1: Infinitesimal distance in the H2 plane, finite 
distance along the fractal. 

-n -w: Infinitesimal distance in H2 and on F",. At this 
level the two distances are of the same order. 

B. Intrinsic building of F 

Parametric equations for F have been given in Sec. II 
(Eq. 2.6): It relates the parameter x to the coordinates X, Yin 
the H2 plane. An intrinsic building of F"" independent of the 
plane in which it is embedded, is possible: We only need to 
know the change in direction from each elementary segment 
oflength q - Cu to the following one. In Sec. II, we had set tJWj 
= Wj - Wj _ I , the angle between two segments in Fl (see Fig. 
1). Consider the infinitesimal segment of curvilinear coordi
nate S onFw , and define h such thatxw _ h is the first nonzero 
figure of the hypernatural number qWS in the base p: 

s=q-W 

X ! 0 + 0 X P + ... + 0 X ph - I + Xw _ h ph + ... + X I plU - I J . 
(4.11) 

The relation for the angle we were looking for and which 
allows an intrinsic building of Fw is simply given by 

tJwj(s) = tJwx ,"_ h' (4.12) 

A somewhat paradoxical property offractals is that this rela
tive angle exists and may be computed for any value of S, 
while on the contrary the absolute angle Wj (S ) does not exist 
as soon as Sq'" becomes infinite, since 

(4.13) 
q'"t;' ~ J 

so that the value of st [w(s )] depends on that of W (this is the 
nonstandard transfer of the nondifferentiability of F). 

C. Family of curves FlU and E differentiability 

The standard part of any curve differing from Fw only 
by infinitesimals will also be the fractal F. This is true for any 
F",. with w' E *N 00 ,w' #w, but might be generalized. In par
ticular the "broken" aspect of Fw can be given up and F", 
replaced by a smoothed nonstandard curve F:", with 
F = st(F:"). A kind of differentiability can be defined for F:., . 

Indeed, nonstandard analysis may be used to define dif
ferentiability of standard functions 15: 
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'rJ x::::;y::::;a, fix) - f(a) ::::; fly) - f(a) finite, 
x-a y-a 

thenf'(a) = st (f(x) - f(a)). 
x-a 

This definition could be generalized to an "E differentia
bility" of nonstandard curves in the following way: If 3 E E 0, 

such that 'rJ x,y, a E *H verifying Ix - al < Eand I y - a/ < E, 

and 

fix) - f(a) _ flY) - f(a) 

x-a 

finite, then 

y-a 

f; (a) = st (f(X) - f(a)). 
x-a 

In that sense, one can define a curve F:" which is E 

differentiable everywhere, since the above definition is veri
fied by taking E = Eo with Eo q"'::::;O. It is clear that differen
tiability implies E differentiability but that the reverse propo
sition is false, as shown by fractals. 

V. GENERALIZATIONS AND CONCLUSION 

To simplify the description of the concepts introduced 
in this paper, we have worked only with regular fractals of 
topological dimension 1 in H2. Some straightforward gener
alizations may be considered. 

For instance a fractal curve in H3 is parametrized in the 
same way as in H2, the angles Wj of the elementary segments 
of FI being replaced by rotation matrices Rj that define the 
new reference system tied to each segment vj ; the elementary 
points are defined by vectors uj , with Vj = uj + I - uj . Thus, 
if p and q have the same definitions as above, a point of 
parameter x = 0.X IX2·"Xn ... in the counting base p is refer
enced by a vector: 

00 

u(x)= '" Rx Rx .. ·Rx Ux q-n. 
"'-' n rt - lIn + 1 

(5.1) 
n=O 

Such a curve has a topological dimension 1 and a fractal 
dimension D = 10gp/1og q lying between 1 and 3. 

Another possible generalization is to give up self-simi
larity and to build a more general fractal curve in H2. F J is 
built up with Po segments, the coordinates of the "breaking 
points" being Zx" with XI = 0, 1, ... , p - 1. In each segment 
of FI referenced by XI' we introducepx, new segments de
fined by Zx,x"x2 = 0, 1, ... ,px, - 1, andanglewx,x,; we then 
build F2• This construction is extended to the infinite, by 
giving ourselves the coordinates Zx, ... x

n
, where Xn 

E ! 0,1, ... , Px,,,,x
n
_, - 1) and angles wx,,,,x

n
' There are 

Px""x
n 
_, new segments of length 1/ qx, ... x

n
' Since the base p 

varies from segment to segment, the sequence x IX2 ",xn ... is 
now only a code and cannot be summarized by a number. 
The complex coordinate in the H2 plane of a point on F is 
then 

(5.2) 

This construction is obviously not unique. The dimension of 
F could be defined as (p) (q - D) = 1 (see Mandelbrot2). 

Up to now, only fractals with a globally given dimen-
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sion D have been discussed. However the fractal dimension 
can clearly be a local property,2 varying with the curvilinear 
coordinate D = D (s); this is more easily understandable by 
remembering the underlying infinitesimal structure. 

In the future, we will try to extend the parametrization 
presented here to fractals of topological dimensions greater 
than one. Instead of studying fractal objects embedded in an 
Euclidean space, the aim of such a work would be to define a 
fractal space intrinsically. Its dimension could then be a gen
eric parameter and function of the coordinates in the same 
way as curvature occurs for curved spaces. 

In a forthcoming paper,22 one of the authors will con
sider physical applications of this formalism to quantum me
chanics (uncertainty relations and theory of measure). We 
think the notions developed here could help in the field of 
quantization of gravity: the studies in this field usually as
sume without question an underlying, eventually foamy, 23 4_ 
manifold. Below some characteristic length, space itself 
could become a fractal. To be more specific one could for 
instance perform latticelike gauge field calculations24 on a 
fractal. Let us notice that the path-integral ingredient of 
such calculations has also recently been formulated in terms 
of nonstandard analysis.20 When applied to cosmology these 
ideas lead to the natural speculation that the very early uni
verse experienced in its whole a non integer-dimensional 
phase. To conclude we hope that these new trends will help 
to answer the question: Why does the macroscopic space 
appear to be three dimensional? 
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The trivial bundle of orthonormal frames over flat space-time is decomposed into two subbundles 
with structure groups SO(I,I) and SO(2), respectively. The curvature in the SO(2) bundle is 
identified with the electromagnetic field. It is shown that on certain conditions imposed upon the 
bundle decomposition the exterior derivative of the mean curvature I-form in the SO(2) bundle is 
equal to the curvature 2-form in the SO(1, 1) bundle. These conditions are (i) the Frobenius 
integrability of certain distributions generated by the splitting of the associated tangent bundle, 
and (ii) the vanishing of the mean curvature in the SO(I,I) bundle. For a single point charge the 
curvature in the SO( 1,1) sub bundle is identical to the radiation part of the Lienard-Wiechert field. 

PACS numbers: 02.40. + m, 11.15.Kc, 03.50.De 

I. INTRODUCTION 

In this paper we further elaborate the idea of geometriz
ing the Lienard-Wiechert field of a single point charge along 
the lines discussed in a previous publication. 1 There the bun
dle of orthonormal frames over space-time was split into an 
SO(I,I) and an SO(2) subbundle. By explicit calculation us
ing retarded coordinates the curvature 2-form in the SO(2) 
bundle could be identified with the dual of the Lienard-Wie
chert field, whereas the curvature 2-form in the SO(I,I) bun
dle turned out to be the radiation part of the Lienard-Wie
chert field. On the other hand, the radiative part could be 
obtained as well by exterior differentiation of the mean cur
vature I-form in the SO(2) subbundle. The main result of this 
paper is to reveal the origin of these seemingly unrelated 
features of the radiation field. We give sufficient conditions 
to be imposed on the splitting of the tangent space of space
time, in order to get the above-mentioned relation between 
curvature 2-form in the SO(l,l) bundle and mean curvature 
I-form in the SO(2) bundle. 

We proceed as follows: 
In Sec. II we briefly review the geometry of the bundle 

of orthonormal frames over a modified space-time M 4- • The 
modification consists of removing the timelike world lines of 
charged particles from ordinary Minkowski space. M4-

serves as base space for the principal bundle A 4- of ortho
normal frames which has as its structure group the Lorentz 
group SO(I,3). The associated tangent bundle 7 4- is decom
posed into the Whitney sum of two two-dimensional vector 
bundles with SO(l,l) and SO(2) as associated structure 
groups, respectively. That decomposition of 7 4- is equiva
lent to reducing the Lorentz group SO(1,3) to the product 
group SO( 1,1) X SO(2). We calculate the connection coeffi
cients and curvature 2-forms in the subbundles and subse
quently discuss their behavior under local SO(I,I)X SO(2) 
gauge transformations. We introduce linear combinations of 
the connection coefficients which have the property of con
stituting a representation of the factor group SO(2). These 
new potentials allow us to infer the existence of an integra12-
surface, independently of how the tangent space was split 
previously. Moreover, if expressed in terms of the new po
tentials, the curvature 2-form in the SO(2) bundle decom-

poses into two pieces, which in case of the Lienard-Wiechert 
field represent, respectively, the bound and the radiation 
parts thereof. 

In Sec. II we take a closer look at distributions j and Li 
which are representation spaces for the reduced gauge 
groups SO(I, 1) and SO(2), respectively. Ifwe require both j 
and..::1 to be integrable, the Frobenius theorem yields condi
tions on the new potentials. Demanding integrability of a 
certain three-dimensional distribution J, in which the two
dimensional distribution Li is embedded umbilically we ob
tain some further constraints on our potentials. These inte
grability conditions constitute one part of the assumptions 
needed for establishing the main result of the paper. 

In Sec. IV we shortly review the notions of torsion 1-
form and mean curvature I-form and give the results for 
these quantities in both the subbundles under consideration. 

In Sec. V we combine the integrability conditions, the 
property of umbilicality of Li in J and the requirement of 
vanishing mean curvature and thus prove the following as
sertion: on the conditions stated the mean curvature I-form 
in the SO(2) bundle is a gauge transform of the connection 1-
form in the SO( 1,1) bundle. In other words, the curvature in 
the SO( 1, I) bundle is the derivative of the mean curvature 1-
form in the SO(2) bundle. 

We finish the paper by discussing the physical implica
tions of the geometric assumptions made. 

II. THE SPLITTING OF THE SPACE-TIME TANGENT 
BUNDLE 

Consider the trivial tangent bundle 7 4- of the modified 
Minkowski space M 4- • We denote the principal bundle of 
orthonormal frames associated to 7 4- by A 4- . A ;- being 
trivial allows us to choose the usual canonical connection w 
in A 4-' The assignment of an orthonormal frame 
e(x) = {el" (x) J to each point x€M 4- defines a cross section in 
A 4- • The local canonical connection w(x) is obtained by tak
ing the covariant derivative V of the tetrad vectors el" (x), 

Ve(x) = e(x) ® w(x). (2.1) 

The connection I-form w(x) takes its values in the Lie algebra 
,ho(1,3) of the Lorentz group SO(1,3) and can be decomposed 
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with respect to a basis of generators (T i
, t i) offi",(1,3); 

w(x) = Aa,b(X)P + Ba,b(X)t a. (2.2) 

The Lorentz group generators satisfy the commutation rela
tions (a,h,c = 1,2,3) 

[T a, T b ] = €"bc T
C, 

[Ta,t b ] =€"bctC' 

[t a, t b ] = _ €"bcTc. 

If we make the identifications 

with 

(2.3) 

(u·u) = - (v·v) = - (k.k) = - (b.b) = + 1, (2.4) 

the Cartan structure equations (2.1) read in full detail 

Vu = v ® BI + k ® B2 + b ® B3, 

Vv = u ® BI + k ® A3 - b ® A2, 

Vk = u®B2 - v®A3 + b®AI, 

Vb = u®B3 + v®A2 - k®A I. 

(2.5) 

As we are dealing with a trivial bundle thefi",(1,3)-valued 
curvature n vanishes 

n = clw + wI\. w = o. (2.6) 

We now split the trivial tangent bundle 1'4- into the Whitney 
sum of two nontrivial bundles 

(2.7) 

In the principal bundle A 4- that splitting of the tangent 
space of space-time M 4- is equivalent to the reduction of the 
4-frame e(x) to two 2-frames 

e(x)~(x) X e(x), (2.8) 

where e(x)= I u(x), v(x) I spans the distribution.3 and, simi
l!lrly, the subframe e(x)={k(x), b(x)J spans the distribution 
.1. The reduced gauge group SO(I, 1) X SO(2) is the subgroup 
of all local Lorentz rotations A 

e'(x) = e(x)·A (x), AESO(I,I)XSO(2), (2.9) 

which leave invariant the distributions.3 and j. The local 
SO(2) gauge transformation in 74 is given by 

k' = cos a k + sin a b, 
(2. lOa) 

b' = - sin a k + cos a h, 

whereas the local SOl 1,1) gauge transformation in ;4 reads 

u' = cosh f3 u + sin f3 v, 
(2. lOb) 

v' = sinh f3 u + cosh f3 v, 

where a(x) and f3 (x) are space-time dependent gauge func
tions. Under the composite local SO(1,1)XSO{2) gauge 
transformation the potentials introduced in Eq. (2.2) trans
form as 
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A' =AI +da, 

A; = cos a cosh f3 A2 + sin a cosh f3 A3 

+ sin a sinh f3 Bz - cos a sinh f3 B3, 

A; = - sin a cosh f3 A2 + cos a cosh f3 A3 

+ cos a sinh f3 B2 + sin a sinh f3 B3, 

B; = BI + d{3, 

B; = - sin a sinh f3 A2 + cos a sinh f3 A3 

+ cos a cosh f3 B2 + sin a cosh f3 B3 , 

B; = - cos a sinh f3 A2 - sin a sinh f3 A3 

- sin a cosh f3 B2 + cos a cosh f3 B3• 

(2.11) 

In order to construct connection forms in the subbundles ; _ 4 

and 1'4' the canonical flat connection w is projected onto the 
SOl 1,1) X SO(2) sub algebra of the Lorentz algebra 

OJ = p·w.P= Bit I, 
(2.12) 

The non vanishing curvatures of the two reduced bundles are 
given by 

il = dBlt I = ( - A21\. B3 + A31\. Bz)( I, 

il = dAITI = (- A21\.A3 + B2I\.B3)TI. 

(2.13a) 

(2.13b) 

In writing the curvature coefficients as on the right-hand 
side of (2.13) we made use of the vanishing of the ;lO( 1,3) 
curvature (2.6). 

It can easily be checked that under the joint 
SOt 1,1) X SO(2) gauge transformation the curvature fields 
dAI and dBI are invariant, as expected. If the specific bundle 
as constructed in Ref. 1 is used, the curvature i1 in the SO(2) 
bundle can be identified with the dual *IF of the electromag
netic field of a single point charge 

*IF = dA\. (2.14) 

There it was also shown that the curvature il in the normal 
bundle;4 is equal to the radiation part r IF of the single parti
cle field 

(2.15) 

Keeping in mind this physical meaning of the geometric 
quantities we resume the investigation of the general geo
metric structure without referring to a single particle. The 
latter will serve only as an example to demonstrate our more 
general statements. It will be useful to introduce the new 
potentials 

lK = - A3 - B2 , 

(2.16) 

which under local SOl 1,1) X SO(2) gauge transformations 
tum into 

lK' = ef3 (cos a lK + sin a lllI), 
(2.17) 

lllI' = ef3( - sina lK + cos a lllI). 

Thus we get 

K.' I\. lllI' = e2lilK/\ lllI, (2.18) 
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from which it follows that the (K, H)-plane remains invar
iant under gauge transformations. 

Under pure SO(2) transformations the potentials trans
form like the base vectors k and h of the original tetrad. This 
observation hints at the possibility that the same 2-plane ..1 
may be spanned by the 2-form k A h as well as by K. A JElL 

Equation (2.17) further tells us that under pure sot 1,1) 
transformations the potentials Hand K. transform like the 
inverse of a lightlike distance p. The problem of assigning a 
distancep(x,y) to two events x,y separated by a lightlike vec
tor N = x - y (N.N = 0) can be solved by first choosing 
some timelike vector u. Then a distance p between these two 
events can be defined as2 

p(x,y) = (u·N). (2.19) 

Once a time axis u has been chosen there is a spacelike unit 
vector v in the (u,N)-plane such that 

(u·v)=O, 
(2.20) 

N = p(u + v) = : pn (n.n) = 0. 

Obviously, the lengthp ofthe vector N strongly depends on 
the choice of the time axis u. At this point the question arises 
as to how p changes when u is rotated according to an 
SOt 1, 1) transformation (2. lOb). A simple calculation yields 
the following transformation property for p: 

p' = (N' u') = e -lip. (2.21) 

Since the dimension of the potentials Hand K. is that of an 
inverse length, it is tempting to consider the dilation factor ef' 
of the SO(l, 1)-transformed potentials H', K.' [(2.16)] as origi
nating from the inverse length constituent of those poten
tials. This assumption is easily verified for a single particle l 

where one finds indeed 

(2.22) 

Furthermore, when we eliminate A2 and A3 in the expression 
for the total field (2.13b) in favorofH and K. weare left with a 
new form for the total field in the general case 

"'F = HAK. + HAB2 - K.AB3. (2.23) 

Similarly we get for the curvature in the normal bundle 
(2.13a) 

(2.24) 

In the single particle case the terms bilinear in H, K. consti
tute the bound field bF -p -2, whereas the terms containing 
Hand K. linearly make up the radiation part r F - P - I. 

Let us now exhibit another aspect of the potentials H 
and K.. By again exploiting the vanishing of the curvature 2-
form in the original SO(I,3) bundle we find 

d(K. A H) = 2B j A K. A H. (2.25) 

This is just a Frobenius integrability condition3: it states that 
the distribution ..11, say, orthogonal to the (K,H)-plane, is 
always integrable, no matter how the splitting ofthe tangent 
space was performed. Thus it seems that it is the distribution 
spanned by the vectors Hand K, rather than ..1, that is rel
evant for geometrically describing an electromagnetic field 
configuration by means of a system of two-dimensional sur-
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faces in space-time. In the Appendix we give an example 
where this conjecture is shown to be true. 

In the single particle case the orthogonal distribution 
..1 1 is spanned by the vectors u(x), v(x) and hence coincides 
with the distribution ..a. In the general situation, however, 
one cannot expect the distribution..a to be tangent to the 
integral surfaces of ..1 1

. Nonetheless, to require integrability 
of the distribution ..a is one of the assumptions we need in 
order to get the desired relation between SOt I, I) curvature 
r F and SO(2) mean curvature U. For this reason it becomes 
necessary to study Frobenius integrability conditions in 
more detail. 

III. INTEGRABILITY CONDITIONS 

Having found an always existing integral submanifold 
in our system under investigation, we now present condi
tions for the distributions ..1 and..a to be integrable as well. 
We once again make use of the Frobenius theorem in the 
version for differential forms3 and find 

d(hAk) 
= uAvA [[B3(n) + H(u)]k - [B2(n) + K.(u)]h] 

+ kAhA [ - [B3(h) + B2(k)]0 

- [K.(k) + H(h)]v], (3.1) 

where 0: = u + v is a lightlike I-form [o(n) = 0]. We con
clude that..a is involutive if 

B3(n) + H(u) = 0, 

B2(n) + K.(u) = 0. 
(3.2) 

The analogous consideration for the distribution ..1 yields 

d(uA v) = [[K.(h) - H(k)]u + [B2(h) 

- B3(k)]0] AkA h - [[K.(v) + B2(n)]k 

+ [B3(n)+H(v)]h] AuAv, 

from which the integrability conditions forL1 follow: 

B2(h) - B3(k) = 0, 

K.(h) - H(k) = 0. 

(3.3) 

(3.4) 

Inspired by the situation in the one-particle case we can 
think of still another involutive hypersurface. There it is the 
light cones emanating from the particle's world line that are 
the integral surfaces of the distribution ..1, spanned by the 
vectors h, k, n. Demanding..1 to be integrable in the general 
case imposes the following additional constraints on Hand 
K.: 

K(n) = H(n) = 0. (3.5) 

Equations (3.5) imply that if the potentials H, K. possess com
ponents extending beyond the codistribution "'..1, then these 
residual components in "'.J point into the null direction 0: 

K. = K. +Kn, 
(3.6) 

H = ilr +Ho. 

Besides the integrability conditions (3.2), (3.4), and (3.5) we 
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further require that j be umbilical with respect to its light
like normal section n in.1. 4 This amounts to demanding that 
the derivative of the normal section 0 projected onto j is of 
the form 

P- 1'" yp- A _ - 'p-
aVl'n y-p Aa' 

where P is the projector onto j: 

pI',. = _ kl'k" - hl'h y • 

(3.7) 

(3.8) 

By comparison of (3.7) with the first two of Cartan's struc
ture equations (2.5) it follows that lK and ill [cf. (3.6)] are of 
equal magnitude and proportional to k and h, respectively, 

(3.9) 

Thus the general structure of the new potentials becomes 

lK = p-']k + Kn, 
(3.10) 

H = p-'h +Hn. 

This means the integrability conditions worked out so far do 
not suffice to confine Hand K to the distribution j. Since 
this is what we need in order to achieve our goal we have to 
give a further constraint on how the tangent space splitting 
must be done. As we shall see, imposing a condition on the 
mean curvature I-form jj of the normal bundle will do the 
job. 

IV. MEAN CURVATURE 

Let us now pass to some further geometric concepts,4 

the torsion I-form ~ and the mean curvature I-form 0". The 
torsion I-form ~ is defined by taking the covariant deriva
tive of the base I-forms in the appropriate cotangent bundles 
(*74) and (*~4)' respectively, 

DlE = dlE + au\ lE =: i AlE, 

Dt = dt + tJA t =: i A t, 

where (a,h,cl = 0,1; iJ,k I = 2,3), 

~ (u) - -. (-k) lE = [lEa} = _ V' lE = [lE'l = _ h . 

(4.1) 

(4.2) 

Note that the integrability conditions (3.2) and (3.4) have 
already been incorporated in Eq. (4.1). 

The geometric meaning of the torsion I-form has been 
discussed in Ref. 1; thus we restrict ourselves to presenting 
the results for i and i in terms of the potentials H, JK, and 
Ba. A convenient decomposition of the torsion I-forms as 
given in Ref. 1 reads 

i = §alEa, i = §iti. (4.3) 

This representation of the torsion I-forms shows clearly that 
i annihilates the distribution j and likewise i annihilates 
.d. Taking the con variant derivatives as in Eq. (4.1) yields for 
the §-matrices 

(4.4) 
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It follows that, in general, the torsion I-forms are not Lie 
algebra valued, i.e., iIi) does not take its values in;Zo(I,I) 
Lno(2)]. However, if we investigate the transformation be
havior of the §-matrices we find for the SO(2)-transformed 
matrices, 

§~ = adA -, §a' §; = §)1jp AESO(2), (4.5) 

whereas an SOt 1, 1) transformation A [(2.1Ob)] changes the §
matrices according to 

§~ = A ba§b' §; = adA -, §i' iESO(l,l). (4.6) 

Thus we get for the SO(2) [SO(l,I)] transformed torsion 1-
form iIi), 

(4.7) 

Equations (4.7) show that although i and i are not Lie alge
bra valued I-forms they nevertheless transform as if they 
were. Hence it makes sense to take their exterior covariant 
differentials 

(4.8) 

(and similarly for i), for these covariant derivatives trans
form as if they were tensorial Lie algebra valued 2-forms. We 
can derive the first Bianchi identity by observing that the 
repeated application of the covariant derivative yields, on 
the one hand, the curvature n, 

(4.9) 

On the other hand it follows from the first structure equation 
(4.1) that 

ODlE = (Di + i A i) A lE. (4.10) 

Combining the last two equations we end up with the first 
Bianchi identity 

(4.11) 

As a further consequence of the specific transformation be
havior [(4.5), (4.6)] of the §-matrices with respect to the pro
duct group SOt 1,1) X SO(2), we find that the traces of the 
torsion I-forms are invariant under SOt 1,1) X SO(2) gauge 
transformations. Therefore they are characteristics of how 
the tangent space was broken up. They share this property 
with the integrability conditions of that tangent space split
ting. The traces of the torsion I-forms are called the mean 
curvature I-forms 8-, jj,4 

8-=!tri, jj=!tri. (4.12) 

Inserting the expressions (4.4) for the §-matrices one readily 
finds 

2jj= [B2(k) + B3(b)]n + [H(b) + JK(k)] v, (4.13a) 

28- = - [JK(v) + B2(n)]k - [H(v) + B3(n)]h. (4.13b) 

Our third basic requirement besides the conditions of Sec. II 
to be imposed on the tangent space splitting is to demand the 
mean curvature 8-ofthe normal bundle to be zero: 8-==0. As a 
consequence we find the relations 

JK(v) = - B2(0), 

JHl(v) = - B3(n). 

(4.14) 

If this result is combined with the integrability conditions 
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(3.2) for the distribution.a we obtain 

lK(m) = lHI(m) = 0, (4.15) 

where m = - u + v is a second null vector of.a independent 
of n. It follows that the projections of lHI and lK onto • .1 
vanish, i.e., the new potentials are entirely contained in the 
distribution 3, 

lK = p-llK, 
(4.16) 

lHI = p-Ih. 

Thus the mean curvature I-form [(4. 13a)] becomes 

iT=HB2(k)+ B3(h)]n-p-Iv , (4.17) 

and hence is included in • .1. 
In the following we need the result that the I-form C, 

C= p-IdIp+p-IV+BI, (4.18) 

is an element of*.a as well. For a proof of this statement take 
twice the covariant derivative of the lightlike section n, 

(4.19) 

observe (4.16), and use the fact that the canonical connection 
UJ is flat (n = 0). One finds 

C 1\ (k ® k + h ® h) = B21\ l11I. ® k + B31\ l11I. ® h. (4.20) 

From this equation it follows that C, and hence C - P - lV, do 
not have any components in ·3, 

p-I dip + BIE*.a. (4.21) 

v. RESULT AND DISCUSSION 

We close the argument by simply taking the exterior 
derivative of the 2-form lK 1\ lHI, 

d(lK 1\ lHI) = 2( iT - ~) 1\ lK 1\ lHI. 

In doing so we utilized the equality 

d(kl\h) = 2iTI\kl\h 

(5.1) 

(5.2) 

that follows easily from the definition (4.12) of the torsion 1-
form. 

By comparision of(5.1) with Eq. (2.25) and observing 
(4.21) we now find that on the assumptions stated above the 
mean curvature I-form can be identified with a SO(2) gauge 
transform of the potential BI: 

B -- dip I-CT- -. (5.3) 
P 

The exterior derivative of BI is just the gauge independent 
curvature' IF in the SO(l,l) bundle [cf. Eq. (2.15)]. Thus we 
arrive at the result we set out to prove 

'IF=dB I =diT, (5.4) 

namely, the normal bundle curvature' IF is equal to the exte
rior derivative of the mean curvature iT in the SO(2) bundle. 

In retrospect, we realize that essentially three kinds of 
assumptions were necessary to derive this result: (i) integra
bility of the distributions Lt, 3,..3; (ii) umbilicality of 3 in..3; 
and (iii) the vanishing of the mean curvature ~ in the SOl 1,1) 
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bundle. Observe that all these conditions are gauge invar
iant. 

Now the question arises ifthere is any physical meaning 
that can be attributed to these purely mathematical condi
tions. The answer can be given most easily for the case of a 
pointlike particle. I There the requirement on..3 and 3 to be 
integrable-the latter being a subdistribution of the for
mer-has to be interpreted as follows: the integral surfaces 
of 3 are propagation surfaces of the electromagnetic field, 
which in the course of time sweep over the light cones ema
nating from the particle's world line. The light cones them
selves are just the integral surfaces of the three-dimensional 
distribution..3, and hence they are the collection of all propa
gation 2-surfaces originating in a single event on the particle 
world line. 

We need to look at the integrability of the distribution.a 
in some more detail. Let us first remark that, at each point 
XEM4' the tangent space splitting induces two null directions 
n = u + v and m = - u + v. Provided the tangent space is 
decomposed in a smooth way, then both the vector fields nix) 
and mix) are integrable. The corresponding integral curves 
are null trajectories that we may interpret as photon paths 
ending at or emerging from particle world lines and reaching 
out to infinity. 

On the other hand, the system of photon trajectories 
that fills the whole of the manifoldM 4- prescribes a splitting 
of the tangent space at each point xEM 4- by defining the 
distribution.a via the lightlike vectors nand m. Integrability 
of that distribution.a means that the entirety of photon lines 
can be foliated into 2-sheets, the integral surfaces of .a. 

In this context the following observation is worth notic
ing. Taking the covariant derivative V with respect to the 
reduced connection OJ in the SO(l, 1) bundle of the photon 
line tangent vectors fi and m yields 

Vn = n®BI, 
(5.5) 

Vm= -m®BI. 

Interpreted geometrically Eqs. (5.5) state that the photon 
lines parallel transport their own tangent vectors. Thus the 
photon trajectories are the null geodesics in the integral 2-
surfaces of .a. In other words, photons travel in a minimal 
way on surfaces that themselves are minimal in the well
known geometrical sense that their mean curvature f7 van
ishes. This condition of f7 being identically zero is just the one 
we had to impose on our system. It remains to be investigat
ed whether any real electromagnetic configuration leads to a 
similar geometric "minimal" structure. 

APPENDIX: A STATIC TWO-PARTICLE 
CONFIGURATION 

In order to once more demonstrate the geometric sig
nificance of the potentials lHI and lK we study as a further 
example the geometry of two static point particles located on 
the x-axis at equal distances from the origin. Because of the 
time independence of the system we now consider the princi
pal bundle of orthonormal 3-frames where the rotation 
group SO(3) serves as the structural group. As a base space 
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we take the modified Euclidean space E 3- which differs 
from the ordinary E3 by having two points excluded where 
the particles reside. Since we restrict ourselves to the static 
case we look for a distribution.J in E 3- which is uniquely 
characterized by its spacelike unit normal v contained in 
E 3- . The curvature in the SO(2) sUbbundle.J is then to be 
identified with the dual of the electromagnetic field of the 
two-point particles. From the unit normal v(x), 

v = cos e EI + sin e cos <J> E2 + sin e sin <J> E3 

(VE; = 0, i = 1,2,3), (AI) 

the standard gauge e(x) = (k(x), h(x) l in the SO(2) bundle is 
readily obtained as 

k(x) = ~, h(x) = _I_~. 
ae sin e a<J> 

A special distribution.J is fixed by putting 

<J> = 2cp, 

cos e = p cos 0 1 + q cos Oz, 

P+q= 1, 

p, qi = const. 

(A2) 

(A3) 

Here 0 1 (02 ) denotes the angle between the x-axis and the 
radius vector r l (r2) that reaches from the locus of particle 1 
(2) to an arbitrary pointxEE 3-' cp isjust the azimuthal angle 
of ordinary spherical polar coordinates (see Fig. 1). 

With the specific cross section e(x) ofEq. (A2) fixed we 
can calculate the corresponding connection coefficients in 
the SO(3) bundle: 

AI = cos e dcp, 

A2 = - sin e dcp, 

A3 = de. 

(A4) 

The curvature 2-form in the reduced SO(2) bundle follows 
from (A4) analogously to the procedure in Sec. II: 

*F = dAI = - A2/\ A3 = - sin e de /\ d<J>. (AS) 

Inserting (A3) yields 

*F = - 2p sin 01 dO I /\ dcp - 2q sin O2 d02 /\ dcp, (A6) 

which we recognize as the sum of the individual electric 
fields of two particles of charges 2p and 2q, respectively. 
Therefore Maxwell's equations are satisfied automatically: 

d*F=o*F=O. (A7) 

Computing the charge contained in any 2-cycle C 2 via 

Z = _1_ ~ *F, (AS) 
41T Jc' 

we find Z = - 2 if both the points excluded from E3 are 
circumscribed by C 2

• In this case the expression (AS) isjust 
the winding number of the mapping (AI) along with (A3), v: 
C 2_S 2

, and thus it is automatically an integer. Ifwe try to 
calculate the charge of only one particle there emerges a line 
singularity on the x-axis where the mapping v is not defined. 
In this way v maps noncom pact manifolds onto each other 
and therefore no winding number exists any longer. Conse
quently the individual charges 2p and 2q are not quantized. 

1306 J. Math. Phys., Vol. 25, No.5, May 1984 

FIG. I. Cross section of the surfaces of constant potential V = 2p/r, + 2q/ 
r2 · The distribution 42 spanned by the vectors K,H is tangent to the equipo
tential surfaces whereas, in general, the planes of the distribution j intersect 
the integral manifold Vof 4 2 , 

However, as will be shown in a forthcoming paper, the 
singularity can be removed, thereby providing a condition 
on the numbers p and q such that the individual changes 
become integers as well. In the given configuration of two 
particles it is easy to see from Eq. (A6) that if the values 
p = q = ! are adopted both the particles will assume a charge 
of - 1. Ifwe want to describe particles of opposite charge we 
simply have to insert a relative minus sign between the co
sines ofEq. (A3) which gives us a total charge of zero. 

If we take a closer look at the distribution spanned by 
the vectors k and h we find, in contrast to the one-particle 
case, I that.J is no longer integrable, i.e., [h,k]~. On the 
other hand, from the physical point of view, there must exist 
integral manifolds in the system, namely, the surfaces of con
stant electrostatic potential. If we examine the potentials JHl 
and JK. that in our time-independent configuration reduce to 
(observe lBa=O) 

JHl = A 2, JK. = - A 3, (A9) 

we find 

*(JK./\JHl) = d(1/rl + 1/r2). (AlO) 

In geometric terms Eq. (AlO) signifies that the planes 
spanned by K and H are tangent to the equipotential sur
faces. We recall from Eq. (2.25) that in the general four
dimensional case there always exist additional 2-surfaces 
perpendicular to the (K,H)-distribution. The lesson we learn 
from this simple example is the following; if we want to con
sider classical point-particle electrodynamics as a geometric 
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structure in space-time, the relevant surfaces within this 
structure are determined by the (K,H)-planes rather than by 
the distribution.J which originally was used to generate the 
geometric structure. It seems rather incidental that in the 
single-particle case the (K,H)-planes coincide with the (k,b)
planes [cf. Eq. (4.8)]. 
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Under the condition that observed time-series data is given, a stochastic Markovian equation for a 
physical system can be transformed into an observable non-Markovian equation used in the time
series analysis. The physical random force satisfying the fluctuation dissipation theorem is also 
transformed into a stochastically equivalent random force in the derivation of the time-series 
model of observable variables. Statistical quantities, i.e., correlation and power spectral density 
functions for observable variables, can be expressed not only by the physical random force, but 
also by the equivalent random force. A relation between the variance of physical random force 
and that of equivalent random force is also found. 

PACS numbers: 02.50. + s, 05.70.Ln 

I. INTRODUCTION 

This is the second paper of a series in which we hope to 
bridge the gap between a stochastic model in physics and a 
time-series model in statistics or control, and clarify the 
physics involved in the time-series model in systems far from 
equilibrium. We will consider in this paper macroscopic 
steady-state systems such as chemical plants and nuclear 
power reactors. They are open systems in a far from equilib
rium state and usually have complicated reaction networks. 
Though a time-series model is often used for the identifica
tion of system or for the understanding of a situation of reac
tion processes, the physical properties of model is not clear 
because of its methodical nature. It treats a complicated 
practical system as a black box; a time-series model is deter
mined from observed data in the manner as the method of 
least-squares analysis. Therefore, a physical foundation of 
time-series model is needed for actual system identification 
and making a reliable diagnosis possible. 

As in the previous paper· (hereafter denoted as I), we 
derived a time-series model which is called the AR-MA (au
toregressive moving average) model from a "physical" 2 

Langevin equation, by using the coarse graining in time, the 
elimination of irrelevant variables, and the projection of rel
evant variables on a space spanned by observable variables. 
That is, in the physical approach, 

poEoC [Langevin equation] = poE [State equation] 

= P [Non-Markovian 

equation] 

= AR-MA model, 

or, in the control or mathematical approach, 

EopoC [Langevin equation] = EoP [State equation] 

= E [Kalman filter] 

= E [Markovian 

representation] 

= AR-MA model, 

where P denotes the projection On the observable variable 
space, E the elimination of irrelevant variables, and C the 
time coarse graining operator. 

One key point of the derivation of AR-MA model from 
the physical model is the introduction of an innovation sta
tistically equivalent to the physical random force. Since the 
first and the second moments are equivalent to the probabil
ity distribution in a Gaussian process, the innovation can be 
defined so as to coincide with the first and the second mo
ments of physical random force. Hence, we call hereafter the 
innovation the equivalent random force. In this paper, we 
will show the equivalence in terms of the correlation func
tion and the power spectral density, since the correlation 
function and the power spectral density are the most funda
mental statistical quantities in the statistical analysis of 
physical and engineering fields. It is important to know an 
essential role or a mathematical meaning of equivalent ran
dom force in the statistical physics. It is well known that the 
random force of physical model satisfies the generalized Ein
stein relation (1.21), which is one of the expressions called the 
fluctuation dissipation theorem in the statistical physics. On 
the other hand, the equivalent random force satisfies the 
Riccati type equation (1.25), as mentioned in I. Hence, we 
will clarify the relationship between both equations for the 
physical understanding of AR-MA model. 

There are mainly two different approaches in the prac
tical analysis of chemical and/or nuclear plants. One is the 
Kalman filter method3 for the coefficient or parameter esti
mation of physical model, and the other is the time series 
method4 for the identification of physical processes. Then, a 
systematic viewpoint is necessary for the analysis or diagno
sis of macroscopic systems. As mentioned above, these ap
proaches are related with each other. In Sec. II, we will show 
the foundation of the autoregressive moving average model 
from the Kalman filter explicitly. In Sec. III, we will first 
clarify a relation between variances of physical random force 
and equivalent random force, and then show the mathemat
ical properties of the equivalent random force in terms of 
correlation functions. We will examine roles of equivalent 
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random force in the power spectral density in Sec. IV. The 
final section is for concluding remarks. 

II. CONTRACTION OF INFORMATION AND PHYSICAL 
TIME-SERIES MODEL 

By using the system size expansion method5 and taking 
a normal scaling,6 macroscopic systems can have these 
mathematical properties7

: (1) Markovian process, (2) linear
ity, (3) Gaussian process, and (4) whiteness of random force. 
That is, a physical model in stochastic systems far from equi
librium is a linear Langevin equation with a white Gaussian 
random force. A sufficient number of state variables satisfy
ing the Langevin equation are needed for the Markovian 
description of a macroscopic system. In the system far from 
equilibrium such as chemical and/or nuclear plants operat
ed in a steady state, less than needed variables are usually 
measured. Owing to this observation, we have a problem of 
the contraction of information in macroscopic systems as 
mentioned in 1 Moreover, signals in practical plants such as 
a cement rotary kiln and a boiler of a power station are sam
pled with the interval..::1t and processed by a digital computer 
for quick handling of large number of time-series data. 
Therefore, we have the time coarse grained basic equations 
[cf. Eqs. (1.5) and (1.6)]: 

x(n) = I/>x(n - 1) + fIn) , (1) 

YIn) = Hx(n) . (2) 

Equation (1) is the discrete-time state equation, x(n) a d-di
mensional state variable at time n, I/> the time coarse grained 
regression d X d matrix (rank I/> = d), H the observation 
qxd matrix (q <d, rank H = q), yIn) aq-dimensional obser
vable state variable, and a d-dimensional Gaussian random 
force fIn) has the following statistical properties: 
E(f(n)f(m)T) = Vonm,E(f(n)) =O,whereE(···) is the 
ensemble average, V the time coarse grained diffusion d X d 
matrix (rank V = d), T the tranposition, and onm the Kron
ecker's symbol. 

In I, a physical time-series model was derived from the 
state equation (1) by using the projection upon an observable 
state space and the elimination of irrelevant variables. How
ever, the derivation of AR-MA model from the state equa
tion via a Kalman filter was skipped in I. Hence, we will 
show it explicitly under the stationarity assumption, i.e., the 
system is stationary with initial time in the infinitely remote 
past. 

Projecting the state equation (1) on the observable state 
space, we obtain the Kalman filter (1.24) 

x(nln) = I/>x(n - lin - 1) + P( oo)H TF( 00 )-'y(n) , (3) 

where x(nln) is the least-square estimator under the condi
tion that Y(n)T = [y(n)T, yIn - 1)T, yIn - 2)T, ... ] is given: 

x(nln) = E (x(n)i YIn)) , 

and where the innovation is defined by 

YIn): = yIn) - y(nln - 1), 

E fy(n)r(nf): =F(n) =HP(n)HT, (4) 

PIn): = E ((x(n) - x(nln - l))(x(n) - x(nln - 1)f) , 

where PIn) satisfies the Riccati equation (1.25) 
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PIn) = I/> ( PIn - 1) 

-PIn -1)HTF(n -1)-'HP(n _l)jI/>T + V, 

(5) 

and P( 00) = limn~oo Pin). It should be noted that a steady
state solution of evolution equation (5) with an almost every
where initial value corresponds to a stable fixed point in an 
aged system, though we have fixed points of the nonlinear 
equation (5). We have used the stable solution asP( 00) in Eq. 
(3). In the derivation ofEq. (3), we have used the following 
formula (7). Suppose Ya and Yb are independent random 
variables and let X be another random variable. If we set 

Xab = J XP (X I Ya'Yb )dX, 

Xa = J XP! X I Ya )dX , 

Xb = J xP(XIYb)dX, 

we can have 

J Xab P (Ya,Yb ) dYadYb 

= J Xa P ( Ya ) dYa + J Xb P ! Yb ) dYb , (6) 

from the relation of probability density functions: 

P (XIYa,Y
b): = P (X,Ya'Yb) 

P (Ya'yb) 

P (X,Ya ) + P (X'Yb) 

P(Ya)P(Yb ) 

P (X I Ya ) P (X I Yb ) 

P ( Yb ) + P ( Ya ) 

From Eq. (6), a linear estimator of X with given Ya and Y
b 

can be evaluated by 

E !XIYa,Yb ) =E (XIYa ) + E (XIYb ) . (7) 

The observation equation (2) is also projected as 

yin) = Hx(nln). (8) 

The next step for the derivation of AR -MA model is the 
elimination of irrelevant variables. The contraction of infor
mation in a macroscopic system is expressed by the elimina
tion of x( n In) from Eqs. (3) and (8). This elimination of state 
variables brings the basic equation the non-Markovian na
ture as in the damping theory of quantum mechanics. 8 The 
transformation of Luenberger method9 is useful in this pro
cedure because of the minimum realization of model. We 
define a transformation matrix 

T= [h,,(1/> T)h" ... ,(1/> Ty>", - 'h" ... ,hq, ... ,(1/> Ty>"q -'hq] T, 

(9) 

where "2.7 ~ ,(Ii = d and h '{ is the ith row vector of H, and 
where (Ii is the Kronecker index so that rank T = d. Defin
ing a new estimator x'(nln) through the inverse matrix 
T-'( = S) as x(nln) = SX'(nln), we can transform the basic 
equations (3) and (8) into the Markovian representation 
(127): 
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x'(nln) = cJ> 'x'(n - lin - 1) + F'y(n), 

and the observation equation (1.28): 

YIn) = H'x'(nln), 

where the coefficient matrices are given by 

(10) 

(11) 

cJ>'=TcJ>S, F'=TP(oo)HTr(oo)-I, and H'=HS. 

For the component-wise representation ofEqs. (10) and (11), 
we use the notations 

x'(nln) = (Xi (~In)), where x;(nln) = (x;<nln)) 

x~(nln) x;.(7, (nln) 

Ii = 1,2, ... ,q) , 

and the time shift operator Z 

zx'(nln) = x'(n + lin + 1) . 

Then, Eqs. (10) and (11) are rewritten as 
q 

zX;.k(nln)=x;,k+J!nln)+z L bij,k Yj(n) 
j= 1 

(k = 1,2, ... ,0"; - 1) , 
q (7, 

ZX;,(7,(nln) = L L aij,I Xi,(7,+I_/(nln) 
j= 11= 1 

q 

+ Z L bij,(7, Yj(n), 
j= 1 

y;(n)=x;,I(nln) (i= 1,2, ... ,q), 

where 

aij,/ =hTcJ>(7'SkJ_I+I (kj = ± 0";)' 
1= 1 

S; is the ith column vector of S, and bij,l is the (k; _ 1 + I,})th 
element of the d X q matrix F'. In the similar manner men
tioned in Appendix ofl, we can obtain the physical AR-MA 
model with the equivalent random force by eliminating 
x'(nln) from the component-wise equations: 

A (z)y(n) = B (z)y(n), (12) 

where A (z) = [Aij(z)], B (z) = [Bij(z)], and 

(7j 

Aij(z) = z"1{)ij - L aij,Iz"J -I , 
1=1 

uj-l 

B .. (z) = ~ b. IZI + 1 '} ~ 'j,a,-
1=0 

(i,) = 1,2, ... ,q) . 

PuttingM = max(O";) and setting A (z) = ~~o A;zM-;, and 
B (z) = ~;'!,,(/ B;zM- j , we can symbolically rewrite Eq. (12) 
as the AR-MA model of order (M,M - 1): 

M M-l 

L A; yIn - i) = L B; y(n - i) . (13) 
;=0 i=O 

It is concluded that the steady-state system described by the 
linear, Markov-Gaussian state equation (1) with the white
ness of random force and the observable condition (9) has the 
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AR-MA representation (12) or (13), when we have measured 
the system by the observation matrix (2). 

III. CORRELATION FUNCTION AND EQUIVALENT 
RANDOM FORCE 

In Sec, II, we have shown the relationship among the 
state equation, the Kalman filter, the Markovian representa
tion, and the AR-MA model. In the derivation, we have 
often used mathematical properties of the Gaussian process 
in a steady macroscopic system. In the Gaussian process the 
first and the second moments or mean values and correlation 
functions are equivalent to the probability distribution func
tion. Namely, time-varying statistical quantities are, in a 
steady Gaussian process, limited to correlation functions. In 
this section, we will examine correlation functions obtained 
from physical system from the viewpoint of the contraction 
of information, and show that the innovation in Eqs. (3), (10), 
and (13) is equivalent to the physical random force in Eq. (I). 

The system is assumed to be in a stable and steady state. 
The eigenvalues of cJ> lie inside the unit circle. Since x(n) is 
the fluctuation, we can have the zero mean values: 
E [x(n)j = 0.1t is well known that, from Eq. (1), the correla
tion function matrix of x(n) is 

Cxx(k,/): = E [x(k )x(I)TJ 

= Cxx(k -I) = E [x(k -1)x(Ofl 

{
cJ> k -ICxx(O) 

= Cxx(O)(cJ>T)/-k 

k>l, 
(14) 

k,,;;,l, 

where Cxx (0) satisfies the generalized Einstein relation (1.21): 

Cxx(O) = cJ>Cxx(O)cJ> T + V. (15) 

Equation (15) corresponds to the fluctuation dissipation 
theorem in the discrete time sampling, and is also called the 
Lyapunov equation in the control theory. The solution of 
Eq. (15) is formally given by 

00 

Cxx(O) = L cJ>;V(ct>Ty. (16) 
i=O 

From Eq. (2), we have the correlation function matrix of 
observable variables 

Cyy(k -I): = E [y(k )y(I)Tl 

= HE [x(k)x(/)TJH T 

{
HcJ> k -ICu(O)H T 

- HCxx(O)(cJ>T)/-kH T k,,;;,l. 
(17) 

It is obvious from Sec. II that the partial correlation 
function matrix Cyy obtained from the state equation must 
be identified with that of the Kalman filter, of the Markovian 
representation, or of the AR-MA model. We will prove the 
identification explicitly, and show that the innovation in 
Eqs. (3), (10), and (13) is a statistically equivalent random 
force which produces the same correlation function as the 
physical random force f in Eq. (1). 

From Eqs. (3) and (8), the observable state variable can 
be expressed by the innovation series: 

00 

YIn) = L HcJ> ;Ky(n - i) , (18) 
i=O 
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whereK = P( oo)H TF( 00 )-1. Equation (18) is also obtained 
from Eqs. (10) and (11); that is, 

YIn) = f H '(<P 'YF'y(n - i) = f H<P iKy(n - i) . 
i=O ;=0 

Therefore, the correlation function matrix for the Kalman 
filter, the Markovian representation, or the AR-MA model 
is obtained as 

E! y(k )y(l fl 

= E tto H<PiKy(k - i{to H<PjKy(l- j))T} 

= f f H<piKF(oo)Dk_i_l+jKT(<PT)jHT. 
i~Oj~O 

From the stationary condition, we have, for k<), 

Cyy(k -l): = E! y(O)y(l- k fl 

= f H<piKF(oo)KT(<PT)i-k+IH T 
;=0 

(19) 

= H tto <PiKF(oo )KT(<P T)i}(<p TV-kHT. 

(20) 

To verify the identification of Eq. (17) with Eq. (20), we will 
find a following relation between the steady-state Riccati 
equation (5) and the generalized Einstein relation (15). By 
formal calculation of perturbation of steady-state equation 
(5), we have 

P(oo) = V - <PKF(oo)K T<p T + <PP(oo)<P T 

= f <p iV(<P Ty - f <p iKF (oo)K T(<P T)i . 
i=O i= 1 

(21) 

Substituting Eq. (16) into Eq. (21), we obtain the relation 
between C"X (0) and P ( 00 ): 

P( 00) + f <p iKF( oo)K T(<P T)i = Cxx(O) . (22) 
;= 1 

From the definitions of F ( 00 ) and K, we have the relations 

(a) HK=HP(oo)HTF(oo)-1 =F(oo)F(oo)-' =1, (23) 

(b) HP( 00) = F(oo)F( 00 )-IHP(oo) = F(oo )KT 

= HKF ( 00 )K T . (24) 

Using Eqs. (22)-(24), we can prove the identification of corre
lation functions (17) and (20): 

Cyy(k -l) = H ttl <p iKF( oo)K T(<P T)i} (<P T)/- kH T 

+ H !KF(oo)KT}(<P T)/-kHT 

= H ttl <p iKF( oo)K T(<P T)i} (<P T)/- kH T 

+ HP(oo)(<P TV-kH T 

= HCxx(O)(<P TV - kH T. (25) 

In much the same manner, we can obtain the identification 
of Eq. (20) with Eq. (17) for k>l: 
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Cyy(k -l) = E [ y(k -l )y(O(} 

=H<p k- I f <PiKF(oo)KT(<PT)iHT 
i=O 

= H<P k -I f <p iKF( oo)K T(<p T)iH T 
;= 1 

+ H<P k -Ip( oo)H T 

= H<pk-ICxx(O)HT. (26) 

It is concluded that both the random force f and the 
innovation y give the same correlation functions of observa
ble variables, though components of f are more than those 
of y. And the number of components of y is equal to that of 
measured variables. Therefore, the innovation y is the statis
tically equivalent random force for the observable correla
tion functions. 

IV. POWER SPECTRAL DENSITY AND EQUIVALENT 
RANDOM FORCE 

In the physical and engineering fields, fluctuations in 
steady phenomena are usually expressed in the frequency 
domain rather than the time domain. In this section, we will 
examine the power spectral density in the frequency domain 
instead of the correlation function. It is well known that the 
power spectral density matrix is expressed by the Fourier 
transformation of the correlation function matrix according 
to the Weiner-Khintchin's theorem,s and is defined in the 
discrete time sampling by 

00 

P .. [z] = I c .. (n)Z-n, z=eiw<lt. (27) 
n = - 00 

Substituting Eq. (14) into Eq. (27), we have 

Pxx [z] 

= Cxx(O)(I - z<P T)-I + (I - z-I<p )-ICxx(O) - Cxx(O) 

= (I - z-I<p i-It Cxx(O) - <PCxxtO)<P Tj(I _ z<P T)-I 

=(I-z-'<P)-'V(I-z<PT)-'. (28) 

Here we have used the relation (15) and the property that <p is 
the contraction mapping in a stable state. If we put 

Gxx[z] =(I-z-'<P)-', 

then Eq. (28) is 

Pxx [z] = Gxx [z] V(Gxx [Z-I])T, 

(29) 

(30) 

and Gxx is a kind of propagator ofEq. (1) in the frequency 
domain. On the other hand, by substitution of Eq. (17) into 
Eq. (27), we have 

Pyy [z] = Gyy [z] V(Gyy [Z-I] f, 
where 

(31) 

Gyy[z] =H(I-z-I<p)-l=HGxx[z] , (32) 

which is called the transfer function in the control theory. 
In this section we will express the equivalent represen

tation of Eq. (31) in terms of the innovation. From the 
steady-state Riccati equation (5) and the identity 
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P(oo) - cJ>P(oo)cJ> T 

= (I -Z-IcJ> )P(oo)(I - zcJ> T) 

+ Z-IcJ>p( (0)(1 - zcJ> T) + (I - Z-IcJ> )P( (0)cJ> TZ , 

we have the equivalent representation of the diffusion matrix 
V: 

V = cJ>P(oo)HTF(oo)-IHP(oo)cJ> T 

+ (I - Z-IcJ> )P(oo)(I - zcJ> T) 

+ Z-IcJ>P( (0)(1 - zcJ> T) + (I - Z-IcJ> )P( (0)cJ> TZ. (33) 

Multiplying Eq. (33) by H (I - Z-IcJ> )-1 and 
(I - zcJ> T)-IH Ton both sides, we obtain another expression 
ofEq. (31): 

Pyy[z] =H(I-z-IcJ»-IV(I-zcJ>T)-IHT 

= H(I - Z-IcJ»-IcJ>P(oo )HTF(oo )-IHP(oo) 

xcJ> T(I -zcJ> T)-IHT +HP(oo)H T 

+ H(I - Z-IcJ> )-IZ-IcJ>P(oo)H T 

+ HP(oo)cJ> TZ(I - zcJ> T)-IHT. 

If we use the relations of F ( 00 ) = HP ( 00 )H T and 
K = P(oo)HTF(oo)-I, then Eq. (34) becomes 

Pyy [z] = H(I - Z-IcJ> )-IcJ>KF(oo) 

XK TcJ> T(I - zcJ> T)-IHT + F(oo) 

+H(I -Z-IcJ»-IcJ>Kz-IF(oo) 

+zF(oo)KTcJ>T(I -ZcJ>T)-IH T 

= G~ [z]F(oo)(G~ [z-l]f, 

where G~ [z] = 1+ H(I - Z-IcJ> )-IcJ>Kz- l
• From Eq. 

(23), the factor G~ [z] ofEq. (35) is rewritten as 
00 

G~[z] =1 +H L Z-icJ>icJ>Kz- 1 

i=O 

00 

=1 +H L Z-icJ>iK 
i= I 

00 

=H L z-icJ>iK 
;=0 

(34) 

(35) 

(36) 

We can find that G ~ [z] is a propagator ofEqs. (3) and (8) in 
the frequency domain and that the propagator (36) can be 
derived from Eq. (18). It can be concluded that Eq. (35) is the 
equivalent representation of Eq. (31) by using the equivalent 
random force. 

v. CONCLUDING REMARKS 

(1) Any combination of the Kronecker index t O"i J of 
transformation matrix T, with the condition ~r ~ 10"i = d, 
can determine an AR-MA model as in Sec. II. Therefore, we 
must examine the uniqueness of AR-MA model related to 
the physical state equation. Let T and T" be the transforma
tion matrices corresponding to the combinations of t O"i J and 
to";' J, respectively, then we have the transformations of the 
conditional state variable 
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x'(nln) = Tx(nln) or x(nln) = Sx'(nln) , 

and 

x"(nln) = T"x(nln) or x(nln) =S"x"(nln) , 

whereST = landS" T" = I. Setting the transformation ma
trix Q ( = TS "); x'(n In) = Qx"(n In), we can obtain another 
Markovian representation ofx"(nln) from the Markovian 
representation (10) ofx'(nln). 

The transformation'matrix Q in the Markovian repre
sentations may correspond to a unimodular matrix in the 
AR-MA models. As in the same way in Sec. II, we have AR
MA models according to the combinations of t O"i J and 
t 0";' J, respectively: 

A (z) YIn) = B (z) y(n) , 

A "(z) YIn) = B "(z) y(n), 

where z is the time shift operator in Sec. II. The coefficient 
matrices of AR-MA models are transformed into each other 
by a unimodular matrix. That is, 

U(z)A (z) =A "(z) , 

U(z)B(z) = B "(z) , 

where the unimodular matrix U (z) has the polynomial ele
ments ofz, and det U(z) = constant. The uniqueness of AR
MA model derived from the state equation is not guaranteed 
except in special cases. 

In contrast to AR-MA models, the correlation function 
matrix Cyy(n) and the power spectral density Pyy [z] are in
variant with the choice of the Kronecker indices, since Cyy (n) 
and Pyy [z] in the Kalman filter (3), the Markovian represen
tation (10), and the AR-MA model (13) are the same as in 
Secs. III and IV. Therefore, an additional physical condition 
is needed for the correspondence of an AR -MA model fitting 
to the time-series data to a physical AR-MA model unique
ly. 

(2) As mentioned in Sec. III, the number of components 
of the equivalent random force is equal to that of observable 
variables. Inversely, another AR-MA model may be deter
mined for various combinations of observable variables. 
Therefore, we can have various types of AR-MA models for 
the same physical process according to measurements. In 
macroscopic plants, a time-series model is often used for the 
diagnosis of plant operations or the determination of phys
ical processes. In this situation, it is important to distinguish 
a physical random force with an equivalent random force. 

(3) The power spectral density ofEq. (3) may be defined 
by 

The rank of P~x [z] is equal to that of Pyy [z] and is less than 
thatofPxx[z]. This is becausePyy [z] =HPxx[z]H T 

= HP~x [z]H T. On the other hand, the propagator Gyy [z], 
Eq. (32), is not equal to G ~ [z], Eq. (36). 

(4) The equivalent representation of power spectral den
sity proved in Sec. IV is related to the spectral factorization 
in the control theory which is reviewed by Kailath 10 and 
Brockett. II Hence, the operations and calculations in Sec. IV 
are similar to the spectral factorization problem in the con
trol theory. However, the observation equation (2) has no 
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random force for measurements, so that the power spectral 
density of observable variables is inevitably factorized as in 
Sec. IV. 

(5) An AR (autoregressive) model, which is 
M 

I Aiy(n-i)=y(n) (Ao=I), 
i=O 

is often used for practical cases, since its simple and fast 
recursion algorithms can be applied. 12 In an algorithm, the 
AR model is fitted to correlation functions obtained from 
physical systems. Hence, the uniqueness problem of (1) does 
not remain in the AR model fitting procedure. An AR model 
is identified with an equivalence class of AR-MA model de
rived from the physical equation. 
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Within the framework of stochastic calculus of variations for time-symmetric semimartingales 
X (t,w), we consider two different stochastic versions of Maupertuis' least action principle, in 
Lagrangian and Hamiltonian terms. The general results are applied to classical statistical 
mechanics, where they coincide with those of classical calculus of variations, and to Nelson's 
stochastic mechanics, an approach to quantum mechanics where a time-symmetric 
semimartingale represents the position of a particle and the dynamics is expressed by a stochastic 
version of Hamilton's principle ofleast action. Some historic examples of old quantum theory are 
discussed. 

PACS numbers: 02.50.Ey, 03.65. - w 

INTRODUCTION 

Motivated by the growing number of discoveries of in
teresting natural phenomena which seem to escape from the 
usual deterministic descriptions, we examine systematically 
in the present paper probabilistic extensions of variational 
principles used for the determination of possible dynamics in 
classical physics. A general framework was created recently 
by Yasue in this goal, 1.2 and we choose the same point of 
view. 

The central object of our investigations will be Mauper
tuis' least action principle. It has the advantage of involving 
not only equations of motion but also the energy conserva
tion law, one of the most important conservation laws in 
physics. 

The first section will be devoted to a brief presentation 
of the class of stochastic processes taken into account in 
these variational principles. Essentially, it was discovered by 
Nelson in 1966,3 but can be presented today in a general 
frame of semimartingale stochastic integrals,4-7 a large ex
tension of classical (Ito's) theory of stochastic integrals. 

In Sec. 2 we will recall central results of stochastic cal
culus of variations, especially a stochastic version of Hamil
ton's principle ofleast action. This will be obtained by means 
of a variation which does not modify the time parameter in 
the action. For Maupertuis' principle, we need another vari
ation so that the parameter has a variational status equiva
lent to the state variables. We introduce in this aim a noncon
temporaneous variation and show that Hamilton's principle 
is equivalent to Maupertuis' one for a stochastic generaliza
tion of conservation systems. 

Section 4 deals with the connection between variational 
principles and conservation of energy (defined in terms of the 
initially given Lagrangian). 

The first application concerns classical statistical me
chanics (Sec. 5), where the dynamics is given by an ordinary 
differential equation with random initial conditions. In this 
limiting case we obtain again principles of classical calculus 
of variations. 

The best application will be to Nelson's stochastic me-

al Partially supported by the Swiss National Science Foundation. 
blpresent address: Department of Mathematics. Princeton University. 

Princeton. NJ 08544. 

chanics, a realization of quantum mechanics where the no
tion of paths for particles is preserved (Sec. 6). We verify, for 
example, that Planck's recipe of quantization, in old quan
tum theory, still makes certain sense if we use the so-called 
stochastic quantization procedure. 

1. A CLASS OF STOCHASTIC PROCESSES 

Let (n, .£1, P) be a base probability space and a stochas
tic process x in lRi some continuous application t---+x, ==x(t) 
from a time interval I into the Hilbert space 
H = L 2((n,p );lRi

). We consider two filtrations indexed by I, 
~,andiS, with~sC~, andiSs::JiS, forsq to which x is 
adapted. 

By hypothesis, x is simultaneously a ~, semimartingale 
and an is, semimartingale, in other words, it admits two 
Meyer's canonical decompositions5 

x, = Xo + B, + M" (1.1) 

where B, is a process of bounded variation adapted to~" 
withBo = 0, andM, a local ~,-martingalewithMo = 0, and 

x, = Xo + B*, + M*" (1.2) 

where B*, is a process of bounded variation adapted to is,, 
with B *0 = 0, and M *' a local is, -martingale with M *0 = o. 
Moreover, the process x, will have the two mean velocities 
corresponding to different information available at time t, 

Dx, = lim E [X(t + Lit) - x(t) I~,] 
dlJO Lit 

(1.3) 

and 

D -1' E [X(t) - x(t - Lit) I q;: ] *x, - 1m D, , 
dlJD Lit 

(1.4) 

where E [ .. ·Ia] is a a-conditional expectation. 
These two limits exist in H and the mappings t---+Dx, , 

t---+D*x, are continuous from I into H by hypothesis. Since 
this class of stochastic processes was discovered by Nel
son,3,7.8 we will call them simply Nelson processes hereafter. 

The following integration by parts formula will be used, 
for two Nelson processes X and Y, 

E [X(t)Y(t)I::] 

= E [Lb {DX(t )·Y(t) + X(t)D* Y(t)} dt ], (1.5) 
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where E [ ... ] is the absolute expectation. 3 

More explicit descriptions of these processes and of 
their properties can be found in Refs. 6 and 9. For a really 
rigorous account on this class of time symmetric semimar
tingales, consult Refs. 7 and 10. 

LetLEC 2(R31;R) be a given function andX(t) a Nelson 
processon/::J [ta ,tb].IftheprocessL (X(t ),DX(t ),D.X(t ))is 
integrable, we define the action for Lagrangian L by a real 
functional J, 

J:x~E [r b 

L (X(t), DX(t), D.X(t)) dt ]. (1.6) 

We suppose further that the components of the R31-gradient 
(a IL,a2L,a3L ) (X (t ), DX (t ), D. X (t )) in the three variables of 
the Lagrangian are themselves Nelson process. All the La
grangians used for different types of actions in this paper will 
satisfy these hypothesis. 

By D:: we will denote the totality of Nelson processes 
with fixed end pointsX(ta) = XaEll, X(tb) = XbEll, and by 
Lt thatofNelsonprocessesZ (t) such thatZ (ta ) = Z (tb ) = O. 

2. MAUPERTUIS' PRINCIPLE VIA HAMILTON'S 
PRINCIPLE 

Our starting point will be the stochastic version of 
Hamilton's principle ofleast action. 1.2 

Since L (x, y,z) is twice continuously differentiable, we 
can use its Taylor expansion and then employ it at the pro
cessesX(t ),DX (t ),D.X(t) so that the variation of the action 
functional J [given by Eq. (1.6)] inX on a Nelson process oX 
IS 

oJ [X 1 (ox) 

=E[ft
b

( aL ODX+~oD.X+ aL OX)dt]. 
ta aDX aD. X ax 

(2.1) 

A process X = X (t) inD:b is called a stationary point of J, or 
an extremal, if 

OJ [X ](oX) = 0 (2.2) 

for all the processes oX in Lt. 
Theorem: Stochastic Hamilton's principle1

,2: A neces

sary and sufficient condition for X (t )ED:: to be a stationary 
point of the action functional J is that, on X (t ), 

D aL +D aL +~=O. (2.3) 
aD.X(t) • aDX(t) aX(t) 

Equation (2.3) (the YEN equation) follows from this 
stochastic least action principle as the Euler-Lagrange equa
tion follows from the classical Hamilton's principle. 9

•
1J 

In order to interpret Eq. (2.3) as a stochastic generaliza
tion of the Euler-Lagrange equation, it is natural to intro
duce the following definitions. 

The configuration of a stochastic dynamical system at 
time t is described by a point in the Euclidean-l space with 
coordinates {X:, ... ,x:}. 

This space is called the configuration space. A trajec
tory or a path is the continuous curve in the configuration 
space traced by this point as time changes. The state of the 
system at t is given by a point in the 3/-space with coordinates 
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{X:, ... ,x:; DX:, ... ,DX:; D.X:, ... ,D.X:}. 

From the physical point of view, the admissible nonex
tremal processes used in Hamilton's principle are virtual: 
They give paths along which the system may be imagined to 
move without satisfying necessarily the law of motion (2.3). 

Let us observe that Hamilton's principle remains un
changed if the Lagrangian depends explicitly on time t, 
namely for nonconservative systems. In the following, if not 
otherwise stated, we consider only conservative systems or, 
more precisely, conservative and holonomic systems.9 

Then, by Eq. (2.1), Hamilton's principle can be put in 
the form 

E [r b 

oL dt ] = 0, (2.4) 

where the variation of L is defined formally by the expression 

oL= aL ox+ aL oDX+~oD x. (2.5) 
ax aDX aD.X· 

Clearly, in such a variation, time t is not altered. However, 
even in classical mechanics, it is often necessary to consider 
time t as an auxiliary state variable. Let us introduce a new 
parameter u and u-dependent time t:[ua ,ub]-R which is a 
(deterministic) differentiable function such that 

dt 
--¢>O. 
du 

Define a bijection T~ : H-H by 

X (u)~X (t (u))=X (u). 

(2.6) 

(2.7) 

In using the definitions of the velocities (1.3) and (1.4), we 
have simply, if the subscript u denotes mean derivatives with 
respect to u, 

DuX=¢.DX, (2.8) 

(2.9) 

In this way, we can define a new variation for a general La
grangian LEC 2(R3I XR;R) by 

o L = aL 0 X + aL 0 (DuXl 
t ax t aDX' ¢ - ) 

with 

+~o (D.uXl + aL Ott, 
aD. X , ¢ -) at 

o (DuXl = o,DuX _ DuX o,(dt /du) 
'¢-) ¢ ¢ ¢ 

Duo,X d 
=---DX-(o,t), 

¢ dt 

(2.10) 

where we have utilized Eq. (2.8) and the commutation of 
derivatives and variations. By construction of the x-vari
ation, we have o,X = oX and so 

(
Du0- d 0, - = DoX-DX-(o,t). 

¢ dt 
(2.11) 

In the same way we find 

(2.12) 
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After the substitution ofEqs. (2.11) and (2.12) into Eq. (2.10), 
and by the definition (2.5) of the (j-variation, we conclude 
that 

oL =OL-(DX aL +D X~) 
1 aDX * aD x 

* 
(2.13) 

As is expected, these two variations coincide if t is not varied. 
We shall call this new variation 01 in which time is varied as 
well as the state variables noncontemporaneous variation. 

Now we introduce a particular class of Lagrangians, 
inspired by the usual situation in classical mechanics.9 They 
are of the form 

L (X,DX,D*X) = T(X,DX,D*X) - V(X), (2.14) 

where TEC 2 (R3I;R) is homogeneous of degree 2 in the veloc
ities DX and D*X are called the kinetic energy, and 
V(X)EC 2(RI;R) is the potential energy. 

On the other hand, it is possible to verify, modulo some 
conditions on the form of the given Lagrangian L, that YEN 
equation (2.3) is equivalent to the following system of "sto
chastic Hamilton's equations,,9: 

-.!...DX=aH 
2 ap , 

(2.15) 

-.!...D X= aH 
2 * ap*' 

(2.16) 

-.!...(Dp +D p)= 
2 * * 

(2.17) 

where the generalized momenta p and p* are defined by 

(2.18) 

(2.19) 

and the Hamiltonian H by 

H = !pDX + !p*D*X - L. (2.20) 

In using Eq. (2.20) and Euler's theorem for homogeneous 
functions, the Hamiltonian H corresponding to the Lagran
gian (2.14) and expressed in the variables (X,DX, D * X) takes 
a compact form, 

If(X,DX,D*X) = T(X,DX,D*X) + V(X). (2.21) 

It will be called the energy function. 
Now, we can prove that for this class of Lagrangians, 

Hamilton's principle implies the stochastic version of Mau
pertuis' principle. More precisely: 

Theorem 1: For the Nelson processes r: l-+X (t) in D:~ 
such that 

In Maupertuis' principle, the transit times are varied for 
different processes since we use non contemporaneous varia
tions. Sometimes one speaks of "reduced action" for this 
new principle. 

Proof: By Eq. (2.13) for the kinetic energy T, 

O,T=C5T-(DX aT +D*X~)!!...-(C5lt), 
aDX aD*X dt 

that is, by homogeneity, 

d 
81 T= 8T- 2T-(8/t). 

dt 
(2.23) 

According to Eqs. (2.4) and (2.14), Hamilton's principle is 

0= E [Lb((jT - 8V) dt ]. 

Since V depends only on the position, 8 V = 8/ V, and, by Eq. 
(2.23), 

0= E [Lh {8t T + 2T :t((jtt) - 8/ V} dt ]. 

It follows from the constraint (2.22) that E [8, T] 
- E [8/ V] and then 

0= E [Lh2{C5/ T dt + Td (8/t}}]. (2.24) 

Now, by Eg. (2.6), dt = ¢ du, and then 

d(8,t) = ~((jtl )du = (j/¢. du; 
du 

we get for Eq. (2.24) 

0=E[i'2{8/T.¢+ T8/¢}dU), 

where we have fixed U(tb) = 1, u(ta } = O. Finally, 

0= E [i'2(j/(T¢) dU] 

(2.25) 

= 8/E [L"2Tdt ]. • 

For remembering the energy constraint (2.22) involved 
in Maupertuis' principle, we will denote it by 

(2.26) 

Taking into account the above-mentioned Hamiltonian 
framework, Maupertuis' principle can also be expressed in 
the following way: 

Theorem 2: With the same conditions as in Theorem 1, 
we have 

(2.27) 

E[If(X,DX,D*X)] =h (a constant) 

where If is the energy function (2.21), 

(2.22) Here '13 and " denote, respectively, the ~, and the 'is, 

8E [LbL (X,DX,D*X) dt ] = 0 

=x5,E [i2T(X,DX,D*X) dt ] = O. 
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integrals of It64
,9 for semimartingales, an extension of the 

classical notion of stochastic integrals (also due to Ito). 
Proof: Since T is homogeneous, 

2T= aT DX+~D x. 
aDX aD*X * 

Now, by Eg. (2.14) and Egs. (2.18) and (2.19), 
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Maupertuis' principle (2.26) changes to 

Oth ~ E [If DX dt + If. D.X dt ] = O. (2.28) 

On the other hand, for X and Y two Nelson's processes we 
have, by continuity of Y, 

n-I 

Y(t) = lim ~ Y(ti )· l[t.,t j(t), la<J<,lb' 
l.l 1-+0 i-=-O ' ,+ J 

(here 1 [, 1 denotes a characteristic function) and4 

\jl (b n-I 

l y. dX = l.i.m. i~O Y(li){X(li+ I) - X(li)}' (2.29) 

where l.i.m. is the limit in the mean square, 
ILl I = maxI!; + 1 - t i ), and 10 = la < II < ... < In = Ib a parti
tion of [ta ,Ibl But we know also that 

E[LbY(t)'DX(/)dl] 

= lim E [nil Y(t;)DX(li)(li + I - til] 
l.ll-+O i=O 

= lim E[niIY(I;){X(li+I)-X(ti )}], 
l.ll-+O i = 0 

Then 

(2.30) 

In the same way, one obtains the relation 

For Y pinEq. (2.30), then Y p. inEq. (2.31), the addition 
reduces Eq. (2.28) to the form (2.27). • 

We may also observe that, from the general relations 
between the ~t> i'Y/ and symmetric stochastic integrals,4.6,9 

(2.32) 

\jl f'b i\: f'b 
= Jt" y. dX + J/" X . dY, (2.33) 

where ° denotes the Fisk-Stratonovich symmetric integral, 
and Eqs. (2.30) and (2.31), we get 

E [X(t)Y(/)I::] =E[Lb{Y(t)DX(t)+X(I)D.Y(I)}dt J. (2.34) 

namely, the integration by parts formula (1.5). Averaging Eq. (2.34) with the formula where X and Yare interchanged yields 

E [X(t )Y(t)I::] = E [Lb{Y(/)' ~(DX(t) + D.X(t)) + X(t)· ~(DY(t) + D. Y(t))} dt ] (2.35) 

= E [Lb YodX + XodY ]. (2.36) 

Now, we will give some emphasis to the reciprocal relationship between Maupertuis' principle and Hamilton's principle for 
conservative systems. 

3. HAMILTON'S PRINCIPLE VIA MAUPERTUIS' 
PRINCIPLE 

We will assume the validity of Maupertuis' principle, 
that is, 

(3.1) 

and 

(3.2) 

The classical method of Lagrange multipliers9
,12 suggests 

consideration of 

otE [rbX'(X,DX,D.X) dt ] = 0 (3.3) 

for the new Lagrangian 

X' = 2T + A [T + V - h ], (3.4) 

where h is the constant used in Eq. (2.22) and A some un
known mUltiplier. By means of the time change t = I (u) de
fined in the preceding section, Eq. (3.3) modifies to [in using 
Eqs. (2.8), (2.9), and the convention of Theorem 1 for the 
parameter u] 
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It follows from 

that 

(
- DuX D.uX\ 

otX'(X,DX,D.X) = OtX' X, T' -cp--) 

(3.3') 

(3.5) 

o X' = aX' 0 X + aX' o/DuX _ aX' DuX 0 A. 

/ ax t aDX cp aDX cp 2 t 'f' 

aX' OtD.u X aX' D.u X 

+ aD.X cp - aD.X ¢2 °tCP 

and then the first term of the right-hand member ofEq. (3.5) 
becomes 

E [t{aX' 0 X. A. + aX' D (0 X) _ aX' DX. 0 A. Jo ax t 'f' aDX u t aDX t 'f' 
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After integration by parts of the second and the fourth terms, 
we get 

E [f'b(a!.t' - D. a!.t' _ D a!.t' ) O,X dt] 
la ax aDX aD. X 

+ E [(a!.t' + J.Y ) Ot X I tb] 
aDX aD.X I. 

- E [t(a.Y DX + a!.t' D.X) O,ep dU]. Jo aDX aD. X 

In this way Eq. (3.5) reduces to 

0= E [f'b(a!.t' _ D a!.t' _ D a.Y ) 0 X dt] 
I. ax • aDX aD.X I 

+E[(;:;+ a~~x)DtXI::J 
- E [t(a.Y DX + a.Y D.X - !.t') O,ep dU]. Jo aDX aD. X 

Now the O,X =oX are arbitrary in..::1, and O,ep is also arbi
trary, which implies that 

a.Y a!.t' a!.t' 
---D. ---D---=O, ta<,t<:,tb' (3.6) 
ax aDX aD. X 

[
a.Y a.Y ] 

E aDx DX + aD.X D.X -!.t' = 0, O<,u<,l. 

(3.7) 

Substituting for .Y from Eq. (3.4) in Eq. (3.7) and taking into 
account the homogeneity of T yields 

E[A(T+ V-h)] -E[2T(1 +,,1,)] =0. 

This equation for A has a simple solution. Indeed, 

AE [T + V - h ] - (1 + A )E [2T] = 0 

is satisfied by ,,1,= - 1 since E [T + V - h] vanishes by hy
pothesis. 

One verifies immediately that for this value of A Eq. 
(3.6) simplifies to 

D~+D aT _ aT av =0 
aD. X • aDX ax + ax ' 

that is, to the YEN equation (2.3) for the Lagrangian 

L (X,DX,D.X) = T(X,DX,D.X) - V(X). 

Then we proved 

Theorem 3: For the Nelson processes y:t-X (t ) in D:: 
such that Maupertuis' principle holds in the form (2.26), that 
is, with a Lagrangian L of the type (2.14), Hamilton's princi
ple is also satisfied: 

4. VARIATIONAL PRINCIPLES AND CONSERVATION 
OF ENERGY 

In this section we consider the connection between the 
different variational principles and the conservation of the 
energy function (2.20), I&' = (aL I aDX) DX 
+ (aL laD. X) D.X - L. 

For this purpose, it will be interesting to compare the 
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sense of the noncontemporaneous variation 0, with the one 
of the 0 variation. 

Since we know already the sense of 

DE [S::L (X,DX,D.X) dt ] thanks to Hamilton's principle, 
let us examine the noncontemporaneous variation of this ac
tion. As for Theorem 3, by Eq. (2.25) we have 

D,E [LbL dt ] = E [fOI(Lep) dU] 

=E[LbOIL.dt] +E[fLd(Ott)]. 

(4.1) 

Taking into account the definition (2.13) of 0" the homo
geneity of Tin L (X,DX,D.X) = T(X,DX,D.X) - V(X), 
and the relation I&'(X,DX,D.X) = 2T(X,DX,D.X) 
- L (X,DX,D.X), we find 

E [LbOL dt - f I&' d (Ott I]. (4.2) 

Now, by Eqs. (2.35) and (2.36), 

E [fd(1&' . Olt)) = E [f I&'od(o,t) + Oltodl&') 

= E [f I&' • d (Ott) + ~ (Du I&' + D.u I&')O,t. dU] 

(4.3) 

since 0, t is of bounded variations. 13 Let us note that the 
integrand in the second term in the expectation is nothing 
else than the part of the variation of energy due to the time 
variation between the real and virtual processes, namely, 

(4.4) 

By means of Eq. (4.3), it may be seen that Eq. (4.2) becomes 

E[LbOLdt - fd(I&'Olt)+ f..::1 l l&'.dUJ. 

Hence, using Eq. (2.5) and integrations by part, we get final
ly: 

Theorem 5: For conservative stochastic systems with 
Lagrangian (2.14), L (X,DX,D.X) = T(X,DX,D.X) 
- V(X), the noncontemporaneous (first) variation of the ac

tion for L is given by 

+E[f'b(aL -D aL -D~)OXdt] 
to ax • aDX aD. X 

- E [I&' O,t 16] + E [f f(Du I&' + D.u 1&') OltdU]. 

(4.5) 

Naturally, if t is not varied, we obtain again Hamilton's 
principle. In this variational formulation, the symmetry 
between the couples of stochastic processes (X;(P, p.)) [in 
using Eqs. (2.18) and (2.19)] and (t; 1&') appears clearly. The 
main difference resides in the fact that t = t (u) is a trivial 
(namely deterministic) process with differentiable paths, 
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which explains why there exists only one momentum If con
jugate to the time process. 

By definition, and for a given Largrangian L = T - V, 

a dynamical Nelson process in D ~:::: (that is, with fixed end 
points in position and time) will be characterized by the 
property 

(4.6) 

for all the suitable ~x and ~,t. 
It follows from Theorem 5 that a dynamical Nelson 

process x(t) satisfies simultaneously 

D~+D aL _ aL =0, (4.7) 
aD. X • aDX ax 

d -E [E(X,DX,D.Xl] = 0. (4.8) 
dt 
For obtaining (4.8), two differential versions ofEq. (1.5) 

were used, namely one for Y = 1, 

~E [X] = E [DX ], 
dt 

and another for X = 1, 

~E [Y] = E [D. Y]. 
dt 

By averaging these two expressions for X = Y = E, we get 
indeed Eq. (4.8). When the system is not conservative, 

d raE] -E[E(X,DX,D.x,t)] =E - . 
dt at 

(4.8') 

To emphasize the difference between the two types of 
variations, we can also observe that, according to the two last 
terms of(4.5) for a dynamical Nelson process, 

E [~, If] = ~,E [1f(X,DX,D.Xl] = 0, (4.9) 

that is, the constraint (3.2) used for Maupertuis' principle, 
while for Hamilton's principle lJE [E] #0 generally, since it 
gives the variation of energy between any two admissible 
paths. In other words, it is really necessary to modify the 
time interval [ta ,t b] in order to maintain the energy constant. 

For example, using similar procedures as for Theorem 
5, it may be seen that, on an extremal, 

~,E [f>Tdt ] = E [ ~ (p + p.)~xl::] + E rflJ, If dU]. 

(4.10) 

But the usual development for the left-hand side and the 
definition of lJ, Tmodifies the latter to 

Now by the definition~, If, the right-hand term ofEq. (4.10) 
is also 

E[+p+p.)~xl::] +E[f>lfdt] -Erf2Td(~tt)]. 
Thus we find: 

Theorem 6: For conservative stochastic systems with 
Lagrangian (2.14), the contemporaneous (first) variation of 
the reduced action on an extremal is 
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lJE [f>Tdt ] = E [+p + P.) lJxl::] + E [fb~1f dt l 
(4.11) 

Even for fixed end points (~Xe..::j ) the second term on the 
right-hand side does not vanish generally. 

5. APPLICATION TO CLASSICAL STATISTICAL 
MECHANICS 

The first illustrations of these stochastic variational 
principles concerns some "cryptodeterministic" processes, 
in Whittaker's terminology, 14 used in classical statistical me
chanics. 

Indeed, a simple kinematic assumption on the nature of 
motion is that 

dX(t) = v(X(t),t) dt, (5.1) 

where v is a smooth (unspecified) function ofR/+ 1 and the 
only random element involved is the initial condition 

(5.2) 

In this case the two filtrations \l3, and iJ I are equal and do not 
vary with time. One speaks of "deterministic filtrations." 
The two canonical decompositions (1.1) and (1.2) coincide 
and are trivial to the extent that M, = M., = 0, VtE!. Since 
X, is of bounded variation, the paths are (a.e.) differentiable. 
Therefore, the mean velocities (1.3) and (1.4) also coincide, 

dX 
DX, = D.X, = -. (5.3) 

dt 

It is then natural to choose for this case of Lagrangian 
L (X,DX,D.X,t) symmetrical in DX,D.X, 

L (X,DX,D.X,t) = ~M IDX 12 + 1M ID.X /2 - V(X,t) 
(5.4) 

since, by Eq. (5.3), it is nothing else than the Lagrangian for a 
particle with mass M in a given potential V(X,t). Note that 
the "kinetic energy" T(DX,D.X) = ~M IDX 12 
+ iM ID. X 12 is homogeneous of degree 2 in DX and D. X 
[compare with Eq. (2.14)]. It follows from the stochastic 
Hamilton's principle that the dynamics of this stochastic 
dynamical system will be given by the YEN equation (2.3), 
namely, here by 

d 2X 
M dt

2 
= - VV(X,t). (5.5) 

Thus, Newton's dynamical law follows naturally from the 
kinematic assumption (5.1). 

For noncontemporaneous variations, we use a time 
change (2.7), T", :X(u)~X(t (u))==X (u) such that, byEq. (2.6), 

dt = ¢ du, (5.6) 

where ¢ is some unspecified strictly positive smooth function 
on R. Provided that (5.6) has a unique solution, Eq. (2.8) [or 
(2.9)] is satisfied since 

dX(u) = v(X(u),t(u)). ¢. du (5.7) 

is equivalent to Eq. (5.1). 
On the other hand, it is well known that under mild 

assumptions about Eq. (5.1), the probabilistic evolution of 
such a system can also be obtained in solving an initial value 
problem, namely, the Liouville equation 
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t = - div(v pI, (5.8) 

wherep = p(X,t) is a probability density for the process X (t). 
In this way the framework for the variational descrip

tion of a probabilistic system (5.1) [or (5.7)] is well defined. 
One verifies easily that the different principles proposed in 
the four first sections restore the main variational results 
used in classical mechanics. 12 

Consider the strictly deterministic situation where the 
initial condition XoEll degenerates to a true (EJR/) constant 
Xa for a conservation system. 

Then, since we can write the symmetrical Lagrangian 
(5.4), 

(5.9) 

where the subscript c denotes the classical definition, the two 
momenta coincide and 

P=P*=Pc' (5.10) 

The function v ofEq. (5.1) is a gradient. Indeed, if one consid
ers the (classical) action for the Lagrangian Lc along extre
mal..¥' (s) trajectories between the fixed point (ta ,xa) and the 
free final point (t,x), one obtains a real valued function of x 
and t, 

fLc(XX(S),XX(S)) ds, 
ta 

(5.11) 

well defined for It - tal sufficiently small, 11 with the proper
ty 

As heuristic example, we will use Theorem 6 for the one
dimensional case and a variation between two dynamical 
paths of different constant energies in a periodic motion of 
period 'T. If I is the reduced action, we have 

8I = D'C dt = D'C . 'T f
ta+T 

ta 

by hypothesis of periodicity, which means that 

JI 
'T=-. 

J'C 

But, by homogeneity of T, 2Tc = PcX and then 

f
ta+T j 

1= Pc .Xdt='jp.dX, 
ta 

where ¢ denotes an integration over one period. 

(5.13) 

(5.14) 

(5.15) 

Historically, the action (5.15) was the main object of the 
old quantum theory. 15 Indeed, Planck's recipe for quantiz
ing the oscillator (and other one-dimensional periodic sys
tems l6

) was to put 

1= fp· dX = nh, nEN, (5.16) 

where h is Planck's constant. In the limit of Bohr's corre
spondence principle (namely when n is a large number), the 
change of I and 'C, using Eqs. (5.14) and (5.15), was supposed 
to be given by 

Lil = Lin· h, Li'C = Lin· hv, (5.17) 
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where v denotes a frequency 'T- I
• Thus, since for an harmon

ic oscillator with potential V(X) = !MW2X 2
, 

1 = 'C'T + const, where 'T = 21T/W, 

the recipe (5.16) gives the quantized levels of energy 

E = nfIw + const. 

Today we know that the constant is !fIw. 

(5.18) 

(5.19) 

It must be emphasized that no trace ofEq. (5.16) sur
vives in conventional quantum mechanics, except in the 
study of the semiclassical limit (WKB method; cf. Refs. 11, 
17, and 18). 

6. APPLICATION TO STOCHASTIC MECHANICS 

The second illustration is given by Nelson's stochastic 
mechanics, created in 1966.3

,7.8 It involves a more general 
kinematic assumption than Eq. (5.1), namely, 

dX(t) = b (X(t ),t) dt + ~fl/M dW(t) (6.1) 

and X (0) = XoEll, independent of W. 
Here W is a Brownian motion on JR /, fl and M two posi

tive constants, and b a smooth (unspecified) function on 
R' + I. Equation (6.1) is a differential form of the canonical 
decomposition (1.1) for a filtration ~t containing 
0-[ X (s),s.;;t J and W the~t -martingale part of X (t ). Afterinte
gration, the first integral of the right-hand member of Eq. 
(6.1) is a Stieltjes integral for each sample and the second one 
a ~t -martingale integral of It6. Furthermore, X (t) given by 
Eq. (6.1) is a Markoff process. 

A filtration 15t = 0-[ X (u);u;;.t J contains the future of 
the process X (t ), and the associated Meyer's canonical de
composition (1.2) takes the differential form 

dX(t)=b*(X(t),t)dt+~fl!M dW*(t), (6.2) 

where b* is some other smooth function on JRI + 1 and W* 
the lS t -martingale part of X (t ). By the Markoff property, ~ t 
and lSt are conditionally independent given the present 

~tnlSt· 
In this case the sample paths are not differentiable (a.e.) 

and the two mean velocities (1.3) and (1.4) are different. In 
fact, 

(6.3) 

Let us consider again the Lagrangian (5.4), It follows from 
the stochastic Hamilton's principle that the dynamics ofthis 
Markoffian system will be defined by YEN equation (2.3), 

!M(DD*X(t) +D*DX(t)) = - VV(X(t),t), (6.4) 

which is clearly a generalization of Newton's law (5.5). 
For noncontemporaneous variations, we need a (deter

ministic)time change for semimartingales. 19 It is defined by 

T.p:X (u)r--+X(t (u)) = X (u), (6.5) 
where t (u) satisfies for some unspecified but smooth rp 

~=<P(t(u))>O. (6.6) 
du 

One proves easily the existence of a ~u -martingale 
W(u) W(t(u)) for the measurePT .p.l such that Eq. (6.1) is 
modified to 
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dX(u) = b (X(u),t (u)) . <p • du + ~fzlM <p 1/2 dW(u). 
(6.7) 

IfEq. (6.6) can be uniquely solved for t (u), for example, when 
<p is a bounded Borel measurable function Lipschitz contin
uous in t, Eq. (6.7) is well defined. 

One follows the same procedure for Eq. (6.2). Thus, the 
relations (2.8) and (2.9) are satisfied since 

DuX = b (X(u),t (u))· <p, D.uX = b. (X(u),t (u))· <p. 
(6.8) 

Since the partial differential operator 

D +- - %t - b jaj - ajb j + !(fzIM)ajaj 

is hypoelliptic,20 the process X, has a smooth density on RI 
X I (with respect to the Lebesgue measure d 'X), p(X,t ) satis
fying the forward equation 

ap = _ div(bp) + (fz/2M)Llp. 
at 

(6.9) 

By the averaging with the other equation for p correspond
ing to the decomposition (6.2), Nelson shows that 

ap = _ div(vp), (6.lO) 
at 

where v is defined by v = !(b + b.). This function v is a gra
dient. Indeed, if one considers the variable end point prob
lem associated with Eq. (2.2), it may be seen that9 

(M Ifz)v(X (t ),t ) = grad S (X (t ),t ), (6.11) 

for some smooth function S. In these conditions, Nelson 
proved that 

",(X,t)==p1/2 (X,t)eiSIX.'1 (6.12) 

satisfies 

ifz a", = _ ~Ll ,1. + V,I. 
at 2M 'I' '1" 

(6.13) 

that is, the Schrodinger equation for a particle with mass M 
in the given potential V (if 1= 3). The constant fzofEqs. (6.1) 
and (6.2) is identified with Planck's constant over 21T, and it 
follows from Eq. (6.12) that I ",(X,t )1 2 d' X = P(X(t )Ed' X). 

The proof of the existence of the associated time sym
metric semimartingales was given recently by Carlen. 2 

I 

The conservation of energy used as far as noncontem
poraneous variations are concerned [for example, Eq. (2.22) 
or more generally Eq. (4.8')] is nothing else but the quantum 
form of this conservation law. Hence, for a quantum station
ary state with energy eigenvalue En' we get 

(6.14) 

where ~ is given by (2.21), 

~(X,DX,D.X) =!MIDXI2 + !MID.XI2 + V(X) 
(6.15) 

or, more explicitly, in terms of Eqs. (6.3), 

~ =!M Ib 12 + !M lb. 12 + V. 

Since for a stationary state8
•
22 

DX(t)= -D.X(t), 

Eq. (6.16) is reduced to 
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(6.16) 

(6.17) 

(6.16') 

Come back to the one-dimensional case for Theorem 6 ex
amined in Sec. 5 within a deterministic frame. It follows 
from Theorem 2 that the reduced action can be written 

1 [lIlJ'a 
+ T il'J'a 

+ T ] I=-E p.dX+ p. ·dX 
2 10 ta 

[J'a+ T ] 

=E la 2Tdt (6.18) 

where, by Eqs. (2.18), (2.19), and the definition (5.4) of the 
Lagrangian (conservative case) 

p=MDX, p. =MD.X. (6.19) 

Taking into account Eqs. (2.30) and (2.31), 

I=E _(DX)2dt+ _(D.X)2dt . [J ,a + T M J'a + 7" M ] 

la 2 ta 2 
(6.20) 

For stationary states, by Eq. (6.17), the two integrals coin
cide. Then, it will be sufficient to compute the first expecta
tion for a state 

",(X,t ) = CfJ n (X)e - lilfilEnt, (6.21) 

where CfJnEL 2(R;C) is an eigenfunction of the stationary 
Schrodinger equation associated with Eq. (6.13) for the ener
gy eigenvalue En' The Nelson process in this case is indeed a 
(strictly) stationary Markoff process whose invariant mea
sure is p(X) dX = ICfJn (X )1 2 dX. 

We find, using an evident notation for Eq. (6.18), 

In()J5) = dEn - E [V]j = In(i}) 

= 1'E [T). (6.22) 

Now, by the virial theorem,2 we have 

2E [T) = E [X. V V). (6.23) 

Provided that Vis homogeneous of degree m, it follows from 
Euler's theorem that Eq. (6.23) is simplified to 

E [T) = ~mE [V). (6.24) 

The comparison with Eq. (6.22) shows that 

E [V) = [2/(m + 2))En (6.25) 

and then 

In()J5) = In(i}) = [ml(m + 2))rEn 

or, by Eq. (6.20), 

1= [2m/(m + 2))rEn, 

which yields for the harmonic case m = 2, 

I=En r 

= (n + !)h, nEN, 

(6.26) 

(6.27) 

(6.28) 

where the eigenvalue for V(X) = !Mli/X 2 and r = 21T/wwas 
used. Equation (6.28) for the reduced action (6.18) is the well
defined quantum analog of the historic recipe (5.16). 

Observe that a direct (and naive) application of 
Theorem 6 for the variation between two stationary states of 
different energies in the limit of the correspondence princi
ple and for periodic orbits gives 

8I = /jE[~] . r (6.29) 
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or 
aI 

T=-
ae' 

(6.30) 

as for the classical case (5.14), if we put e = E [W]. It is worth
while to emphasize that Eqs. (6.27) and (6.28) are fully quan
tum mechanical expressions; they have nothing to do with a 
semiclassical limit. 

7. CONCLUDING REMARKS 

Let us indicate briefly that the proposed stochastic vari
ational frame can be equally useful for the study of the semi
classical limit in quantum mechanics23 and also for exten
sions of quantum mechanics in the domains where 
Hamiltonian or Lagrangian classical theories are power
less.24

•
25 It is well adapted to the research of the possible 

dynamics in nonequilibrium statistical thermodynamics.9 

Furthermore, it can be formulated on any Riemannian 
manifold9

•
26

,17 and was used recently with success to investi
gate the Navier-Stokes equation.28 A self-contained review 
on stochastic calculus of variations is given in Ref. 9. 
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We give a bounded convergence theorem for the Feynman integral for the class of bounded, 
measurable potentials. 

PACS numbers: 02.50.Sk, 03.65.Db 

1. INTRODUCTION 

There have been many different approaches to the 
Feynman integral which have illuminated the subject in a 
variety of ways, but, to the best of our knowledge, there has 
never been any really satisfactory convergence theorem ap
plying to any reasonably large class of potentials. The main 
theorem of this paper gives such a theorem for the class of 
bounded, measurable potentials. The setting is an approach 
to the Feynman integral introduced by Cameron and Stor
vickI and studied further by them2

-
5 and others including 

Haugsby6 and the author and Skoug.7
-

9 Parts of Ref. 9 are 
especially relevant to the present paper. 

The class of bounded potentials does not include by any 
means all the potentials of physical interest; indeed it fails to 
include such basic things as the harmonic oscillator and 
Coulomb potentials. However, a review of the physical liter
ature shows that bounded potentials are of considerable in
terest in quantum mechanics. They are also of interest in 
connection with the Korteweg-de Vries (or KdV) equation. 
A beautiful relationship between the KdV equation and the 
Schr6dinger equation of quantum mechanics has been dis
covered. The function giving the boundary data of the KdV 
equation becomes the potential in the related Schr6dinger 
equation. The natural potentials that arise in this way are 
bounded. See Ref. 10 for information and references on this 
subject. 

There has been considerable progress on the Feynman 
integral in recent years. However, the absence of satisfactory 
convergence theorems has certainly been one of the basic 
difficulties in the theory. The kind of limiting arguments so 
strongly associated with integration theories have not been 
possible. To take another point of view, the mathematical 
theories have not had very satisfactory stability properties 
even though the physical world apparently does. If {em J is a 
sequence of potentials which converges pointwise, or even 
uniformly, to e, there has been no assurance that the corre
sponding Feynman integrals converge. 

Remark: The work below permits the potentials to be 
complex-valued (or C-valued). Such potentials seem to be of 
interest physically in connection with "open quantum sys
terns." See Refs. 11-15 for references. 

2. BACKGROUND 

Let t> ° be fixed. Co[O,t] will denote one-dimensional 
Wiener space, that is, the set of all continuous paths on [O,t ] 
which vanish at O. C g [O,t ] will denote the product of v copies 
of Co[O,!]. We will consider cg [O,t] as equipped with v-di-

mensional Wiener measure m which is just the product of v 
one-dimensional Wiener measures. 

Given a C-valued function F on C ~ [O,t J,A > O,¢ in 
L 2(R

V
), and an element S of RV

, we consider the expression 

(I,dF)¢)(s):= ( F(A- 1/2X+S) 
JCO[o.t) 

X¢(A - 1/2X(t)+s)dm(X). (1) 

This formula may define, for each A > 0, a bounded linear 
operator I). (F) on L2(RV). If this is so, and if the operator
valued function A-I). (F) has an analytic continuation to 
C+: = {A in C: Re A > ° J, we denote this analytic continu
ation I ~n(F) and call it the operator-valued, analytic Wiener 
integral of Fwith parameter A. Finally given a real param
eter q, q::j=O, the operator-valued analytic Feynman integral 
of F with parameter q is denoted J:n(F) and is defined by 

J:"(F): = lim I~"(F), 
).~-jq 

(2) 

where the limit is taken in the strong operator topology and 
where A approaches - iq through C +. These definitions 
were given by Cameron and Storvick in Ref. 1. 

It is only for certain special classes of functions F for 
which the above definitions are relevant to quantum me
chanics. These are primarily functions of the type that we are 
about to describe or certain variations of them. 

Let e be a C-valued, Lebesgue measurable function on 
RV

, and let 

F(X): = exp {f e(X(S))dS}. (3) 

In this paper, e will be required to be bounded. As we contin
ue, we will have a sequence of bounded functions {em J such 
that em -e almost everywhere (a.e.). Let 

(4) 

Remarks: (i) Regarding the Feynman integral as an op
erator rather than: as a number is a natural point of view. If e 
in Eq. (3) is thought of as the potential for the quantum sys
tem and if ¢ is the initial probability amplitude, then J:n(F)¢ 
is the probability amplitude giving the state of the system at 
time t. 

(ii) From this point on, q will be an arbitrary but fixed 
nonzero real number, and so we will drop the subscript q in 
the expression J :"(F). Further since, except for one remark, 
we will discuss only the operator-valued analytic Feynman 
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integral, we will write simply J (F) rather than J ;n(F). 
The following is a special case of part of Ref. 9, 

Theorem 5.1. (In retrospect, it is clear that the exposition in 

Ref. 9 left something to be desired. We should have empha
sized and stated more explicitly the special cases of our theo
rems which were likely to be of most interest.) , 

Theorem 1: Let () be an essentially bounded, complex-valued, Lebesgue measurable function on RV and let Fbe given by 
Eq. (3). Then J (F) exists as a bounded linear operator on Lz(RV

) and, for any t(; in Lz(RV
), it is given by 

(J (F )t(;)(S) = f f' I
Sn 

... (" ( - iq)"/2 [21T(t - s.)] - v/2 
• =0 Jo Jo Jo 

X i" () (V. )exp [iql~~·_-s:t] ( - iq)vIZ[ 211'{s. - S. _ Il] - v/2 

X I ()(V._I)exp[iqllV.-I-V.IIZ] X"'X(-iq)"/2[21T(Sz-S.)]-VIZ 
JR" 2(s. -S._I) 

X I () (V.)exp [iqll VI - VzIIZ] ( _ iq)"/2 [21TS.l - v/2 
JR" 2(sz - S.) 

I [iqll Vo - VIIIZ] 
X JR" t(;(Vo)exp 2s I d Vad VI' ... ·d V. ·ds I' ... ·ds., (5) 

where the integrals over RV are interpreted in the mean (as in the Fourier-Plancherel theory) and the integral over 

J.:= [(SI, ... ,S.):0<SI<S2<"·<S._1 <s.<tJ (6) 

may be interpreted either as a Bochner integral (Ref. 16, pp. 71-89) of an Lz(RV )-valued function or as a Lebesgue integral. 
The theorem as just stated gives the basic information, but we will need some additional notation and some further 

information from Ref. 9 connected with the terms ofEq. (5). Let 

(B. (F)(SI""'S. )t(;)(s) = ( - iq)"12 [21T(t - sn)] - viZ 

X I ()(Vn)exp [iqllVn -sIIZ] (_iq)"/Z[21T(S. -Sn_l)] -v/2 
JR' 2(t-s.) 

X I ()(Vn_l)exp[iqIIVn-I-V.IIZ] X"'X(-iq)"/2[21T(Sz-S.)]-VIZ 
JR' 2(sn - Sn _ 1 ) 

X I () (VI)exp [iqll VI - VzIIZ] X ( _ iq)"/2[21TS\] - viZ 
JR' 2(sz - S.) 

X I t(;(Vo)exp [iqllVo - VIIIZ] dVadV\ ... dVn, (7) 
JIR" 2s 1 

and let 

(A.(F)t(;)(S) = In (B. (F)(s\,. .. ,s.)t(;)(s)dS, (8) 

whereS = (SI'''',s.). Note that (A.(F)t(;)(s) is just the nth term of the series in Eq. (5). 

It is useful to think of Bn (F)(s\, ... ,s.) as the composition 
of a succession of alternating convolution and multiplication 
operators. Let 

es ( U): = ( - iq)"/2 [21TS]- VIZexp [iqllU liZ /2s] (9) 

and let Cs be the operator of convolution byes; that is, 

(Cs t(;)(s) = ( - iq)"/Z [21TS] - v/2 L t(;(U)es(s - U)dU. 

(10) 

The convolution operators in (10) are well known (as is dis
cussed in Ref. 9; proof of Lemma 1.1) to be unitary operators 
on Lz(RV 

). If M If = M denotes the operator of multiplication 
by (), then M is also a bounded linear operator on Lz(RV 

) and 
11M II = II() 1100 . Now, looking carefully at Eq. (7), we see that 

B.(F)(SI, .. ·,Sn)t(; = (Ct - sn oMoCsn _ Sn_l oMo ... 

oCs, _ s, oMoCs, )t(;, (11) 

1324 J. Math. Phys., Vol. 25, No.5, May 1984 

I 
and so 

(12) 

The fact that Bn (F)(SI, ... ,Sn)t(; is Bochner integrable over J. 
comes out of the work in Ref. 9, and so it follows from a basic 
inequality for Bochner integrals (Ref. 16; Theorem 3.7.6, p. 
82) that 

IIAn (F)t(;11 < 1 liB. (F)(s\,,,,,sn )t(;llzdS 
LIn 

<((II() 1100 t)" /n!)IIt(;112' (13) 

Now since from (5), (7), and (8) 
00 

J(F)t(; = I An(F)t(;, (14) 
n=O 

we have from (13), 
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'" IIJ (F)tPI12« IitPI12 I (110 1100 t r In! = IitPI12exp [110 1100 t ]. 
n=O 

(15) 

All of the above information is contained in Ref. 9 but in Ref. 
9, much of the information is set in a more general frame
work and/or is somewhat hidden in proofs. Also we are us
ing different notation here. 

&THEBOUNDEDCONVERGENCETHEOREM 
Theorem 2: (A bounded convergence theorem for the 

Feynman integral.) Let 10m 1 be a sequence of complex-val
ued, Lebesgue measurable functions on JR.V all of which are 
essentially bounded by the number L. Suppose that Om--O 
a.e. on RV 

• Then, of course, 0 is also essentially bounded by L 
and, by Theorem 1, J (F) and J (F m), m = 1,2, ... , all exist 
where Fis given by (3), and Fm is given by (4). Further, the 
analytic, operator-valued Feynman integral ofF m converges 
in the strong operator topology to the analytic, operator
valued Feynman integral of F as m-- rfJ. In symbols, 

J (F m )~J (F) in the strong operator topology as m-+ rfJ • (16) 

The following lemma is certainly known, but its proof is 
simple, and the result plays a key role here, and so we include 
it. 

Lemma: Let 10m J be a sequence of complex-valued, 
Lebesgue measurable functions on RV all of which are essen
tially bounded by L. Suppose that em __ e a.e. on R V 

• Then e 
is essentially bounded by L, and the sequence of multiplica
tion operators Me

m 
converges in the strong operator topol

ogy to Me as m--rfJ. 
Proof Let l/; be in L2(RV). We must show that 

L lem(U)l/;(U) - e(U)tP(UWdU--O as m--rfJ. 

Now em(U)¢(U)~e(U)tP(U) a.e. since em(U)--e(U) a.e. 
Also 4L 21 tP(U W is in L l(JR.v ) and is a dominating function for 
the sequence lem(U)tP(U) - e (U)tP(UW. Simply apply the 
ordinary dominated convergence theorem for Lebesgue 
measure on RV to finish the proof. 

Proof (of the theorem): Fix tP in L2(RV). Also, for now, 
we fix n . We first claim that for every (s 1"" ,s n ) in..1 n , 

as m--rfJ. (17) 

This follows form the Lemma, formula (11), and the fact that 
the composition of operators is jointly continuous in the 
strong operator topology provided one of the operators is 
restricted to lie in a bounded subset of the space of bounded 
linear operators on Lz(RV). 

Now applying Eq. (12) to the functions F m and using the 
dominated convergence theorem for Bochner integrals (Ref. 
16, Theorem 3.7.9, p. 83), we get 

IIA,,(Fm)l/;-An(F)l/;lIz-<> asm~rfJ. (18) 

We now know that each term of the series (14) for 
J (F m)¢ converges in Lz(RV 

) nonn to the corresponding tenn 
of the series for J (F )tP. It remains to show that 
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IIJ (F m )tP - J (F )¢II r~O as m __ rfJ • 

Given E> 0, let No be so large that 

i: IItPllz (tL)" <~. 
n =N,,+ 1 n! 4 

Now, using (18), let Nbe so large that for m>N, 

(19) 

(20) 

~ E 
n.?o IIAn(Fm)l/; - An(F)¢llz < 2' (21) 

Now let m>N, then using (14), (21), (13), and (20) we can 
write 

IIJ(Fm)tP - J(F)¢llz 

//n~o An(Fm)¢- n~o An(F)¢//2 

= II n~o [An(Fm)tP-An(F)tP] + n=~+1 An(Fm)¢ 

n=~+ 1 An(F)l/;I/z 
No 

« I IIAn(Fm)l/;-An(F)tPliz 
n=O 

"> 00 
+ I IIAn(Fm)¢llz + 

n=No + I 

I IIAn(F)l/;lIz 
n =Nu + 1 

E <-+ 
2 

f (tL r IltPllz + f (tL t IltPllz 
n = No + 1 n! n = No + 1 n! 

< d2 + E'/4 + d4 = E' 
as desired. 

We describe a simple corollary of Theorem 2: If I Dm 1 is 
a sequence of operators in a normed linear space such that 
Dm __ D in the strong operator topology and if 
IIXm - X 11 __ 0, then IIDmXm - DX II~ as m-4rfJ. This 
easily proved, and well-known fact (Ref. 17, Problem 3.10, p. 
151), combines with Theorem 2 to show that if em ~O a.e. 

and IltPm - tPI1 2--G, then IIJ(Fm JtPm - J(FJtPllz-<> as 
m~ rfJ • In the language of quantum mechanics and speaking 
a bit loosely, if both the potential e and the initial probability 
amplitude tP are perturbed slightly, then the probability am
plitude at time t is changed only slightly. 

We finish this paper with a series of remarks. The first 
of these remarks is crucial in understanding why the proof of 
Theorem 2 works. 

Remarks: 1. The use of the dominated convergence 
theorem for Bochner integrals is essential to the proof of 
Theorem 2. An attempt to apply the ordinary dominated 
convergence theorem putting absolute values inside the inte
grals defining the Bn 's simply doesn't work; the functions 
need not even be integrable. The use of the dominated con
vergence theorem for Bochner integrals allows us to take the 

norm inside the integral with respect to ..1 n but still to take 
advantage of the canceling effects of the integrals over R V 

• 

2. In some earlier work I.Z.7 on bounded potentials e,e 
was assumed to be continuous a.e .. This assumption was re
duced to measurability in Haugsby's thesis6

, and his im
provement carried over to the setting of Ref. 9 and, in parti
cular, to Theorem 1 above. While continuity a.e. is probably 
good enough to include all the bounded potentials of phys
ical interest, it is useful in this paper to have the weaker 
measurability assumption. Because of it, we know immedi
ately that the a.e.limit of the em's of Theorem 2 is again a 
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potential to which Theorem 1 applies. 
3. We have worked in this paper only with the operator

valued analytic Feynman integral.rn (F). In fact, under the 
hypotheses of Theorem 1, Cameron and Storvick's operator
valued sequential Feynman integral.req (F) also exists and 
equals.rn(F)(Ref. 9; Theorem 4.6, p. 124). [See Ref. 10r7for 
the definition of,req (F).] Hence the results of this paper hold 
for ,req (F) just as well as for .rn (F). 

4. It seems likely that the arguments above can be ex
tended to time dependent potentials and to certain classes of 
unbounded potentials of the type treated in Ref. 9. Further, 
the arguments may well extend to "Feynman-type integrals" 
based on Gaussian-Markov processes other than the Wiener 
process. 

Note added in proof Motivated by a preprint of this 
paper and discussions with the author, Michel Lapidus has 
recently proved a nice convergence theorem for his "modi
fied Feynman integral." 
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We compute explicitly the scattering amplitude for a quantum mechanical particle scattered by a 
discrete set of impurities in a three-dimensional crystal with point interactions. 

PACS numbers: 02.70. + d, 03.65.Nk, 61.70.Rj 

1. INTRODUCTION 

The importance of exactly solvable models in theoreti
cal physics can hardly be overestimated. Such models give 
orientation in situations where the analytic tools at our dis
posal are too weak to cope with the complex physical situa
tion at hand. Moreover, they often give answers which are 
correct in certain controllable approximations. In solid-state 
physics as well as in the many-body problem, in the study of 
low energetical nuclear reactions, and in the study of electro
magnetic phenomena, idealized point interactions (also 
called Fermi pseudopotentials or zero range interactions) 
have been introduced and studied extensively, particularly 
for the reason that they provide a very good approximation 
at low energyl-25 and they are exactly solvable. Early work 
using such interactions has been done already in the thirties, 
by L. H. Thomas and continued by H. Bethe, R. Peierls, and 
others, in nuclear physics, by K. Huang, C. N. Yang, J. M. 
Luttinger, T. D. Lee, T. T. Wu, and others, in the fifties, for 
the many-body problem, and by R. de L. Kronig, W. G. 
Penney (1931) and continued by H. L. Frisch, S. P. Lloyd, R. 
E. Borland, and others, for solid-state physics. For refer
ences see Refs. 1-22. For applications to electromagnetic 
theory see Refs. 23-25. 

In recent years, much activity concerning point interac
tions has been developed, along three main lines: 

(a) Give a mathematical definition of point interactions 
suitable for the case of finitely and infinitely many centers. 
Here new techniques have been found, including methods of 
Dirichlet forms26 and of nonstandard analysis, 12 see Refs. 1-
29 and references therein. In particular, Hamiltonians of the 
formH= -..1 +~aeAAal5(X-Xa) + W(x)with.J theLa
placianinL 2(Rd ,dx),d = 1,2,3 (xa , aEA ) a discrete (finite or 
countable) set of fixed "sources" and W(x) a sum of one-and
two-body "nice" potentials (including Coulomb ones) have 
been defined. 

(b) Compute the resolvent, 1-19 the spectrum (eigenval
ues, resonances), 1-5.8.9.14-16,2~22.29 and the scattering quanti
ties l- ll ,14.17-19 of such models. 

(c) Prove that the point interactions give the leading 
terms in low energy expansions for given "nice" potentials 
and find analytic expansions in a low energy parameter 

"around point interactions," for the resolvent,I-9 the eigen
values and resonances, 1-4,8,9,28 and scattering quantities. 1-9 

In the present paper we shall give yet another contribu
tion to point (b), namely we shall compute the scattering by 
impurities in a three-dimensional model of a solid with point 
interactions (a three-dimensional version of the Kronig
Penney model). 

Besides Einstein-Debye's harmonic crystal, the only 
exactly solvable model for the motion of a quantum mechan
ical particle in ad-dimensional (d < 3) crystal is the one where 
the crystal consists of fixed centers which act as sources of 
point interactions. This model has been defined mathemat
ically and studied originally (starting from the construction 
ofa resolvent for finitely many points in Ref. 12) in Refs. 1,8, 
9, 15, and 25. 

In particular the resolvent was given, and proven to be 
the low energy limit of the one for a crystal with nice poten
tials. In Ref. 15, scattering quantities were also computed, in 
the case of an infinite straight polymer and in the case of a 
monomolecular layer. The present paper is concerned with a 
quantum mechanical particle (electron or neutron or, alter
natively, a scalar electromagnetic wave or acoustic wave) 
moving in a crystal consisting as above of fixed centers creat
ing point interactions and having a discrete set of impurities, 
given by point interactions centered at points not coinciding 
with any of the crystal sizes. 

The scattering quantities (wave and scattering opera
tors) for the scattering by impurities, where the crystal inter
actions are bounded periodic and the impurities are in suit
able L P -spaces, have been studied in Refs. 30-44. In our 
case, neither the crystal interactions nor the impurities inter
actions belong to these classes. Yet from the approximation 
results of point interactions by smooth interactions men
tioned above, 1-9 we can define such quantities also in our 
model of scattering by impurities, the main advantage of our 
model being then that all quantities can be computed expli
citly. 

In Secs. 2 and 3 we recall the results on the Hamiltonian 
for crystals with point interactions. 

In Sec. 4 we study the scattering quantities describing 
the scattering by impurities on a crystal with point interac
tions. We study both the scattering between given Bloch 
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waves and the one between given plane waves. 

2. THE OFF-SHELL SCATTERING MATRIX FOR THE 
POINT INTERACTIONS 

As discussed in the introduction, the Schrodinger oper
ator for a particle moving in the potential given by a finite or 
discrete set of point interactions has been investigated in sev
eral publications. 1-28 Such an operator is given formally by 

H=Ho- LAaaD(X-a), (2.1) 
aEA 

whereHo = - Ll,Ll being the Laplacian inL 2(R3).A is some 
finite or discrete subset of R3, D is the Dirac's function, and 
Aaa are suitable coefficients. As discussed in Refs. 12 and 13, 
in order to give a rigorous sense to (2.1) as an Hamiltonian 
different from Ho, one must choose the Aaa as infinitesimal 
quantities in the sense of nonstandard analysis, depending 
on real parameters aa' H can also be described in terms of 
standard analysis, as the self-adjoint operator in L 2(R3

) hav
ing as resolvent kernel 

(H - E)-I(X,y) 

= GE(x - y) + L [(aa - ~ - E 141T)Dab 
a.bEA 

where 

GE(x - y)_( - Ll - E )-I(X, y) 

= (41Tlx - yl)-Iexp( - ~ - E Ix - yl)· 

Dab = 1 if a = b, Dab = 0 if a=/=b, while GE(x - y)-GE(x 
- y)ifx=/=y, GE(x - y) = Oifx =y. [ lab 1 isthea,bmatrix 

element of the inverse of the operator [ ] in 12(A ), with a, b 
matrix elements 

(aa - ~ - E 141T)Dab - Gda - b). 

aa are lower bounded, uniformly in a and H is lower bound
ed. 

In Refs. 1, 2, 4, and 9 it was proven that H is the limit in 
the strong resolvent sense of the operators HE as E~, where 

(2.3) 

Aa being smooth functions in a neighborhood of the origin, 
withAa (0) = 1, and Va being potentials such that Va (x) has a 
zero energy resonance, in the sense of Refs. 1, 2,4, and 9. The 
relation between Va' Aa in (2.3) and aa in (2.2) is such that aa 
only depends on Va and the derivative A ~ (0) of Aa at the 
origin, see Refs. 1, 2, 4, and 9 for details. In this paper we 
shall need the resolvent formula corresponding to (2.2) for 
the case where H is given by (2.1) but with Ho replaced by an 
operator different from - Ll. This more general formula 
was derived in Ref. 14, so that from that reference we have 
the following. 

Theorem 2.1: LetA be a subset ofR3 without finite accu
mulation points. Let H 0 be a self-adjoint positive operator on 
L 2(R3

), with resolvent kernel 

KE(x,y)-(Ho - E)-I(X,y), 

such that for a=/=b, KE(a, b) is finite and continuous in a 
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neighborhood of a and b, K ~(a, a) is finite and continuous in 
a neighborhood of (a, a) (K ~ being the derivative of K E ), and 
one has KE(a, ·)EL 2(R3

) (a, b run over the points of A). 
Let aa be bounded from below, uniformly for aEA. 

Then the Schrodinger operator (2.1) is well defined as the 
self-adjoint operator in L 2(R3

) with resolvent kernel 

(H _E)-I(X,y) 

=KE(x,y) + a~J(aa - f~IKi(a,a)dE)Dab 
- KE(a, b)] -IKE(a, x)KE(b,y), 

a.b 
where KE(a, b )-KE(a, b) if a =/=b, and KE(a, b )=0 if 
a=b. • 

Remark. The relation between the coefficients A in 
(2.1) and the quantities aa in Theorem 2.1 is given fo~ally 
by A;;" 1 = K _I(a, a) + aa' This shows in particular that if 
K_1(a, a) is not finite (which is the case if, e.g., Ho = - Ll) 
then Aa is infinitesimal. See Refs. 12 and 13. 

In the following we shall first recall a few notions of 
scattering theory for Schrodinger operators of the form 

H = Ho + V (2.4) 

with suitable H o, having a nontrivial absolutely continuous 
part, and potentials V, say bounded. Let R (E )=(H - E) - 1 
be the resolvent of H. In scattering theory one defines the 
corresponding T operator by 

T(E)=V - VR (E)V, 

see, e.g., Refs. 45-47. 
We remark that this is equivalent to 

(2.5) 

T(E) = (Ho - E)(Ro(E) - R (E))(Ho - E), (2.6) 

where Ro(E ) = (Ho - E)-I, as seen by an iteration of the re
solvent formula (first for 11m E I sufficiently large, and then 
by analytic continuation). 

Associated with the absolutely continuous part H ~c of 
Ho there is a space Pwhich supports the spectral decomposi
tion of H ~c. Let tP n,p (x) be a complete set of generalized eigen
functions for the absolutely continuous part of the spectrum 
of H o' i.e., we have 

HotPn,p = En (P)tPn,p , (2.7) 
for any pEP, nEN, with the orthonormality relations 

( ¢n,p (x)tPm,q (x)dx = DnmD(P - q) 
JR' 

and the completeness relation for the absolutely continuous 
part, namely the property that 

L i dp tP",p(x)¢n,p(y) 
n P 

is the projection onto the absolutely continuous part of H o. 

The off-shell scattering matrix S E is defined in general, 
gi ven the T-operator T (E ) and generalized eigenfunctions 
tPn,p for the absolutely continuous part of H o, by 

(2.8) 

where ( , ) is the L 2(R3
) scalar product. 

By definition the on-shell scattering matrix is given by 
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Sip, n; q, m)-SEnIPdp, n;, q, m)8(En(P) - Em (q)). 
(2.9) 

The scattering operator S is by definition an operator on the 
subspace P of- 2(JR3) of L 2(JR3) on which Ho is absolutely con
tinuous. (Po is the projection onto the absolutely continuous 
subspace of H o, see Refs. 45-47). 

The kernel of S is given by 

Sip, n; q, m)-8(p - q)8n,m + Sip, n; q, m). (2.10) 

The relation between the scattering matrix (2.8), the wave 
operators, 

t_± 00 

and the S matrix 

S= W~ W+ 

(2.11) 

(2.12) 

is well known, see, e.g., Refs. 45-47 (where sufficient condi
tions for all quantities to exist and all relations to hold are 
given). 

In Refs. 2 and 18 it is shown that (2.6) gives a suitable 
definition of the off-shell T matrix also for point interactions, 
in the one-center problem. Using the results of Refs. 1,4, and 
9 one can extend this to the case of a discrete number of 
centers, arriving at the following result for the point interac
tions of Theorem 2.1: 

Theorem 2.2: Under the same assumptions as in 
Theorem 2.1 the off-shell scattering matrix is given for any 
complex E in the complement of the spectrum of Ho by 

SE(P, n; q, m) 

x [( aa - f~ 1 K kia, a)dE )8ab - KE(a, b )[b
l

, 

where tPn,p (x) is a complete orthonormal system of general
ized eigenfunctions corresponding to the absolutely contin
uous part of Ho. 

3. SCATTERING BY POINT INTERACTIONS 

Let us now consider an operator H of the form (2.1) with 
A finite, i.e., 

H = - .1 - 2>1aa8(X - a). (3.1) 
aeA 

The kernel (H - E)-I(X,y) of its resolvent is then given by 
(2.2). 

From Theorem 2.2, observing that here (21T)-3/2e-ipa, 
aER3 play the role of the tPn' we then have that the off-shell 
scattering matrix is given by 

SE(P,q) 

= (21T) - 3 L eipo - iqb 
a,beA 

(3.2) 

where 

_ _{GE(a-b) ifa-b#O 
GE(a-b)= 'f b 0' o 1 a- = 

1329 J. Math. Phys., Vol. 25, No.5, May 1984 

with 

GE(a - b )=( -.1 - E)-I(a, b) 

= (41Tla - b I)-Iexp( - ~ - E la - b I). 

In this case we see that the on-shell scattering matrix 
S (p, q) exists and is given by 

Sip, q) = (21T)-3a~ eiIPa-qb)[ (aa - i:)8ab 

_ G
p
2(a _ b)] -18(p2 _ q2). 

a,b 
(3.3) 

Hence we have the following: 

Theorem 3.1: The on-shell scattering matrix for the Ha
miltonian in L 2(K3

) obtained by perturbing - .1 by a finite 
number of point scatterers a of strengths aa is given by 

S(p,q)=(21T)-3a~ eiIPa-qb)[(aa - i:)8ab 

]

-1 
- 2 2 -Gp2(a-b) 8(p -q), 

a.b 
while the corresponding off-shell scattering matrix is given 
by 

SE(P, q) = (21T)-3a~ eiIPa-qb)[ (aa - ~ ~1TE )8ab 

-GE(a-b)r
l

• 
a.b 

Remark 1: In the case of a one-point scatterer at the 
origin we have simply 

Sip, q) = (21T)-3(a _ ilPl/41T)-18(p2 _ q2) 

and 

SE(P, q) = (21T)-3(a - ~ - E /41T)-1. 

Remark 2: In the case of two-point scatterers at a resp. b 
we have with s( p, q; a, b )=exp[i( pa - qb )] 
+ exp[i(qa - pb )]: 

Sip, q) = (21T)-3[(aa - ilpl/41T)(ab - ilPl/41T) 

- Gp,(a - b fr l [e ilP - q)b(aa - ilpl/41T) 
+ eiIP-q)a(ab - ilPl/41T) 

+ Gp,(a - b )sip, q; a, b )]8(p2 _ q2) 

and 

SE(P, q) = (21T)-3 [(ao - ~ - E /41T)(ab - ~ - E /41T) 

- GE(a - b )2] -I [e'IP - q)b(aa - ~ - E /41T) 

+ eiIP-q)a(ab - ~ - E /41T) 

+ GE(a - b )s(p, q; a, b)], 

where we recall that 

GE(x-y) 

= (41Tlx - yl)-Iexp( - ~ - E Ix - yl)· 

In a similar way, using Theorems 2.1 and 2.2 one can 
compute the off-shell scattering matrix for - .1 perturbed 
by an infinite number of point scatterers (without accumula
tion points). obtaining the following: 

Theorem 3.2: Let A be any subset of JR3 without finite 
accumulation points and let aa uniformly lower bounded 
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real-valued functions for aEA. Then 

H= -..1- IAaaO(x-a) 
aEA 

exists for a suitable choice of infinitesimal Aa ,depending on 
aa' as a self-adjoint lower bounded operato; in L 2(R3, dx), 
given by its resolvent kernel (2.2). The corresponding off
shell scattering matrix also exists and is given by 

SE(P, q) = (21T)-3 I ei(pa-qbl 
a,bEA 

x [(aa - ~ - E /41T)Oab - GE(a - b )] a~b 1. • 

Let us now consider the particularly interesting case where 
both the set A of points creating the point interaction and the 
strengths aa of the point interactions are invariant under a 
discrete subgroup A v of R3 with v independent generators, 
where v can take any of the values 1,2, 3. Decomposing R3 as 
RV XR3 -vwecan look upon A vas a subgroup ofRv. SinceA 
is invariant under A v we have that A is of the form A = A v 

+ C, with C a discrete subset of R3, in the sense that every 
point aEA can be written as a = A + c, with AEA v, CEC. 

Moreover we have aa = a c, because of the A v invariance of 
the strengths, hence with a c independent of A, In this case 
the formula for the resolvent in Theorem 2.1 becomes 

(H - E)-I(X,y) 

= GE(x - y) + I I [(ac - ~ - E )Occ' , 0,1.,1." 

c,c' ,1.,,1.' 41T 

- GE(c - c' + A - A ')]c~,1 
,1.,,1.' 

X GE(c + A - x)GE(c' + A' - y). (3.4) 

For the corresponding off-shell scattering matrix we get 

SE(P, q) = (21T)-3I I exp[i(pc - qc')] 
c,c' ,1.,,1.' 

xexp[i(pA - qA ')] [(ac - ~ - E /41T)Occ' 0,1.,1. , 

(3.5) 

,1.,,1.' 

We can simplify (3.4) and (3.5) by using the Fourier transfor
mation with respect to the discrete abelian group A v, Define 
for kERv

, xEt1 v: 

gE(x,k)= I GE(x-A')eikA ', (3.6) 
,1.'01 v 

where kA is the inner product in RV
, and define for AEA v 

gE(A,k)= I GE(A_A')eikA,+~-E, (3.7) 
,1.'#,1. 41T 
,1.'01 v 

ThengE(x, k) is periodic in kwith periodicity rv, whererv is 
the lattice orthogonal to A v, i.e., if A v = p:~= 1 miai, m i 
EZJ where the fixed vectors aiERv are the generators of A v, 

then rv = Il:~= 1 nib;. niEZJ, with bi satisfying 

aibj = 21TOij' 

The periodicity of gE is expressed by 

gE(X, k + y) = gE(X, k), "f/yETv' 
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(3.8) 

(3.9) 

Moreover X~gE(X, k) satisfies the k-boundary conditions, 
i.e., for yETv' AEA v, xEt1 v we have 

(3.10) 

Observing that eikA are all the characters of A v we get a 
natural identification of the dual group A v of A v with 
R V 

/ r v' Using the Plancherel formula for A v the summa
tions over A v in (3.4) and (3.5) may be rewritten as integrals 
over the dual group RV 

/ r v' Since H is invariant under trans
lations by A for AEA v we have the direct integral decomposi
tion 

(3.11 ) 

where dk is the Lebesgue measure on the torus RV 
/ r v' and 

H (k ) is the reduced Hamiltonian. From (3.4) we get then 

[H(k) - E]-I(X,y) 

=gE(x-y,k)+ I [acocc, -gE(c-c',k)]c~;} 
c,c' 

(3.12) 

Let S~(p, q) be the corresponding reduced off-shell scatter
ing matrix, so that 

(3.13) 

From (3.6) we have then 

S~(p, q) = (21T)-3I /(pc-qC') 
c,c' 

X I ov(pv - k - y)ov(qv - k - y'), 
r.YEr" 

(3.14) 

where Ov is the Dirac o-function in R V andpv' qv are the 
projections of p and q onto RV in the decomposition R3 = RV 

X R3 - v. Hence we have the following: 
Theorem 3.3: Let H be the Hamiltonian for a point in

teraction in R3 invariant under a discrete subgroup A v ofRV, 
for some fixed v = 1,2,3. The resolvent kernel is given by 

]

-1 

- GE(c - c' + A - A') c,c' 
,1.,,1.' 

X GE(c + A - x)GE(c' + A ' - y), 

the support of the point interactions being A v + C, with C a 
fixed discrete subset of R3, 

We have the direct integral decomposition 
H = f v H (k )dk, where r v is the orthogonal lattice to 

R Irv 

A v in RV
, defined by (3.8). The resolvent kernel for the re

duced Hamiltonian H (k ) is given by 
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+ L [acDc.c' -gE(e-e',k)]c~,1 
c,c'eC 

xgE(x - e, k )gE(Y - e', k), 

with gE defined by (3.6) and (3.7). 
The corresponding reduced off-shell scattering matrix 

is given by 

S~(p, q) = (21T)-3 L ei(pc-qc') 
c,C'EC 

x L Dv(Pv - k - r)Dv(qv - k - r'), 
Y.YEr, 

where Pv' qv are the projections of p resp. q onto RV in the 
decomposition R3 = RVX R3 - V, and Dv is the D-distribution 
in RV. 

It is easy to see that for v = 1, 2 the on-shell scattering 
matrix exists as a limit of the off-shell scattering matrix and 
we have 

Corollary 3.4: Under the assumptions of Theorem 3.3 
with v = 1 or v = 2 the reduced on-shell scattering matrix 
exists and is given by 

SkIp, q) = (21T)-3 L ei(PC-qC')[acDc,c' 
C.C'EC 

- gp2(e - e' , k )]c~,1 L Dv(Pv - k - r) 
y,YEr, 

XDv(qv - k - r')D(p2 _ q2). 

The on-shell scattering matrix is given by 

SIp, q) = ( SkIp, q)dk. 
JRV, 

Rem.: For v = 3 the on-shell scattering matrix does not 
exist. 

4. IMPURITY SCATTERING IN SIMPLE POINT 
CRYSTALS 

In this section we shall consider perturbations of Ham
iltonians given by point interactions. More precisely we con
sider a situation like in (2.1) but with Ho replaced by the 
Hamiltonian of a periodic point interaction as given in 
Theorem 3.3, with v = 3 and C consisting of a simple point, 
taken at the origin. We write A instead of A v. Let Ho be the 
operator with resolvent kernel 

(Ho _E)-I(X,y) 

=GE(x-y)+ L [(a- ~-E)DA.A' 
A,A 'Ell 41T 

- GE(A -A ')] -I GE(A -X)GE(A' - y). (4.1) 
A.A' 

Using the direct integral decompositionHo = fR'lrH(k )dk, 
where Fstands for r v , i.e., theorthogonaIlatticetoA = A v, 

and Theorem 3.3 we have also 

with 

1331 

(Ho - E)-I(X,y) = ( [Ho(k) - E] -I(x,y)dk, 
JR'lr 
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[Ho(k) -Erl(x,y) 

= gE(X - y, k) + [a - gElD, k)] -lgE(X, k )gE(y, k). 
(4.2) 

In this case we have from (3.7), using the Poisson summation 
.A. 

formula, as in Ref. 141A I, with IA I the volume of the Bril-
louin zone: 

(0 k) = E , dE lE dg-(O k) 
gE' 0 dE 

= IA 1(21T)-3 (E L [Ik - rl2 - E] -2dE. (4.3) 
Jo yEr 

This shows that gE (0, k) is, for any fixed k, monotone strictly 
increasing in E with a first-order pole of residue (21T)-3 at 
each point E = Ik - r12, rEF. Hence there is exactly one 
solution E of the equation 

a -gElD, k) = 0 (4.4) 

in each of a sequence of bounded open intervals 

I ~ -(A ~, B ~), A ~ < B ~ 

<A~+I<B~+I<"" n=I,2, ... , 

such that 

R- Ilk-rI2, rEFj =I~uC0/~)' 
with I ~ of the form ( - 00, x~), for some x~ER. Moreover 
(4.4) has also a unique solution in I ~, since gElD, k )- - 00 

asE_ - 00. Let us denote by Ey(k) the solutionsof(4.4) S.t. 
Ey(k )E1~, with I~ = (A~, B ~), B ~ = Ik - r12. In addition 
to these values Ey(k), in order to study the eigenvalues of 
Ho(k), we should also look at the poles ofgE(O, k). In the case 
where there is a number m > I of points, rl, ... ,rmEFs.t. 
Ik - rl1 2 = ... = Ik - rm 12, then we call E y , (k ) the solution 
of (4.4) in the intervalI~ withB ~ = Ik - r11 2, and we set 
Ey, (k )=Ey, (k )= ... =Ey.!k )=Ik - r112. 

Then (Ey(k), rEF) are the eigenvalues for the reduced 
Hamiltonian Ho(k ) with correct multiplicities, the bottom of 
thespectrumofHo(k ) being the unique Ey(k ) with Ey(k )E1~ 
and the spectrum of Ho(k) being pure point spectrum, see 
Refs. 30 and 14 [where also additional information on the 
dependence of Ey(k) on k is given]. 

We shall call Ho the Hamiltonian for a simple point erys-
tal. 

We shall now study the perturbation of Ho by point 
impurities located at some finite subset A ofR3. Let us call H 
the Hamiltonian of the perturbed system, i.e., H is obtained 
from -..1 by first inserting point interactions at the points of 
C + A obtaining Ho and then inserting additional point in
teractions with support on the set A of impurities. By Sec. 2 
we know that the resolvent kernel of H is given by 

(H _E)-I(X,y) 

= (Ho - E)-I(X,y) + L [(aa - ~ - E )Dab 
a.bEA 41T 

(4.5) 

where (Ho - E)-I(X,y) is given by (4.1) and 
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KE(a, b) GE(a-b)+ ( [a-gE(O,k)]-1 
JR'IT 

xgE(a, k )gE(b, k )dk, (4.6) 

with dk the Lebesgue measure on R31r and 

GE(a - b) GE(a - b) if a - b #0 

and 

G E (a - b )=0 if a - b = O. 

Let Ey(k) be the solution of a = gElD, k) in the interval I ~ 
= (A~, B ~), with B ~ = Iy - k 12. Then Ey(k) is a simple 

eigenvalue of H (k ), i.e., a simple pole of the resolvent kernel 
[Ho(k) - E]-I (x,y) as a function ofE. gE(O, k )isananalytic 
function of E in a neighborhood of EY(k) , thus we have 

gElD, k) = a + (E - Ey(k ))g~,,(k) (0, k) + 0 ((E - Ey(k W), 
(4.7) 

with 

g~,,(k)= d~ gElD, k )IE= E,,(k) 

A I 
= (21T)-3IA 1 ~ [Ik _ Yl2 _ E ]2' (4.7) 

From (4.2) we have then that the residue of [Ho(k ) - E] -I(X, 
y) at the pole Ey(k) is 

[g~,,(k)(O, k)] -lgEylk)(X, k)gE,"k)(Y' k). (4.8) 

Let tPy(x, k) be the eigenfunction of Ho(k) to the eigenvalue 
Ey(k ), normalized such that 

( ItPy(x, uWdx = 1. (4.9) 
JR'/A 

tPy(x, k) is called a Bloch wave. 
We must have 

[Ho(k) - E ]-I(X,y) 

= L [Ey(k) - E ] -ltPy(X, k )tPy(x, k) (4.10) 
yET 

and comparing the residue at the pole Ey(k ) from (4.10) with 
(4.7) we get 

tPy(x, k) = [g~,,(k)(O, k)] -1/2gE,,(k) (x, k). (4.11) 

g~,,(k) is given by (4.7) or, equivalently, using Fourier trans
forms: 

'(Ok)-'" 1 e-r--EV-leikA. (4.12) gE,J.k) , - £... ,-----v 
AEA 41T\f - E 

Inserting this information into Theorem 2.2 we get for the 
corresponding off-shell scattering matrix at energy E, for 
scattering off a finite set A of impurities of a particle moving 
in a simple point crystal, with incoming resp. outcoming 
waves described at fixed k resp. k' by the eigenfunctions 
tPy(x, k) resp. tP-y' (x, k ') of Ho(k): 

SE(k, y; k', y') = [g~,,(k)(O, k )g~,;(k')(O, k ')] -1/2 

x L gE)a, k )gEy(k·)(b, k ') 
a.bEA 
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To compute the corresponding on-shell scattering matrix we 
observe that Ey(k) = E-y' (k ) implies that either y = y' or 
Iy - k 12 = Iy' - k 12 or both. From this and (2.8) we com
pute the corresponding on shell scattering matrix to be 

S(k, y; k', y') 

= [g~ylk 1 (0, k)] -loy,-y'o(Ey(k) - Ey(k ')) 

X L gE,,(k 1 (a, k )gE,jk'l (b, k ') 
a,bEA 

X [(aa - ~-Ey(k))Oab _KE"(kl(a,b)]-J. 
41T a,b 

We formulate these results in the following: 

Theorem 4.1: Let Ho be the Hamiltonian for a simple 
point crystal, i.e., its resolvent kernel is given by 

(Ho - Er-1(x,y) 

=GE(x-y)+ L [(a- ~-E)OAA' 
A,A'€A 41T 

_ GE(A. - A. ')] - I GE(A. - x)GE(A. ' _ y), 
A,A' 

where A is a discrete subgroup ofR3 with three independent 
generators. Let H be the Hamiltonian for the point crystal 
perturbed by a finite number of point impurities at A C R3

, 

disjoint fromA, of strength aa' aEA. Then the resolvent ker
nel for H is given by 

(H - E)-I(X,y) = (Ho - E)-I(X,y) 

[( FE-) 
+ a~ aa - ~ Dab 

where KE is given in (4.6). 
The corresponding impurity on-shell scattering matrix 

describing scattering from impurity from the channel de
scribed by a Bloch wave 1/Jy(x, k) given by the (quasi) mo
mentum k and the energy Ey(k ) of the simple point crystal 
into the channel described by a Bloch tP-y' (x, k ), given by 
momentum k' and energy E y. (k '), is given by 

S(k, y; k', y') = Oy,-y' 0 (Ey(k) - Ey(k ')) [gE,Jkl(O, k)]-I 

x L gE,,(k 1 (a, k )gE,jk 1 (b, k ') 
a,bEA 

• 
Remark: The scattering matrix SE,,(kl(k, y; k', y') ex

presses the scattering in the simple point crystal of the Bloch 
wave tPy(x, k) in (4.11) into the Bloch wave tP-y' (x, k '), the 
scattering being caused by the finite setA of impurities. In an 
actual scattering experiment the crystal is of finite size and 
the incident and final waves are plane waves, rather than 
Bloch waves. (See, e.g., Ref. 48.) For this reason, as a first 
step towards the complicated realistic situation, we shall 
now give the expression of the scattering operator in plane 
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waves rather than Bloch waves. 
The impurity scattering operator S corresponding to 

the impurity scattering matrix of Theorem 4.1 is given by 

S=1+L I I S(k,y;k',y') 
y.y JR'lr JR'lr 

XtPy {-, k )tPy(" k')dk dk', (4.14) 

where tPy {-, k) is understood as the element in L 2(lIf, dx), for 
fixed k, y, given by (4.9). The scattering amplitudeS (p, q) for 
the scattering of an incoming plane wave (21T) -3/2 eipx to an 
outgoing plane wave (21T)-3/2 eiqx is by definition 

SIp, q) = (21T)-3i, 1, ei(px-qY)S(x,y)dx dy, (4.15) 

S(x,y) being the kernel of(4.14). Inserting in (4.14), (4.15) the 
expressions given by Theorem 4.1 we arrive at the following: 

Theorem 4.2: The impurity scattering operator for the 
scattering of a particle moving asymptotically with Hamil
tonian Ho of a simple point crystal under the influence of a 
finite set of impurities, is given by (4.14) together with the 
formula for the Bloch-waves scattering amplitude S given in 
Theorem 4.1. The plane waves scattering amplitudeS (p, q) is 
defined as 

S(p,q)=(21T)-31 I eiipx-qY)S(x,y)dxdy, 
JR3 JR3 

withS (x,y) the kernel of the scattering operator in configura
tion space. The explicit expression ofS(p, q) is 

SIp, q) = 8(p - q) + (21T)-3L 8(Ey(p) - Ey(q)) 
y 

x [gE,AP) (O,p)gE,ApdO, q)]-I 

x[p2_Ey(p)]-I[q2_Ey(q)]-1 L gE,Ap) (a, p) 
a.bEA 

XgE,Ap)(b, q)[(aa - ~ - Er (P))8a.b _ KE,Ap) (a, b)] -I. 
41T a,b 

Note added in proof For new developments see also H. 
Holden, R. H0egh-Krohn, M. Mebkhout (Marseille Pre
print, in prep.) and S. Albeverio, F. Gesztesy, H. Holden, R. 
H0egh-Krohn (book in preparation). 
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On a class of nonintegrable equations in 1 + 1 dimensions with factorized 
associated linear operators 
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We consider a class of non integrable nonlinear equations with powerlike nonlinearitiesK N, axK N 
(K being the solutions and N>2, N integer) building explicitly their exponential type bisolitons. 
The denominators of the bisolitons have no soliton couplings, and the linear differential operators 
of the linear part of the equations are factorized operators. We extend our study to a larger class of 
nonlinearities: polynomial nonlinearities which are linear combinations of powerlike 
nonlinearities. We study the two extreme possibilities. Either the bisoliton is specific of a mixed 
nonlinearity, not being a solution of any component nonlinearity, or the bisoliton is common to all 
components. Different properties occur depending whether the components are K N or a xK N. For 
K N nonlinearities, in order to understand the origin of the factorization of the linear operators, we 
give a criterion which is easily checked at an almost entirely linear level of constraints. We 
conjecture that all possible bisolitons are of the type studied here. Finally for K Nand axK N we 
enlarge the class ofbisolitons found in previous works. 

PACS numbers: 02.90. + p, 02.30.Jr 

1. INTRODUCTION 

Although the non integrable nonlinear equations are in
teresting to study (see Ref. 1), there are actually very few 
theoretical investigations in this field. This is partly due to 
the lack of methods to solve these equations but also to the 
difficulty of defining classes of nonintegrable equations with 
specific properties. Maybe a tool to classify these equations 
could be provided by the study of nontrivial solutions such as 
the bisolitons (in the paper my use ofthis word is a working 
definition). Recently,2-5 we have introduced a class of non in
tegrable equations in 1 + 1 dimensions sharing common fea
tures. 

(i) They contain monomial powerlike nonlinearities 
K N, KN-1Kx (Kbeing the solution and Ninteger, N>2). 

(ii) Let LqN be a qth differential operator in 1 + 1 di
mensions with constant coefficients, associated with the lin
ear part LqNK of the equation. Then, either LqN is a factor
ized operator or, in the K N - IKx case, LNN is a germ 
differential operator which becomes a factor of LqN when 
q>N. 

(iii) Let us define bisolitons as solutions with only two 
exponential variables Wi = exp(Yix + Pit) (which can be re
written Wj = exp Xi by linear transformations of the coordi
nates) such that there exists some powers of the solutions 
which are rationalfunctions. Then, if they are not "trivial 
bisolitons," their denominators are functions of 
A = 1 + WI + (;)2 without the coupling terms const WI(;)2' 

The trivial bisolitons associated with K N nonlinearities are 
direct product of solitons solutions, and their denominators 
contain products of the functions Aj = I + wj,j = 1,2. 

(iv) There exists a direct constructive method of simul
taneously building both the factorized LqN and the appropri
ate power of the solution. The results were obtained with 

a Chercheur au C.N.R.S. 

simple examples and for any integer N value. 
Our class can be characterized by two properties which 

must simultaneously be present: bisolitons without soliton 
couplings and factorization of the associated linear opera
tors. We build the class in a constructive way. It appears that 
the most efficient tool is the one which builds simultaneously 
LqN and the nonlinearity solution. Maybe other methods 
could be tried. For K 2 where it was proved3

,4 for rational 
bisoliton functions that the denominators depend only on A, 
we write K as a polynomial1:w~ FI (A ), solve the (FI ) equa
tions, and only at the end verify that Lq2 is factorized. Even 
for N = 2 this method is very cumbersome and not conven
ient for a generalization in the N> 2 case where the bisoH
tons are no more rational functions. 

Can we obtain a larger class of nonlinearities, polyno
mial nonlinearities being linear combinations of powerlike 
nonlinearities such that the two above properties hold? For a 
nonlinearity sum of different terms, many situations can oc
cur. Either the solution is common to all the components, or 
to some of them, or does not belong to anyone of them. Here, 
for simplicity, we limit our study to the two extreme possibi
lities: either common to all the components or distinct. 

In Sec. 2, we seek intrinsic bisolitons to the mixed non
linearity 1:i AiaxX N, with the same N integer value and 
which do not belong to any component K Nor K: or K!:. 
We find that this occurs only for well-defined linear combin
tions of the monomial nonlinearities: for instance, ( - N / 
(N + I) + ax)K N. In all cases, the linear operator associated 
with the mixed nonlinearity is factorized. Further, using tri
vial transforms, we show that the solutions can be associated 
with a less number of nonlinearities but the coefficients in 
LqN being not constant values. This means that our class 
contains linear differential operators with variable depen
dent coefficients, a property not seen in previous works. 

In all other sections we look at bisolitons common to all 
components of the nonlinearity. In Sec. 4, we give, for Lq,N,K 
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= K N" a criterion, in order that our ansatz solution neces
sarily corresponds to a factorized Lq,N,. If the ansatz is a 
solution, the factor, being N, independent, is common to all 
Lq,N,. In Secs. 3 and 5 for "true bisolitons" (denominators 
depending only on Ll = 1 + .l:cu j ) and "trivial bisolitons" (on 
Ll j = 1 + cuj ), we effectively build this common factor of the 
set Lq,N,. We find it has in general more terms than the simple 
factor predicted by the criterion of Sec. 4. When we intro
duce an ansatz solution into the nonlinear equation, a part of 
Lq,N, called L,q,N, must kill terms present in the linear part 
and absent in the nonlinear one, whereas L"q,N" the remain
ing operator, Lq,N, = L'q,N,Lnq,N" reconstructs exactly the 
nonlinearity. The common factor is the intersection nL'q,N, 
V N j and is reduced to the L'q,N, associated with the smallest 

N j integer. In Sec. 6, we consider J}.K N
, or equivalently 

Lq,N,G = (Gxt, for the potentials Gx = K, G = G (Ll ). We 
int~oduce germs differential operators iN and Lq,N, 
= IN(x,t )lq,_ N,(t) and the remaining problem is to solve 

a:'N,lq,-N,G = (Gat'. We find two classes: Either (i) the 

common solution is a polynomial with Ll - I power terms, 
(Ll = 1 + .l:cu j ); in which case necessarily the Lq,N, have a 
common factor l,q, _ N, if NI < N j or (ii) G includes a log Ll 
term and we exhibit counterexamples to the common factor
ization property. 

Can we understand, in a simple way, the necessity of 
factorized LqN associated with K N? In Sec. 4 we give crite
rion: let us assume mainly that K is a bisoliton without soli
ton couplings and K~cu';' when cu2-<l, CUI fixed, then K N 
~cuIJm, whereas LqNK ~const cu';'. The constant, which de
pends on the coefficients of L qN , must vanish, thus leading to 
factorized L qN . This very important result is established al
most entirely at a linear level of constraints. Unfortunately, 
it is not possible to remove the assumptions of the criterion; 
from simple examples we know that otherwise we must take 
into account a great number of nonlinear constraints. Conse
quently, as a result of our study, we conjecture that all bisoli
tons of K N satisfy the assumptions of the criterion (or can be 
reduced to it by trivial transforms), i. e., they are without soli
ton couplings and have factorized L qN . 

In the monomial cases K Nand (G x t can we enlarge the 
class of solutions and LqN previously2,3 obtained? In the dif
ferent sections we explain, quite generally, how to build sep
arately the two above-defined operators L,qN' L"qN' In Sec. 
3, we study the true bisolitons of LqNK = K N and give a 
solution with an arbitrary number of Ll - I terms. In Sec. 5 we 
introduce the "trivial bisolitons" not considered in Refs. 2 
and 3. They are products of two solitons K (CUI,CU2) 
= K (liJl)K (cu 2 ), and the denominators can contain 

LlILl2 = 1 + CUI + CU2 + CUlCU2 with a soliton couplings 1, in
dependently of the parameters values of the solitons. By con
struction, their LqN are factorized, being the product of the 
two-soliton linear operators. In Sec. 6, for (Gx)N nonlineari
ties we build general classes of bisolitons G (Ll ) and associ
ated lq _ N operators. For instance, for Ll - I polynomials G 
solutions we obtain different families with an arbitrary num
ber of terms. 

For a study of nonlinear equations classes there exist 
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generic equations. For the K N nonlinearity it is the Boltz
mann equation (Sec. 7) and for (Gxt they are the equations 
associated with the germs operators iN: Burgers equation 
and generalization. 

In the tables (I-V) we quote both the nonlinear equa
tions with factorized linear operators and their solutions. 

2. INTRINSIC BISOLITONS TO MIXED NONLINEARITIES 
(~im"A.a i )J(N o I Xl 

A. General considerations 

In this section we seek exponential type bisolitons 
which are specific of a mixed nonlinearity and do not belong 
to anyone of the components, K N alone or axK N alone or 
a ~2K N alone .... Let LqN(x,t) be a qth differential operator 
with constant coefficients and consider a polynomial nonlin

earity LqNK = CqN(.l::m==xOAja~,)K N with the same N integer 
power. Practically, we shall mainly discuss a sum of two non
linearities (Ao + A lax)K N. 

In order to simplify the formalism, by a linear transfor
mation (x,t )-(X I,X2) we symmetrize the nonlinearity ax 
-ax, + ax, and cui-exp Xi' We assume that the denomina
tors of the bisolitons are functions of Ll = I + ~icui> and 
look at the class of nonlinear equations 

i+j~q 

LqNK = . L aij~~~K (CU I,CU 2) 
I+J~O 

2 

= cqN LAi(Jx, + ax,l'K N. 
;=0 

(2.1) 

These specific bisolitons exist only for well-defined lin
ear combinations of the nonlinearities, and, as we will ex
plain, this is due to a balance between the contributions of 
both the linear part and the nonlinear one. 

(i) First, we consider K = CU'; Ll - P and a single nonlin
earlity K N. LqN is a qth differential operator such that when 
K-LqNK, then Ll - P-Ll - Np with Np = p + q whereas CU'; 
-wIJm, Nm<q + m. This is the key property and is due to 
the fact that differential operators necessarily raise the pow
er of the denominator but not necessarily the one of the nu
merator. If m <p, we find mN <m + (N - 1) P <pN, and 
there is no contradiction; on the contrary, if m > p, then 
mN <m + (N - 1)P < mN and this is not possible. 

Now we look at a mixed nonlinearity that we write 
( - NQ + ax, + ax,lK N with Q arbitrary. We find 

K =cu';Ll -P-( -NQ+ax, +ax,)K N 

= (cu';Ll -p)N [N(m _ p _ Q) + pNLl -I]. 

A part of the operator LqN must build CU,;N Ll - pN. This part 
is a k th operator such that Ll - P _Ll - Np, q(N - 1) = k and 
cu'; -w'; + M, M <k. Applying the previous argument, if 
m > p, then m-M <m + k = m + pIN - 1) < mN. This is 
not possible, and, consequently, the term (cu'; Ll - pt must 
disappear and Q = m - p. For this example, when 
K_L K thenLl -P-Ll -(Np+ I) and qN , 
p=(q-l)(N-l)-I. 

(ii) Second, we consider an ansatz more complicated 
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K =w;'.:1 -p(1 + tb[.:1 -)-(NQ+ax, +ax,)K N 

= (W;'.:1 ~P)N(N(m -p - Q) + 0(.:1 ~I)). 

The same argument as above shows that if m > p (i. e., intrin
sic bisolitons of the mixed nonlinearity), then necessarily 
Q=m -po 

B. K = w~ A ~ P, m > p, and a nonlinearity sum of two 
terms 

We want to find the factorized differential operator L qN 
of order q such that 

LqNK = cqN [N(p - m) + ax, + ax, ]KN 
= cqNpNw,;m/.:1 pN+ I. (2.2) 

Necessarily, we have p + q = Np + 1, and we define a rais
ing W;' and.:1 ~ p first-order differential operator 

I = 1 _ -.-2. , I Wi 'Wj J = JL Wi Wj (
a) M· M M j + 1 Mj 

x, Mi x'.:1 Q Mi.:1 Q + 1 

and apply it q times to K for Xi = X 2 (Table I). 

C. K = w~2(U;"'A - P, m, + m2 > p, and a nonlinearity sum 
of two terms 

Applying the previous argument in order to determine 
the necessary linear combination of K N and (ax, + ax,)K N, 

we find q = (N - IJp + 1, 

LqNK =cqN [N(p-m\-m2)+ax, +ax,]K N 

= pN (W'["W;,,)N 
.:1 .:1 P 

(2.3) 

and we apply the lx, operators (Table I). 

D. K = (U~.:1 - P, m > p, and a nonlinearity sum of three 
terms 

Starting with a nonlinearity [aoN 2 + aIN(ax, + ax,) 
+ (ax, + ax,f]K N and substituting the K ansatz, we find 
p+q=N + 2 and 

[N2(m - p)(m - p - liN) + (2N(p + m) + l)(ax, + ax,) 

+ (ax, + axJ]w;'N/.:1 pN 

(2.4) 

It remains to build a linear operator LqN which when applied 
toKgivesw;,N.:1 -(pN+21. We still use a product oflx, order 

operators (Table I). 

E. K = «(U~/AP) (1 + bod -') and a sum of two 
nonlinearities 

Following the general considerations of 2.1, the mixed 
nonlinearity gives a contribution 

Nq/(/V-I)-l r( I(N 1 T(( 
L qN = II (l-s-Ia

x
,), cqN=N- I q -)) qN-I)/(N-I)) q>2 

'~qJ(N-II r(qN I(N - I))r((q + N - 2)1(N - I)) , 

[ 

M, M, J I/(N- II 
WI W2 • 

K = --- ,M, mtegers> 0, MI + M2 = q, LI q- I 
q>2 

(N/(N-IIIMJ-I ( a) _ N- I r((qN - l)/(N - I)) r(M/(N - I)) 
LqN = II II I _....l , C N - II 

j~I,2 'J~M/(N-II 5j q r((q+N-2)1(N-l))j~I,2r(NM/(N-I)) 

Nq/(N II I ( a) K = (ll) A -I)(q - 21/(N - 11ll)2/(N - II L = n I _ ...2. _ 2r::-l(2:ql..!:(N~-_I~))::.r..l(N~(q~--=2~)lJ::..(N:...-=..:.I!!.)) 
~ 2' qN , CqN - ---: 

,~q/(N- II X r((q - 2)1(N - l))r(Nq/(N - I)) 
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CqN [ - N(m - p) + ax, + ax, ]KN = cqNwfmX(A -I), 

X(A -I)=A -PN[ltlbl-IA -IC~-I[N(p-b) 

+(I-I)(b+ 1)] +bNN(p+ 1)L1-(N+l)], 

where X is a A - I polynomial with well-defined p, b-depen
dent coefficients. Our aim is to find a factorized LqN differen
tial operator, of order q, which when applied to K reproduces 
exactly CqNW:;NX (A - I). We must kill all w~ A - Q terms hav
ing M < mN and Q <pN; this will define a first operator X I . 

The complementary operator x,,, LqN = X I x", must 
both preserve thew:;N power and reconstruct exactly X (A - I) 

(Table I). 
It was suggested by Brezin (private communication) 

that these solutions could be rewritten as solutions with a less 
number of non lineari ties but xj-dependent linear operators 
LN_LqN . For instance, 

LqNK = cqN ( - N(N - 1)-1 + ax, + ax,)K N, 

K = H exp((x I + x2)1(2(N - 1))), 

LqNH = cqN(ax, + ax,)H N, 
L =e[-N12(N-IIlIx,+x,IL e[I12(N-IIlIx ,+x2 1 qN qN . 

It is clear that LqN does not only depend on aj;t:/ with con-
X,X2 

stant coefficients aij but also on XI + x 2 • For the solutions of 
Table I where the corresponding LqN are written down, we 
can easily build LqN . Similarly 

L K = C [2N(N + 1) - (3N + 1) 
qN qN (N _ 1)2 N _ I 

(ax, + ax,) + (ax, + axJ]k N, 

K = H exp( A ± (x ~ + x 2 ) ). 

LqNH = cqN(aX , + ax,)( ± 1 + ax, + ax,)H N, 

L- _ (- A ± N (x 1 + x 2 ) )L 
qN - exp 2 qN 

X ( 
A ± (x I + x 2 ) ) exp , 

2 

A + = 2(N - 1)-1, A - = (N + I)(N(N - 1))-1. 

3. "TRUE BISOLITONS" COMMON TO 
NONLINEARITIES KN

; AND TO MIXED 

NONLINEARITIES l:;AMx, + ax}K
N

; 

A. General remarks 

In this section we work with the so-called "true bisoli
tons" of LqNK = K N, where LqN==LqN(XI,X2) are qth-order 
differential operators with constant coefficients acting on 
two independent variables XI and X 2• These bisolitons de
pend on two variables which for instance can be 
A = 1 + l:i Wj and one of the two Wj = exp Xj' and their 
denominators are built with A. 

1338 J. Math. Phys., Vol. 25, No.5, May 1984 

Let us consider a mixed nonlinearity of the following 
type: 

LqK = (~A;(Jx, + ax,)liLqiNi)K 

(3.1) 

and assume that K is a solution common to different K Ni 
nonlinearities 

The property that we want to check is whether or not Lq in 
Eq. (3.1) is a factorized operator, in other words, if the set 
! Lq,N, J have common factors. 

Let us look at a family of solutions having k + 1 differ
entA -lterms:K=w~'w:;'A -P(1 +l:~bIA -I). We want 
to explain why the set! LqiNi J must have common factors if a 
solution exists for different qo N j values. In an intermediate 
step of the building of the K N nonlinearity, by the operator 
LqN acting on K, we must necessarily go through a term like 
(w~'W:;2)N A - (p + (N - 111m, + m,1) multiplied by a A -I polyno-
mial. IfNI is the smallest N j value, then all the ith paths from 
K to K N have in common the path from K to (w~'W:;,)N, 
A - (p + (N, - 111m, + m,l) multiplied by a A - I polynomial. This 
common path, translated in terms of differential operators, 
gives the common factor to the I Lq,N, J . 

B. K = li./';"'li./;'2.1 -P, m;>O 

We first study the nonlinearity K N alone and build the 
factorizedL qN operator. We must go fromK toK N. With the 
help of the two first-order differential operators 

Qw~'w~' ----'------.1 -(Q+II 

Q-MI -M2 

we follow the path 

and we find L qN , cqN (Table II). 

C. K = w;'.1-P(1 + pk-1.1-1), k integer 

In order to reconstruct K N we follow a path with two 
intermediate stages 

K ----+const ( 
wfm ) 

A p + (N - 11m + k + I 

In order to reach the first stage we successively apply two 
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TABLE II. "True bisolitons" for K N , ~ = 1 + eX, + eX, = 1 + Uo,. 

L,NK = C,NK N, LqN = L"NLn,N 

L,K = (~A,(ax, + ax,l"L,,,v,) K = LA,Cq"v,(ax, + ax,)"K
N

" N, <N, 

Mjl . 12"'" q,...,. mj = --, J= , ,vi, p= --vi 
N,-I N,-I 

[l=1 if q=k+M+N 

cN=vk- 1 II (p-m+s) ,L'qN= A2p V-ICqN 
r(Np)r(m) [IN-IKP_ml-1 ]-' ((I)m)N 

q r(p)F(Nm) ,_0 ... ,,,.. 
Y] = Y]=: + (N{m - p) - 1+ 1).'7]_ IY) = (N{m - plY- I 

1 = V-I + f IJjy-IYJ+ " f y-llJjyr:: i = c'N(l!.. ),r{NP + s)[r(NpW ' 
I j_' k 

N = 2, 1 = V-I + t 2j
(m - p)jlJjv- I, k -I = IJlv- ' + 1J2v- I{4(m - p) - I), 1J2y-1 = 2k2(~ + 1) 

3 

N = 3, I = V-I + L 31{m - p)jlJjy-I, vk -I = IJI + 1J2(4(m - p) - I) + 1J3(27(m - p)2 + 9(p - m) + 1) 
I 

yp Vp2 -IJ 
k2(3p+l) =1J2+31J3(3(m-p)-I), 3kl(3p+l)(3p+2) - 3 

first-order differential operators 

( a) OJM 1 - --2 _2 (A + B.J -I) 
M .J Q 

OJM+ I 

= 2 (AQ+B(Q+ 1)..1 -I), 
M.J Q+ I 

(1 + Q ~ M W., + ax,)) :~ (A + B.J -I) 

M 

= OJ2 (AQ-B+B(Q+ 1)..1 -I), 
(Q-M)..1 Q+I 

the first one up to OJ';'-wfm and the second increases the 
power of the two.J - I terms up to a stage where one.J -I 
term vanishes. This second stage defines a first operator 
.!f IqN of LqN = .!f IqN.!f IIqN while .!f IIqN is the Nth differ
ential operator which when applied to (OJ';'.J - p)N reproduces 
exactly K N (Table II) 

N 

.!fIIqN = 1 + I!1j (ax, + ax,Y, 
I 

( 
OJm ) - N ( OJm )N ( )N 
.J 2p .!f II .J 2p ==V 1 +:.a . (3.2) 

In order to determine the operator .!f II we introduce 
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the identity: 

(:: ) -N(ax, + ax,Y-I( :: )N 

= yl + ~ yl r(Np + /- 1) 
j 1~2 J r(Np)..1 1- I 

which defines the numbers Yj (Table II). 
The identity (3.2) leads to a set of triangular relations for 

the (il;lv), l/v. Consequently, these parameters are recur
sively determined, and we find both V-I and the set (il j ) 

(Table II). 

D. K= (OJ2/.J)P(1 +.I~(bmIA'"», k= 1,2, •.. 

In order to go from K to K N, we stop at an intermediate 
stage K = (OJ2/.J )Np multiplied by a.J - I polynomial. The 
path K -.K defines a first operator .!f I whereas K -.K N de
fines the second operator .!f II and L qN = .!f IqN.!f IIqN' 
With the help of the first-order operator 

(1 _ ax, ) OJf (1 + ± Bm ) 
M.J Q l.J m 

= OJf + I ( Q + ~ Bm r (Q + m + 1) ) 
.J Q+ I M "'T-.J m r(Q + 1) , 
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we build !.t'lqN and define j(, !.t' nqN 
!.t'Iq,N, = !.t'Iq,N, Nil 1(1 _ asX2 ). 

N,p-I NP-I( J) 
!.t'lqN = I) 1 - -:;- , 

!.t'lqNK -j( = (~)NP(l + N ± bmm If ( Np + s )), 
.J m=l.J .=1 p+s 

(3.3) 

Now we want to find both !.t'UqN [or (ilj )] and K. We 
must require that the coefficients of any .J -I power are the 
same on both the lhs and rhs of(3.3). For.J -I and.J -2 this 
leads to the following possibilities: either (i) b l = p and 

kiN-I) 
!.t'nqN = 1 + I ilj(Jx, + JxY, 

I 

(b2 - pip + 1)/2) (l:2j( - lJiilj + piN - 1)1(pN + 1)) = 0 
or (ii) l:( - Wilj = 0 and 

-_ N 
!.t'nK =K . I( - Wf12j(L_b l +~) 

) 2 P + 1 

_ (N - 1) (~_ b')]J ) = O. 
Np + 1 2 P + 1 

!.t'I having (N - l)p terms and !.t'II being of order k (N - 1), 
it follows that p = q/(N - 1) - k. Let us assume that, for the 
same k and p values, we have found a solution (bm ) common 
to different Njqj values. This means at least 
p = q;i(Nj - 1) - k, Vi. For the set of equations (Lq,N,K 

= KNi) it is clear that if NI < Nj, Vi, then 

At this stage three ways are open: b l = p, b2 =p(p + 1)12; 
only b l = p and a relation between the ilj's in (i); or in (ii) we 
have only two relations and neither bl nor b2 are determined. 

TABLE III. BisolitonsK= (w2/..:l )"(1 + .l~~, [r(p+ m)/m!..:l mr(pj]) • ..:l = I + L; w"w, = eX,. 

L.NK = K N, P = -q- - k, k integer 
N-I 

kIN - 1) 

L ilIY)=rk+l. k' , 
kiN II 

LillY; = rk +'. kk!F(Np)[F(Np + k + I)] -I, 5 = 2, 3, ... ,k (N - I) 
l=s 

k = I, K = ( ~2 )P(I + ~ ), N = 2, p = q - I, q>2, ill = P ,N = 3, p = !L - 1, q>3, ill - 2il2 = -p-
'" ... 2(2p + I) 2 3p + I 

p2 q 3 1- ,3p p2 
il2 = 3(3p + 1)(3p + 2)' N = 4, P = 3" - 1, q>4, :f ( - 2) ill = 2(4p + I)' il2 - Sil3 = (4p + 1)(4kp + 2) 

p' q ~(2)1-'n 2p il = , N = S, P = - - I, q>5, £.. - "I = --, 
3 4(4p+I)(4p+2)(4p+3) 4 , Sp+1 

2p2 
il2 - 5il, + 19i1. = --"----

(5p + l)(Sp + 2) 

il _ 9il = p' , il4 = p4 
, • (Sp + I)(Sp + 2)(Sp + 3) S(Sp + I)(Sp + 2)(5p + 3) 

k=2, K= (~2 y(l+ ~ + P(;..:l~I)), N=2,p=q-2, q>3, il,-3il2 = 2(2:+1)' 

q ~ ( 3)1- 'il - 2p(4p + 3) il _ til + 37il - P 
N = 3, P = 2 - 2, q>5, '1- - 1- 3(3p + 1)(3p + 2) , 2 , 4 - 6(3p + 2) 

il _ IW = p2(p + I) ,il _ pl(p + If 
J 4 6(3p + 1)(3p + 2)(3p + 4) 4 - 36(3p + 1)i3p + 2)(3p + 4)(3p + S) 

il2 = ---'p,-,-( PL...:.-+_I .!....) -

8(2p + 1)(2p + 3) , 

(7p + 11) 2 
k = 3, N = 2, P = q - 3, q>4, ill - 4il2 + 16il, = P (p + I), 

12 
il2 - 9il, = pIp + I) 

8(2p + 1)(2p + 3) 

il _ pIp + I)(p + 2) 
J - 48(2p + 1)(2p + 3)(2p + 5) 

-q-, - = p + k, Lq factorizes L]q,N, 
N,-I 
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Investigating the L1 -3, L1 -4, ... coefficients, other ways 
can be open. In the remaining of the subsection, for simpli
city we choose the most simple solution: 

k 

F= 1 + '2.r(p + m)(r(p)L1 mm!)-I, 
I 

(3.4) 

k 

F= 1 + '2.r(Np + m)(r(Np)L1 mm!)-I, 
I 

FN=F+R, 

R = I rm
•
k

, R = 0(_1_), 
k+1 L1 m L1 k

+
1 

(3.5) 

which defines the parameters r m.k' Substituting this identity, 
(3.5) into Eq. (3.3), we find after trivial algebra that we must 
have the condition: 

!:?L " n(a + a )j- I(a + a )!:?L F ( )
-NPkIN-11 ( )NP 

.Ll -f J Xl X z XI X 2 L1 

(3.6) 

The ansatz solution, Eq. (3.20), is really a solution ifindepen
dently of the the values of the set (nj)' the lhs ofEq. (3.23) is 
also of order 0 (1/ L1 k + I). In fact, with the help of 

M M 

!J." + ax,) ;2Q = ;2Q ( M
L1
-Q Q + L1 ~+ I ) 

we find 

(!:?L) -NP(a + a )(!:?L )NPF = r(Np + k + 1) , 
L1 x, x, L1 k!LJ. k+ Ir(Np) 

and this proves that the ansatz (3.4) is necessarily a solution, 
we find 

( ~2 ) -Np k(N~)_lilj+ I (ax, + axY( ~2 rp 
L1:+ I 

r(Np) I rm .k • (3.7) 
r (Np + k + 1) m = k + I .1 m 

In Eq. (3.7) we must apply the differential operator 
(ax, + ax, )i. In the general case we essentially find aLl -I 
polynomial where the coefficients S 7 are some kind of gen
eralized Stirling numbers6 (Table III) 

(~2 )-NP(ax , +axY( ~2 rp
L1:+ 1 

yl k+j_Iym-k r(J\T ) 
=~+ '2. ~ l'ip+m 

L1 k+ I m = k+ I L1 m r (Np + k + 1) 

For each L1 -I power we can now identify the coefficient in 
both sides of(3.7); 
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k(N-I) 
2: il,Y} = rk+ I.k' 
o 

kiN-II 

L il,Y~ = rk+s.kr(Np)[r(Np + k +s)-I]k!, 
1=5 

s=2,3, ... ,k(N-l), rk+s.kE[rk+2.k,rkN.k]' (3.8) 
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We set that Eq. (3.8) gives a set of triangular relations for the 
(il,) which, for any k, as large as we want, can be explicitly 
determined. 

4. A SUFFICIENT CONDITION FOR THE EXISTENCE OF 
FACTORIZED LqN 

We give a criterion such that an ansatz K corresponds 
to a factorized L qN . 

4.1 Theorem: Let us assume Wi = exp Xi' i = 1,2, and 
(i) K (Wl'W2) = w;'2A (Z = WI + W2 ,W pW2), m2 > 0, 
(ii) a ~1~i'04/2A (Z,W I ,W2)"" = 0 exists 'Vt;;.O, 'V1I>0, 

'V12>0, (4.1) 

(iii) iA,(wl ~)A (WI,WI,O) = O::::?AI = 0, 
o dW I 

1= O, ... ,q. 

Then in LqNK = cqNK N, N> 1, the operator LqN 
= 1::!~:Zaij Ji,,7x~ factorizes (1 - ax,lm2 )· For the proof we 

use, when W2~ a balance between linear vs nonlinear con
tributions. For the nonlinear part we find K N -:::::::'",,-+0 W;'2 
X [A (WI,WI,O)]N. For K we get, after trivial algebra, 

a~~{K -:::::::. w;'2md(WI ~ )iA (wl,wpO), 
",,-+0 dW I 

with the meaning 

( d)' ( d)( d )/- I WI--- = WI --- WI --- , 
dWl dW I dW I 

and consequently for the linear part 

LqNK -:::::::. w;,/+fqaijmd(w l ~)iA (WI,WI,O). 
"".---0 i + j= 0 dW I 

Compatible behaviors when W2~ requires that the coeffi
cient of w;" be zero, and from (iii) in (4.1) we find 

or 

q-i 

L aijmd = 0, i = O,I, ... ,q 
j=O 

(
a )i + k = q - I k 

LqN = 1 - ~ L m 2- ka~u L aijrn'z. (4.2) 
m2 i+k=O j=O 

First, we remark that the conditions (4.1) do not ensure the 
existence of a solution. Secondly, for N = 2 and larger condi
tions, the decomposition (4.2) was obtained.4 Thirdly, the 
crucial assumption (iii) in (4.1) means that the functions of 
the set {(WI d /dwd'A (WI,WI,O), 1 = O, ... ,q ) are linearly inde
pendent. Finally we note that this result is obtained mainly 
from linear constraints. 

Corollary: Let us assume K = W'{"W;'2 

XB (Z = WI + W2,W I ,W2 ), where both w'('iB = A, i = 1,2, sa
tisfy (ii) in (4.1) and both w,{,'B (WI,WI,O) and w;"B (W2,0,W2) 
satisfy (iii) for the set (Wi d / dWi )'w'('iB, then LqN factorizes 
both (1 - ax/mil, i = 1,2. 

From the theorem we find 1:J::~ aijm1 = 0, 
1:;::6 aijm{ = 0, or 

Henri Cornille 
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4.2 Applications: (i) If 

Wm'W m , k b 
K = _1_2_,,~, ..:1 = 1 + WI + W 2, m; >0, 

..:1 p "'T-..:1 m 

the functions (w; d Idwl)l(w;"i.I~bml(l + wj)m + p) are lin
early independent because they have poles of order 
m + p + I at Wj = - I, and, consequently, for K solutions 
ofLqNK = cqNK N, theoperatorsLqN have at leastthe factor
ization (4.2) ifm2#0, m l = 0, and (4.3) ifml #0, m2 #0. We 
note that the solutions found in Sec. 3 (see Tables II, III) are 
of this type, but, of course, the complete account of nonlin
earity constraints gives further factorization. 

(ii) The essential assumption in Eq. (4.1) is that K itself 
factorizes at least one Wj with some powers. For N = 2, q<3, 
we know that the only existing bisolitons are either of this 
type or can be reduced to it using transforms like 
K-.K - aooor (w j - I,W j - IWj}-+(Wj,wj ). The assumption (i) in 
(4.1) must be always understood modulo these transforms. 
For instance, for N = 2 the ansatz 
K = .If;:-dw~.I~ = I + I bl •m (1 + WI + ( 2) - m violates as
sumption (i) because in the sum for I = 0, W 2 is not factorized. 
However, K can be rewritten 
.If;:-dw2- {m -I).I~ = 1+ 1 b l•m (1 + W2- 1 + W1W2- I) factorizing 
W2 1 

(iii) Conjecture: All the bisolitons (as defined in Sec. 1) 
satisfy the assumptions (4.1). Only for N = 2, q<3 has this 
conjecture been proved. Can we prove the conjecture with
out investigating all (or a lot of) nonlinear constraints? 
Equivalently can we prove in a simple manner that any an
satz solution violating (4.1) (or not reducing to it by trans
forms) cannot lead to bisolitons? Unfortunately, the answer 
is no. Even for the most simple case, N = 2, q = 2, we can-

TABLE IV. Trivial bisolitons: K = KI(aI,)Kz(alz). L1j = 1 + alj , alj = eX,. 

K = (L1 ;'L1 ~') - I!IN - II, 1 "'Pj integers, P, + Pz = q, CqN = 1 

IN/IN-1IIP,-1( a) 
LqN = II II 1 + --2 

j= 1,2 sj=PJ/IN-ll S} 

K = [aI~ L1 ,- P'L1 2- P'] I/IN·· 1(, M integer < P2, Pj integers, PI + P2 = q 

not, without detailed calculations (see Appendix, Ref. 4) rule 
out all the ansatz violating Eq. (4.1). 

5. TRIVIAL BISOLITONS COMMON TO 
NONLINEARITIES KN

, AS SOLUTIONS OF MIXED 
NONLINEARITIES.Ii Ai(ax + ax )'KN

, 
, 2 

A. General considerations 

In this section we work with the so-called "trivial bisoIi
tons" of LqNK = K N. They are characterized by various fac
torization properties: 

(i) K (W I,W2) = K I (w l )K2(W2)' W; = exp Xi> LqN = lq _ m 

X (xt!lm(x2 ), m integer <q. 
(ii) lq;(x;)K;(w;) = [K;(W;)]N, i = 1,2, q; = q,q - m. 
(iii) Their denominators are the product..:1 1- p,..:1 2- p, (p I 

and P2 not necessarily integers for N> 3) where ..:1 j = 1 + wj . 

From (ii) we see that K;(w;) are, in fact, solitons solu
tions associated to linear operators of order q - m and m. 
We will choose a "trivial bisoliton" common to different 

Lq,N;K = cq;N,K N; equations, and it will be a solution of the 
mixed nonlinearity, 

IA;\Jx, + aXj'Lq;N,K 

= LqK (W I ,W2) = ICqjN;A;(ax , + ax, )i;K N,. (5.1) 

B. K = IIj= 1,2 .dj- P',..:1 j = 1 + Wj, Wj = eXj 

We introduce a first-order differential operator 

(
1 + ax; )..:1- Qj =..:1.- IQ;+ll (5.2) 

Q
j 

J J 

IN/IN-IIIP,-l( ax, )NM/IN_q-,( ax, )IN/IN-IIIIP,_MI-I( ax,) r(NP/(N l))r(M/(N 1))r((P M)!(N 1)) 
LqN = II 1 + - II 1 - - II 1+ - , C - 2 - - 2 - -

P,/IN-II S M/IN-ll U IP, _ MIIIN-11 U qN - r(NM /(N - 1))r(N(p2 - M)!N - l))r(pz/(N - 1)) 
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M; 
N; -1 =m, 
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that we apply on K with Q; varying from Pj up to Npj - 1 
(Table IV). 

For instance, in the particular case PI = Pz = q/2, 

K = (1 + WI + Wz + wlwz) -q/2(N-I), 

Nq/Z(N - II( a) 
LqN = II II 1 + ----2 , q>2. 

j=I,Zq/Z(N-II mj 

The factorization of LqN into the product of two opera
tors acting on two independent variables is clear because 

NP/(N- 1I- 1
( a) II 1+----2 (~j)-P/(N-II 

P)N-II-' mj 

=~ .-PI'/(N-I) ~. = 1 + W.· 
J 'J J' 

therefore, ~ j - P/(N - 1 I is a soliton associated to a linear oper
ator of order Pj • 

Now we choose a particular solution K = A 1- p,~ z- p, 

= [~~Ii~ i2i] -I/(N,- II common to different Lq,N, = K N
, 

equations, all the Lq,N, as well as Lq in Eq. (5.1) factorize 
Lq,N, if NI < N; (see Table IV). 

C. K = (OTlI j = 1,2 iJ j - Pi 

We introduce two new first-order differential operators 

( a) wM Q wM 
+ 1 

1 -;; ~ zQ = M ~ zQ + 1 ' 
Z Z 

(5.3) 

(
ax ) w~ P w~ 

1 + P -'M ~ P = P _ M A P+ 1 ' 
Z ... z 

and with the help of (5.2) and (5.3) we build the nonlinearity 
K N (Table IV). 

For a common solution w;"(~ )'~ ~,)-I 

[ 
M'A-PA-P2i]I/N,-1 d'ffi L K K N . = Wz '" 1 '41 Z to 1 erent q,N, = Cq,N, " 

NI <N;, then Lq,N, factorizes Lq,N, , which is the common 
factor on the lhs of Eq. (5.1). 

6. BISOLITONS COMMON TO DIFFERENT 

NONLINEARITIES (Gx)N, AND THE PROBLEM OF THE 
EXISTENCE OF A COMMON FACTOR FOR THE 
ASSOCIATED (Lq,N) 

A. General considerations 

In this section we study the bisolitons of LqN 
= const K N - 1 K x , still assuming that their denominators 

are functions of ~ = 1 + Lu;, without coupling term 
const WlWZ. Instead of K, we work with the potentials Gx 
= K and consider the class of nonlinear equations: 

;+j=q 

LqN = I aij ~~/, LqNG = cqN(Gx)N. (6.1) 
;+j= I 

Previous results3
-

5 were obtained. Our first aim is to genera
lize these results in the arbitrary Nease. Our second motiva
tion is to look at G solutions common to different integer N; 
values which will be solutions of 

LqG = (+11; ~liLq,N,)G = +11;Cq,Ni ~I,(Gxt. (6.2) 
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As in previous sections, depending on whether the set (Lq,N,) 
has a common factor or not, then Lq will necessarily be a 
factorized operator or not. 

We recall the general scheme in order to discover the 
bisolitons.3 

(i) We define the germ linear differential operator IN (x,t ) 
of order Nand of the type LqN in Eq. (6.1) (with aij replaced 
by iiij)' such that for any differentiableF (..1 ) and any differen
tiable ~ (x,t) we have the property 

[IN(X,t) - iiNO(..1xt~N ]F(iJ) = O. (6.3) 

We further restrict ~ to be 
2 

..1 = 1 + IWi> Wi = exp(t + YiX), 
1 

YI =l=yz, ~t = ~ - 1, (6.4) 

and determine the conditions on the IN parameters and Yi in 
order that both Eqs. (6.3) and (6.4) are satisfied. 

(ii) We introduce lq _ N(t) as a linear differential opera
tor of order N in a:.:, with constant coefficients and define 
LqN as the product IN1q _ N' Moreover, we assume G =G (..1 ) 
with..1 written down in Eq. (6.4). From Eq. (6.4), lq _ N(t) can 
be written in terms of..1, a.J" and, consequently, lq _ N(G (~ )) 
depends only on~. From Eq. (6.3) we find 

LqNG = iiNo(~JCt~N(lq_ NG(~)) (6.5) 

(iii) we assume that both G (~ ) and the operator lq _ N(t) 
satisfy the NLODE 

~Nlq_N(t)G(~ )=VqN(a.J,G)N, (6.6) 

whence the factorized LqN is associated with Eq. (6.1): 

LqNG = lq_.,,'/NG= viiNO (..1 x G.J,t 

= cqN(Gx)N, cqN = vqNiiNO ' (6.7) 

The resolution ofEq. (6.1) is reduced to the determination of 
compatible lq _ N, G satisfying Eq. (6.6). Equation (6.6), in 
this section, is thus the key equation. Due to Eq. (6.4) we 
have for an arbitrary F(..1 ) function (at - (..1 - l)a.J, )F(~ ) 
= O. Iterating, we find the operator identity a;J 
=~/= 1 'G';(~ - I)' ~ I where the <iff; are the Stirling 
numbers of the second kind.6 

B. Germs [N(x,f) 

First we start with 

(6.8) 

INF(.:J ) = Nt I~ (a: pF(.:J )(i
l 

( - l)mc;'.:J m1N.:J p- m 

p= IP· m=O 

+ iiNO(.:Jx)N~NF(.:J ). 

A sufficient condition in order that Eq. (6.3) holds is that the 
coefficients of F.J,p,p = 1, ... ,N - 1, vanish, or IN..1 j = 0, 
j = 1,2, ... ,N - 1. It is trivial to verify that this condition is 
necessary by assuming F =.:J i,j = 1, ... , N - 1. 

(i) N = 2 and i:cod = at + alQ ax + azo a;,. The condi
tioni:cod =Ogives.:J t +iil~x +iiz~xx =Oor 1 +iilQYi 
+ iizor7 = 0 and we find a Burgers family oriz operators 
with two arbitrary parameters OlQ, OZO' oio =1=4020, 
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(ii) N = 3 and for simplicity, we put iioz = 0, 

-I a 9ii30 a ( 2a~0 3a30 )a - ~2 - ~3 
3 = ,+-_- x, + -_---_- x +azovx' + a3ovx' , 

2azo 9a30 azo 
ii~o =I- 54ii~0, 
and the two different Yi values are solutions of a second
degree algebraic equation ~ii301iizo + iiZOYi + 3ii30J1 = o. 

(iii) N = 4 and for simplicity we put ii03 = iiJ2 = O. We 
start with a seven-parameter family 14 = at + iiozd;' 
+ iill J;, + iizl a~" + l:,;= 0 iiiO ai 

,. The conditions 
14..1 = 14..1 z = 14..1 3 = 0 give, on th;..1 derivatives, two linear 
and one quadratic relation 

..1 x (ii2o<1 x + 4ii4 0<1 xxx + ii 11..1, + 2ii21..1 x,) 

+ ..1 xx (3ii3o<1x + 3ii4o<1xx + iizl..1,) + iioz..1 ; = o. 

For the quadratic relation we require that the coefficients of 
both l:,w~ and W1W2 are zero. After some algebra we find that 
we have still finally a two-parameter family ofl4 • 

A counting argument can give this number of con
straints on the parameters iiij' Let us briefly explain for 
N = 5. We start with the ansatz provided by Eq. (6.8) supple
mented by ii22 = ii13 = ii04 = 0, and we have 11 iiij param
eters. On the other hand, 15..1 = 15..1 4 give two l:,wi equations, 
15..1 2 as previously gives l:,w~ andwlwz, whereas 15..1 3 leads to 
l:,wj and l:,w7Wj' We find six constraints on the iiij from the 
relations l:,w;, l:,w~, l:,wj whereas WIWZ and l:,w~Wj lead to 
three other ones. Finally we obtain nine constraints and still 
two iiij parameters remain free with two independent Y; val-
ues. 

As a final remark, comparing N = 2 and N> 2, we see 
that only in the Burgers N = 2 case is 1..1 = 0 a linear differ
ential equation on ..1. 

c. Is it always true that the existence of a common 
solution implies a common factor for the set of 
associated linear operators? 

We recall that our definition ofbisolitons for K = Gx is 
the existence of powers of K which are rational functions of 
Wj1 i = 1,2. This means that, for G, a 10g..1 term is allowed, 
and we must consider two classes of solutions 

k 

G=..1 -PIbm..1 -m class I, 
o 

k 

G = bolog..1 + Ibm..1 - rn class II. 
I 

As we shall see the presence or the absence of a 10g..1 term is 
the crucial point for the factorization property. 

First, if LqN=IN' Eq. (6.6) reduces to a~ NG 
= VqN(Gil )N. For N = 2 (Burgers case) the only solution is 
G = const log..1, and this too is one of the solutions for high
er N values. This means that const log ..1 is the only common 
solution to all N integer values. Nevertheless, the corre
sponding set of germs operators (IN,) does not necessarily 
have a common factor. 

Secondly, G =..1 - P is a common solution of Eq. (6.6) 
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for different N integer values 

Np-I q-N 
Iq_ N = s"U

p
(l+s-

l
a,), p= N-l' G=..1- P, 

and, if NI < Nj1 the set (/q, _ N,) has a common factor Iq, _ N, . 
As we shall see in the two next sections, the existence or 

not of a common factor for a set (/q, _ N.l is directly linked to a 
balance property between lhs and rhs ofEq. (6.6). When 
substituted into Eq. (6.6), classes I and II lead essentially to 
..1 - I polynomials on both sides. The factorization property 
exists when some of the smallest..1 -I power terms present on 
the lhs are missing on the rhs. This factorization property is 
explicity obtained by killing these terms. This defines a first 
operator .sf'I which acts on the G solution as far as the small
est..1 - I power terms are the same in both sides. The comple
mentary operator .sf'1I reconstructs exactly the nonlinearity 
and Iq _ N = .sf'I .sf'II' As we shall see, .sf'I disappears for 
class II, and, consequently, there is no necessary common 
factorization property. 

D . ..1PG(..1) is a ..1- 1 polynomial: G =..1 - p~~ bm..1 - m, k 
arbitrary, bo = 1 

We rewrite Eq. (6.6) in an equivalent form which is 
more convenient for our study. For that purpose we intro
duce parameters r m,k by the identity 

[1 + tbm(m +p)(p..1 m)-Ir ==~rm.k..1 -rn, 

rO•k = 1, rl,k = Nbl(p + l)p- 1, 

r2,k = ~ (b2(2 + p)p-I + (N - l)(blP-l(p + lW), ... ,rkN,k 

= (bk(p + k )p-It. 

Iq_N(t)G(..1) = vqN..1 -pNp - NX(..1 -I), 

kN r r(N.p + m) 
X(..1- I)=I--rn-,k----

o ..1 rnr((N + l)p + m) 
(6.6') 

The rhs of Eq. (6.6') is aLi -I polynomial from..1 - Np up to 
..1 - N(p + k 1 (Np not necessarily integer). Iq _ N(t) must be an 
operator lq _ N = I + ~i - N ¢;ia; j such that the lhs of Eq. 
(6.6') has also the same..1 -I powers with the same coeffi
cients. As a first result we determine the possible p values. 
Taking into account the relation a,..1 - Q 

= Q..1 - Q( - 1 +..1 -I) and iterating up to a{j..1 - Q, we see 

that the lhs of (6.6') is aLi -I polynomial from..1 - p up to 
..1 -(p+k+N-ql=..1 -N(p+kl. It follows that 

p = (N - q)(N _1)-1 - k. 

1. (1 + at/p) is necessarily a factoroflq _ N 

The power..1 - p present on the lhs of(6.6') is absent on 
the rhs and the operator lq _ N must necessarily kill this term. 
We note that a{jG = ( - p)j..1 -p + 0 (..1 p - I) and a first ba
lance between lhs and rhs of Eq. (6.6') gives 
(1 + ~¢;j( - p)j)..1 - p + 0 (..1 - (p + II)==:O (..1 - NP). It follows 

that 1 + l:,¢;j( - p)j = 0 or 

( a)( q-N-I ) 
Iq_N= 1+; 1+ + ~ja{j' (6.9) 
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This result is very important if there exists a common G 
solution, LqNG = cqN(Gx)N, to different integer Nvalues, 
i.e., if the set (bm ) is q,N-independent. In that case, necessar
ily all the Lq,Ni as well as the Lq in Eq. (6.2) have at least this 
factor (1 + p - I a,) in common. 

2. I q _ N as the product of two operators 2'. and 2' II 

We can go on with this balance between lhs and rhs of 
Eq. (6.6'). Either p + 1 = Np or p + 1 < Np. In the second 
case, if lq _ N given by Eq. (6.9), when applied to G gives a 
.J - I P + II term, then 1 + ~¢ja: j must be such that this term 
disappears and so on as long as exists in the lhs of(6.6') terms 
.J - I with 1< Np. In this way lq _ N becomes the product of 
two operators. First 2' I: 2' I G = 0 (.J - NP) which kill all 
.J -I power terms with powers less than Np. Secondly, 2'11 
will be the complementary operator which when applied to 
2' I G reconstructs exactly the rhs of (6.6'). One can have a 
great number of different possibilities. In the general case we 
write 

M 

.2"IG=.J -NPLam.J -m, M=0,1,2, ... ,kN, 
o 

kN-M 
.2" II = 1 + L ilja;j. (6.10) 

I 

3. Building of the operator 2' II 

We assume that .2" I G has the most general representa
tion written down in Eq. (6.11), and we want to find the 
relations for the parameters ilj of .2"11' 

After some algebra we find in the general case 

a kN-M 
aj + L jl. L filF(Np + I + jl)( - IV- j,c1' 

j, +j,~jF(Np + It) I=j, 

F(Np+j) 
= VqNP-Nrj.k (6.11) 

F((N + 1)P + j) 

with the constraints 

If the set (bm) is known, then rj,k and aj, are also kE.0wn and 
Eq. (6.11) gives both the corresponding values of ill (or ill) 
and v qN' If some of the (b m ) are unknown, we first express fi I' 
rj,k' aj, in terms of these unknown parameters. Compatibi
lity condition give the possible (bm ) values and coming back 
the fi l (or il,) values. 

The most simple case corresponds to am = 0, except ao 
that we rewrite a a qN in the following subsections. In that 
case the lhs of (6.11) is simplified, and we find 

kN 
OJ,O + L( - 1)'-jc/fi,F(Np + l) 

1345 

'=j 

= VqN(aqN)-lp-Nrj,kF(Np) 

r((N + 1)P + j) 
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(6.12) 

4. Building of the operator 2'. and determination of the set 
(b m) for different general classes of solutions 

We start with an arbitrary solution having k + 1 terms 

G=.J -p'iF(p + m)hm , ho = 1, 
o F(p)m!.::1 m 

where instead of the set (bm ) we work with an equivalent 
more convenient set. 

We want to describe a general method such that .2"1 G 
has only one.J - Np term, two terms.J - Np and.J - INp + I), 

three terms· ... 
From the general result of subsection 6Dl, we know 

that necessarily 1 + p - I a, is a factor of 2' I' We define G I: 

(
l+a')G=GI=.J-IP+II'iF(P+I+m) hm,l, 

p 0 F(p + l)m! .J m 

hm,1 = hm - hm + I' (6.13) 

For instance, if hm,1 = 0 for m =lk or equivalently hm 

= 1, we obtain a G solution such that GI =.J - Ip + k + II 
XF(p + k + I)(F(p + 1))-1 and all the hm (or bm) are 
known. With the help of the differential operator 
(I + Q -la,).J - Q =.J - IQ + II we can build .2" I and obtain 
a first family of solutions (ko = 0 in Table V). 

In order to discover other general families of solutions, 
we successively iterate ko times the application G-+GI in the 
following way,p-+p + 1; then 
GI-+G2 , .. ·,p + ko - 1-+ - 1 + ko and then Gko-+Gko + I' 
We find 

ft(l +~)G=Gko+1 
s=O s+p 

=.J -IP+I+kol'i F(p+ko+ 1 +m) hm,ko+l, 
o F(p + ko + l)m!.J m 

_ ko + 1_ 
(6.14) 

ko = 0,1,2, ... , bm,ko + I = L bm + s( - Itc~, + I . 
s=o 

(i) For instance, if hm'ko + I = 0 for m =I k, we still find 
that Gk,. + I has only one.J - Ip + k + k,. + II term and from Eq. 
(6.14) we get the solutions ko=lO of Table V. 

(ii)Letusassumethathm = l,excepthk is unknown. GI 
becomes 

( 1 + a')G =G = F(p+k) 
P I .Jp+kF(p+l)(k-I)! 

X(I+h +h (p+k)). 
k k k.J 

We introduce the operator 

(1 + ~ ).J - Q (A + E.J - I) 

=.J -IQ+ II(A _ EQ -I) + Q + 1 E.J -(Q+21 
Q 

that we apply ko times to GI. We find 

( a )ko-I( a) 1+-':' IT 1+ ' G 
p s=O p+k+s 

.J -Ip+k+kol 

F(p+ l)(k-l)! F(p+k) 

[ 
hdk + ko) hd p + k + ko) ] 

X 1- + . 
k .J 
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b
m

= FIp+m) ifm#k b = FIp+k) k integer 
FIp)m! 'k (ko+k)(k-I)!FIp) , 0 ' 

a qN = 

P '~p+k S 

{ 

( I + at) Nil 1 (I + at) if q>(k + I)N + ko + 2 

.:1\ = '''p+k+kv 

( 1+ ~)P+krrkv-l(l+ at) ifq=(k+I)N+ko+1 
p '~p+k S 

LqG = IA,a':t,Lq,N,G = IA,cq,N,~" [Gx t'. N, <N, 
j j 

In all cases Lq factorizes it'Iq,N, 

If b k = k (ko + k ) - 1, we get the second family solutions of 
Table V. 

E. G(..J) mixing 10g..J and a..J -1 polynomial; violation of 
the common factor property for a common solution 

Here we consider a general solution including a log ..J 
term. 

k b 
G = bo 10g..J + ~ ~, k arbitrary. 7' ..J m 

Both sides of(6.6) are..J -I polynomials. The rhs is a polyno
mial with terms from..J - N up to..J - N(k + I) while the lhs is 
running from..J - N up to..J - Ik + q) =..J - Nlk + I). As a first 

result, lq _ N can be written 
kiN-I) 

lq_N(t)= 1 + 2: ¢ja{J, q-N=k(N-l). 
j~1 

The second, very important result is that on both sides the 
smallest..J - I power is the same..J - N. Consequently. we no 
longer have the decomposition lq _ N = .!f I .!f II' .!f I was 
the operator killing the smallest..J -I power terms present on 
the lhs of Eq. (6.6) and absent on the rhs. The balance lhs vs 
rhs will not require general conditions independent of the 
explicit determination of the ¢/s. Consequently, a common 
factor for the set lq, _ N, associated with a common G solution 
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lp+k+ko)F(p+k) 
(ko + k)(k - 1)IFIp + I) 

is not a necessary property, and we will exhibit counter ex
amples to that property. 

We rewrite Eq. (6.6) in a form more convenient for the 
discussion: 

def: rm,k' [ 

k b]N I-I mm~ 
I..J bo 

=I rm,~ =(~)N(G.:1)N, 
o ..J bo 

which can be calculated: 

rO,k = 1, rl,k = - Nb 0- Ib l , 

{

IN - I)k - I I ( - (bo + bd 
a:N G + 2: ¢/+ la,l 

o ..J 

(m - l)bm - mbm )J - (G)N -VqN .:1 , 
..Jm 

k+1 

+2: 
2 

bk+ I = O. (6,6") 

As we said above, both sides have a..J - N term: the identifi
cation fixes v qN' the scaling parameter, v qNb ~ - 1 

= ( _ l)N + I(N _ I)! The next power term is..J - (N + I), the 
identification of the coefficients in both sides lead to 
(bo + bl)(l:\N - I)k( - l)j¢j) = O. There exists two open ways. 
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The first one bo + bl = 0, being (t/Jj) independent does not, of 
course, require any factorization of Iq _ N' The second way 
.I( - 1 )jt/JJ = 0, though giving relations on the Iq _ N param
eters, does not imply a common factor for a common solu
tion. At the next step.::1 - (N + 2) the identification of the coef
ficients in Eq. (6.6 W

) give 

( 
I-N . ) (b l - 2b2 ) --- I( - 2)1t/Jj = ° if bo + bl = 0, 
1 +N 

(6.15) 

I-N( bi) +-- 2b2 +- =0 if I( -lJit/Jj =0. 
1 +N bo 

If bo + b l = 0, we still have two ways. The first one is 
2b2 = b I' In fact, there exists a general solution mb m = b I or 
G = bo(log.::1 - .I~ m- l.::1 - m). The second way leads to an 
N-dependent relation between the t/Jj's. 

If.I( - Wt/Jj = 0, then Eq. (6.6 W
) gives relations 

between bo, bl' b2, and t/Jj's. The analysis can be go on identi
fying all.::1 - (N + m) coefficients on both sides of Eq. (6.6"). 

First, we look at the general common solution mbm 

=btfork=I:G= -log.::1 +.::1- I,N=2,/I=a,l6, 
N=3,/2 = 1 +Ma, +ioa;"N=4,/3 = 1 + (6/7!)a, 
(314 + 33 a, + a;,). With these examples we can verify that 
the set (lq_N = IN_ 2) = 11'/2,/3"" has no common factor 
while G is a common solution. 

Second, for the other way .I( - 1 J1t/Jj = ° we still re
strictourstudytok= I:N=3,G=log.::1 +7.::1- I,N=4, 
G = 10g.::1 + bl.::1 - \ 2b i - 17 bl - 75 = 0, and we see that 
the two solutions are different. 

F. Can we have more than blsolltons:..:1 = 1 + ~~oliJi' 
io>2? 

The answer is no. We recall that.::1, =.::1 - 1 and for 
N = 2,3,4 the germs iN are such.::1 must satisfy linear rela
tions.::1, + a.::1 x + f3..:1 xx which forbid for OJi = exp(t + YiX) 
to have more than two Yi values. 

7. DISCUSSION 

The factorization property or not (the existence of a 
common factor or not) can be explained by a balance 
between linear versus nonlinear contributions: We look at 

Lq;N,K = KN'anda;'N,(lq,_N,G) = (G<I)N,. Then always Lq;N, 

or lq, _ N, is built as a product of two operators"? I'''? II' Let 
us substitute an ansatz possible solution K into the nonlinear 
part of the equation and compare with the linear contribu
tion. Two situations occur. 
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(i) Either the linear part contains terms which necessar
ily cannot belong to the nonlinear one. It follows that neces
sarily Lq,N, or lq, _ N, (or a part called L I ) must kill these 
terms. Then LI K has terms similar to those of the nonlinear 
part, but no terms which necessarily must disappear. Finally 
the complementary operator Ln reconstructs exactly the 
terms present in the nonlinear part. In this can we have nec
essarily a factorization property of the linear operator. 

(ii) Or the linear part does not contain terms which nec
essarily must disappear in the balance and Lq,Nj or Iqj _ Nj is 
reduced to Ln. In this case there is no necessary factoriza
tion property. 

For a study of a class of nonlinear equations exists in 
general a basic equation which can be used as a laboratory 
tool in order to test intrinsic properties of the class; see, for 
instance, the role of KdV for the class of integrable equa
tions. For K N nonlinearities, the basic equation is the Boltz
mann equation with Maxwell type ofinteraction and nonlin
earity K 2. The most simple case is the so-called Bobylev
Krook-Wu model7

•
8 which can be written4 with a factorized 

second-order differential operator L 22• However, for any q 
val ue exist factorized L q2 operators, L q2 K = C q2 K 2, corre
sponding to models of the Boltzmann equation,9 

(1 +a,tif(l + ax )K(X,t) =K2, 
p=1 q+p-2 

where K is essentially a generalized Laplace transform of the 
Boltzmann distribution function. For (G x t nonlinearity, the 
basic equation for the germ i2 is the Burgers equation and the 
germs iN for higher N values represent some extension of 
that equation. 

Finally let us recall that the bisolitons of the classical 
integrable cases, like KdV, are rational functions. In the 
class studied here for N> 2 they develop other singularities 
because only some powers are rational/unctions. We are try
ing to include these new features in a general formalism. 
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We genera~ize ~he analogous of Lee Hwa Chung's theorem to the case of pre symplectic manifolds. 
As an ap~hcatlOn, we study the canonical transformations of a canonical system (M, S, n ). The 
role of Dlrac brackets as a test of canonicity is clarified. 

PACS numbers: 03.20. + i 

1. INTRODUCTION 

Degenerate or singular Hamiltonian systems were in
troduced in mathematical physics by Dirac. 1,2 Later, the in
terest in this formalism has increased3

,4 mainly because it 
provides the suitable framework to deal with many physical 
theories, either in the infinite-dimensional case2,s (electro
magnetic, gravitational, and Yang-Mills fields) or in the fin
ite-dimensional one (relativistic systems of directly interact
ing particles),6 

The usual way of dealing with these systems (we shall 
restrict ourselves to the finite-dimensional case) starts from a 
phase space M with a symplectic structure n, i.e., a nonde
generate Poisson bracket. Then, some constraints are intro
duced in order to define a submanifold S representing the set 
of all possible states of the physical system (e.g., the mass 
shell constraints in a system of relativistic particles). Accord
ing to the mutual Poisson brackets, these constraints are 
classified in first and second class; as is commonly accepted, 
the latter correspond to spurious degrees of freedom and the 
former can be considered as generating functions for gauge 
motions of the system. It has been noticed by Shanmugadha
san7 that an adapted canonical set of variables can be select
ed such that the constraints assume their simplest form, i.e., 
the submanifold S is obtained by making some coordinates 
and momenta equal to zero. The symplectic form n on M 
then induces a presymplectic structure liJ on S, which is de
generate in most cases. 

The invariance of the Poincare-Cartan integral8 turns 
out to be a sound principle to establish the features of nonde
generate Hamiltonian systems, Likewise, for degenerate sys
tems, an analogous formalism can be set forth. 9

,10 This for
mulation also stresses the close parallelism between the 
above-mentioned Shanmugadhasan transformation 7 and the 
Hamilton-Jacobi method when the canonical Hamiltonian 
vanishes. 10 

In dealing with Hamiltonian systems, either degenerate 
or not, it is of great interest to have a precise characterization 
of canonical transformations. In the nondegenerate case, 
this characterization can be presented in a very clear and 
elegant way by requiring the invariance of the Poincare
Cartan integral under these transformations. II To show this 
result, it is necessary to use Lee Hwa Chung'S theorem, 12 

which states the only absolute integral invariants under ev
ery Hamiltonian system are the symplectic form and the ex
terior product of this form with itself any number of times. 

However, a fully satisfactory definition of canonical 
transformations has not been attained in the singular case 

yet. A previous attempt 13 requires canonical transformation 
to preserve the elementary Poisson brackets (that is, the sym
plectic form n ) on the constraint submanifold S. This condi
tion is too strong because the initial phase space M and its 
symplectic structure n must not be considered as the physi
cally relevant objects of the theory, but merely as the starting 
point to build up the submanifold S and the induced presym
plectic structure liJ, in terms of which the physical system is 
represented. 

Our standpoint is that, in the degenerate Hamiltonian 
formalism, canonical transformations must be characterized 
as those preserving the physically significant submanifold S 
and its presymplectic structure liJ. Thus, a result generalizing 
Lee Hwa Chung's theorem will a helpful tool in dealing with 
canonical transformations in the degenerate case. This is the 
purpose of the present paper. 

The language used throughout this work is geometri
ca1 14

-
18 where concepts, which classically lead to more or 

less involved equations in terms of coordinates and mo
menta, can be formulated and handled in a more clear and 
concise way. 

In Sec. 2 we generalize to presymplectic manifolds 
some well-established results in the symplectic case, such as 
the concepts of the Hamiltonian vector field, Hamiltonian 
functions, and the Poincare-Cartan integral. In Sec. 3, we 
generalize the above mentioned Lee Hwa Chung's theorem 
to the presymplectic case. In Sec. 4, previous results are ap
plied to the particular case that the presymplectic manifold 
has been obtained by imposing a set of constraints on a big
ger symplectic space, as is common in the physical applica
tions of the degenerate Hamiltonian formalism. Section 5 is 
devoted to study the canonical transformations of a con
strained Hamiltonian system. 

2. HAMILTONIAN FIELDS AND THE POINCARE 
INTEGRAL IN A PRESYMPLECTIC MANIFOLD 

Let us consider a manifold S and a presymplectic form 
on S (i.e., liJ is a closed differential2-form of constant class on 
S), so that the couple (S, liJ) is called a presymplectic mani
fold. 

The 2-form liJ defines a differentiable linear map from 
the tangent vector fields D (S ) onto the differential I-forms 
A I(S), given by 

D(S)--A I(S), 

(2.1) 

where ix denotes the inner product by X. This mapping can-
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not be inverted, in general. That is, there are some I-forms in 
A I(S) which are not in correspondence with any vector field 
inD(S). 

Definition 2.1: A function hEA O(S) is called a Hamilton
ian Junction relative to the presymplectic structure defined 
by w iff there exists a vector field XED (S) such that 

ixw = dh. (2.2) 

In other words, h is a Hamiltonian function iff the linear 
system (2.2) admits a nonempty family of solutions XED (S). 
Notice that if Xh is a particular solution of (2.2), then the 
general solution Kh CD (S) is given by 

Kh = Xh + ..af(w), (2.3a) 

where ..af(w) is the submodulus of D (S) defined by 

..af(w) = I XED (S )lixw = 0 J. (2.3b) 

Definition 2.2: A vector field XED (S) is called a Hamil
tonian vector field relatively to w iff there exists a function 
hEA O(S) such that 

ixw = dh. 

Any Hamiltonian field X satisfies 

dixw = O. 

(2.4) 

(2.5) 

The converse is not true, since no closed differential 
form is exact. However, the Poincare lemma 19 ensures that if 
Eq. (2.5) is fulfilled, then, for any pES, there exists an open 
neighborhood ofp, UCS, and a functionJEA 0(U) such that 

ixw - dJ= 0 on U. (2.6) 

This is the reason we introduce the concept of a local Hamil
tonian vector field. 

Definition 2.3: A vector field XED (S) is called locally 
Hamiltonian relatively to w iff ix w is closed [i.e., it is a solu
tion ofEq. (2.5)]. 

Proposition 2.4: XED (S) is locally Hamiltonian relative
ly to w iff Lxw = 0, where L denotes the Lie derivatives. 

The proof is immediate after recalling that 
Lx = ixd + dix and that w is a closed 2-form. 

Expressing the class of locally Hamiltonian vector 
fields relative to w by 

D",(S)=[XED(S)ILxw = OJ, 

we have the following interesting results: 

(2.7) 

Proposition 2.5: D w (S) is closed under the Lie bracket. 
The proof is immediate since 

L[x.y 1 = LxLy - LyLx 

(see, for example, Ref. 19). 
Proposition 2.6: Given any point pES and any tangent 

vector atp, VETp(S), there is at least one locally Hamilton
ian vector field XED uJ (S) such that Xp = V. 

Proof Using a well-known result in differential geome
try, 19 a local chart (/ , ... ,y') in a neighborhood of pES exists 
such that the presymplectic form w can be written as 

W3 = dyl AdyR + 1+ ... + dyR Ady 2R, 2R<;,s. 

It is obvious that the vector fields alayl, ... ,alay' are locally 
Hamiltonian. 

For a given VETp(S), we expand it in the coordinate 
basis I (al ayi)p J p ~ I. .... s' thus obtaining 
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v = ± Vi(~), ViElR. 
i~ I ay p 

Then, a solution for our problem is 

X= ±Vi~. 
i~l ay 

At this point it must be noted that any functionJEA O(S) 
depending on any of the variables/, i> 2R (i.e., aJ la/~O), 
cannot be a Hamiltonian function. 

Weare now going to generalize the Poincare integral 
theorem for presymplectic manifolds. With this purpose we 
introduce the concept of a local one-parameter group of dif
feomorphisms which consists of a differentiable mapping 

if>: W-S, 

(t,p) ~ f{J((p), 

where W C R X S is an open neighborhood of[ 0 J X S, having 
the following properties: 

(i) VpES, (R X I P j)nS is connected; 
(ii) VpES, f{Jo(p) = p; 
(iii) If(t ',pI, (t + t ',pI, and (t, f{Jt' (p)) belong to W, then 

f{J(+ (.(p) = f{Jt(f{Jt'(p))· 

It is also known 19 that the integral orbits of a given differen
tiable vector field XED (S ) permit to define the so-called local 
one-parameter group generated by X. 

Let c be a singular 2-cube on S. 20 Since 14 the support 
of c, is a compact set in S, there exists a real positive number 
It' c such that ( - It' co It' c J X Icl C W. Therefore, for any 
tE [ - It' co It' c J ' the map f{J t: I c I-S defines a diffeomor
phism between I c I and f{J [ Ie I, and f{J ( °c also is a singular 2-
cube onS. 

Definition 2. 7: Let c be a singular 2-cube on S, XED (S ), a 
differentiable vector field and if> the local one-parameter 
group generated by X. For any tE ( -. 'l? c' It' c J, the Poincare 
integral is defined as 

1 (t;c,X)- r w. 
J<p/oc 

Theorem 2.8: The following conditions are equivalent: 
(i) XED", (S) (i.e., it is a locally Hamiltonian field); 
(ii) [dI(t;c,X)ldt ],=0 = o for any singular 2-cube onS. 
Proof We have that 

1 (t;c,X) = r w = If{J ~w, 
JtptOC C 

where f{J ~ is the pullback map associated with f{Jt. Deriving 
then both sides with respect to t and taking t = 0, we have 

[ 
dl (t;c,x)] = 1lim( f{J ~w - w ), 

dT t~O ct--.Q t 

but the limit on the right-hand side is nothing but Lxw. 
Hence we can write 

[
dI(t;C,x)] = (Lxw, 

dt (~o L 
and the theorem follows immediately. 

3. LEE HWA CHUNG'S THEOREM FOR 
PRESYMPLECTIC MANIFOLDS 

In the case of symplectic manifolds, Lee Hwa Chung'S 
theorem 12 fixes the class of differential forms which are in-
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variant under any locally Hamiltonian vector fields. In this 
section, we arrive at a similar result for presymplectic mani
folds. 

Theorem 3.1: LetSbe as-manifold, wEA 2(S) a presym
plectic form with constant class 2R on S, and a a differential 
p-form on S, aEA P(S). If Lx a = 0, for every locally Hamil
tonian vector field XED w (S), then 

(a) a = 0, if p > 2R; 
(b)a=0,ifp=2/+ 1,I>R; 

/ 

(c)a = J.w/\ ... /\w, ifp = 2/, I<.R, wherefEA O(S), and 

is constant on any connected components of S. 
Proof Recalling Eq. (2.3b) and that Lx = dix + ixd, 

we have that d(w)CD",(S). The hypothesis of the theorem 
therefore implies that 

Lxa = 0, VXEd(w). (3.1) 

Moreover, since d(w) is closed under product by any 
fEA O(S), we also have that 

LfXa = 0, VXEd(w) and VfEA O(S). (3.2) 

Comparing both Eqs. (3.1) and (3.2), we arrive at 

df/\ixa = 0, VfEA O(S) and VXEd(w). (3.3) 

For the sake of simplicity, we shall handle Eq. (3.3) at each 
point zES [recall that Tz (S ) is a finite-dimensional real 
vector space, whereasD (S) is a modulus onA o(S)]. Applying 
Corollary A.4 of the Appendix, we have 

ixpz = 0, VXzEd(wz), VzES, 

where d(wz) = [XzETz(S)/ixzwz = OJ. 
For p > 2R, using Corollary A.2, we obtain 

(3.4) 

a z = 0, VzES, (3.5) 

and, equivalently, a = 0, so that statement (a) is proved. 
Let us now take two locally Hamiltonian vector fields 

X, YEDw(S), The Poincare lemma guarantees that, VZES, 
there exists an open neighborhood ofz, UCS, and two func
tions, f, gEA 0(U), such that 

(3.6) 

where Xu=Xo juED(U), Yu=Yo juED(U), 
wu=wo juEA 2(U), andju: U----.S is the natural injection. 

Note that P= gXu + fY u is a Hamiltonian vector 
field on U relative to w u and its corresponding Hamiltonian 
function is fgEA O( U). Hence, by hypothesis, the differential 
form au = a O juEA P(U) is invariant under Xu, Y u, and P, 
i.e., 

Lxuau = LYua u = Lpau = 0, 

which implies 

(3.7) 

dfl\iYua u +dgl\ixuau =0. (3.8) 

Using (3.6), specializing (3.8) at the point ZEU, and tak
ing Proposition 2.6 into account, we can finally write 

VzES and VXz ' YzETz(S). (3.9) 

At this point, the following result is needed: 
Lemma 3.2: Let a z be ap-form on Tz(S) [i.e., a z 

EA ~(S)], p<.2R, such that 

(i) VXzEd(wzl, ixpz = 0, (3.4) 
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(3.9) 

Then, 
-ifp = 1, then a z = 0. 
-if p > 1, then there exists a~l)EA ~ - 2(S), fulfilling con-

ditions (3.4) and (3.9) and also 

(3.10) 

(The proof is given in the Appendix.) 
This lemma provides a recursive algorithm to prove sta

tements (b) and (c) of Theorem 3.1. 
(c) Indeed, let us consider the case p = 2/, I<.R. 
Starting from a~P) azEA ~(S) and by iterative applica

tion of Lemma 3.2, we obtain a sequence of alternated forms: 

a~IEA ;(1- il(S), i = 0, ... ,/, 

such that 

i alii = i w /\a li + II VX ET (S) XZ z X.z z Z t Z z 

whence, by induction, it follows immediately that 
/-i 

a~l = [1/(/ + i)!]a~lwz /\ ... /\wz , (3.11) 

where a~IEA ~(S) is a real number. 
Therefore, the differential p-form aEA P(S) can be writ

ten as 
/ 

a = J.w/\ ... /\ w, (3.12) 

wherefEA O(S). 
Finally, since a and ware invariant under any locally 

Hamiltonian vector field, we have 

Xf = 0, VXED OJ (S), 

which, by Proposition 2.6, implies that 

Xzf= 0, VXzETz(S) and VzES. 

Hence,fis constant on any connected component of S, and 
the proof of the statement (c) is over. 

(b) For the case p = 21 + 1, 1 < R, starting from a~OI=az' 
Lemma 3.2 yields again a sequence of alternated forms: 

a~IEA ;(1- il + I(S), i = 0, ... ,/, 

such that 

ixp~1 = ixzwz /\a~+ II, VXzETz(S). (3.13) 

Since each one of these alii fulfills the hypothesis of the 
Lemma 3.2, and a~IEA ~(S), it follows that 

a~1 = 0, VzES, 

which, by virtue of(3.13), implies a~l = 0, i = 1, ... ,1 and par
ticularly, az = 0, VzES. 

Thus, the proof is concluded. 

4. CANONICAL SYSTEMS 

A canonical system is characterized by a triplet (M, S, 
a ), (M, a ) being a symplectic 2n-manifold and S an s-sub
manifold of M. We shall denote the natural injection by js: 
S -+ M and the corresponding pullback mapping by J!: 
A (M) -+ A (S). We shall assume the closed differential 
2-form 

w= J!aEA 2(S) 
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has constant rank: rank liJ = 2R. 
The relationships between 2n, s, and 2R determine the 

class of the submanifold: namely, 
(i) S is said to be a first class submanifold when 

2n -s=l=2R, 
(ii) S is second class when s = 2R, 
(iii) otherwise S is a mixed submanifold. 
This classification is equivalent to the usual one, which 

is formulated in terms of the Poisson brackets among the 
constraints defining S. 

In this section we are going to particularize the results 
obtained in the preceeding sections to the case of canonical 
systems. 

Definition 4.1: Let a be a differential p-form on M, 
aEA P(M). We shall refer to the p-formj!EA P(S) as the spe
cialization of a onto S. 

Definition 4.2: Two p-forms a, f3EA P(M) are said to be 
weakly equal on S iff a O js = f30 js. Weak equality shall be 

denoted hereafter by a = or a -;::;:f3. 
s 

Definition 4.3: Two p-forms a, f3EA P(M) are said to be 

strongly equal on S iff a = f3 and da = df3. Throughout this 
s s 

paper we shall write a==/3 for strong equality. 
Proposition 4.4: Let (; N, V = 1, ... ,n - s, be a set of in de

pendent constraint functions defining S, and let aEA P(M). 
Then, the specialization of a onto S vanishes (jJa = 0) if, 
and only if, there exist n - s differential (p - 1 )-forms 
1/oEA P - I(M), v = 1, ... ,n - s, such that 

n-s 

a = I 1/v I\d{;V. 
S v~ I 

Proof: See, for example, Ref. 15. 
Definition 4.5: Let XED (M) be a vector field on M. X is 

said to be tangent to the submanifold S iff 
X{; = 0 (4.1) 

S 

for any given (;EA o(M) such that (; = o. 
s 

We shall denote by D (S) the set of those vector fields 
which are tangent to S. 

Condition (4.1) is equivalent to 

Xo jsEjJ(D(S)). 

Hence, given any XE D (S ), there is a vector field on D (S), 
which we shall denote by XS

, such that 

Xo js = js. (XS
), (4.2) 

i.e., VfEA O(M), XS (jJ f) = JJ(Xf), wherejs. denotes theJa
cobian map. 

Proposition 4.6: Let XE D (S), aEA P(M), then 
(ilftixa = ixs(]Ja), 
(ii)jJLxa = Lxs(j!a). 

The proof follows immediately using very well-known re
sults of differential geometry (see, for example, Ref. 19). 

Let HE D (S) and HSED (S) be the vector field associat
ed with H by Eq. (4.2). According to Definition 2.2, H S will 
be Hamiltonian relative tOJJil iff a functionfEA O(S) exists 
such that 

(4.3) 
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Let us now pick up a function he EA O(M) such thatf = JJhc 
(there is a large class of them) and rewrite (4.3) as 

ls(iH il - dh c ) = O. (4.4) 
Definition 4. 7: A vector field HED (M) is said to be weak

ly Hamiltonian relatively to the canonical structure (M, S, il ) 
iff 

(i) HED(S), 
(ii) there exists heEA O(M) such that Eq. (4.4) holds. 

The function he is commonly called a canonical Hamilton
ian corresponding to H. 

We are now going to express Eq. (4.4) in terms ofa given 
set of 2n - s constraints defining the submanifold S. These 
constraints can be always arranged in such a way that: 

(i) Some of them ItP,p = 1, ... ,1), which are said to be 
first class, have weakly vanishing Poisson brackets with any 
other constraint, and 

(ii) the remaining 2n - s - I Ixu
, a = 1, .... 2n - s - I}, 

which are called second class and must be in even number, 
satisfy the inequality 

det (/Xa
, ~ J)u.P~ I •..• 2n _ s-/ =1=0. (4.5) 

Using Proposition 4.4, one can immediate see that con
dition (4.4) is equivalent to require that 2n - s functions ap ' 

baEA O(S) exist (p = 1, ... ,/; a = 1, ... ,2n - s -I), such that 

iHil-;::;:dhe + ap dt P + ba dXa, (4.6) 

where the sume convention has been used. Realize that the 
role played by the ap's and ba 's is quite similar to the La
grange multipliers in many geometrical problems involving 
the specialization of a differential form onto a submanifold. 

Furthermore, condition (i) in definition 4.7 must be also 
be taken into account. In terms of the constraints, this condi
tion reads: 

htP-;::;:O and HXa-;::;:O, 

which, according to (4.6), can also be written as 

lhc>tPJ -;::;:0, p = 1, ... ,/, (4.7) 

1 he ,Xi; J + bpl~,xaJ -;::;:0, a, f3 = 1, ... ,2n - s -I. 
(4.8) 

Hence, Eq. (4.7) delimitates the domain of canonical 
Hamiltonians, and Cramer's linear system (4.8)-remember 
Eq. (4.5)---determines the Lagrange multipliers ba , 

a = 1, ... ,2n - s - I. which are associated with the second
class constraints 

bu -;::;: - cpa lxu,hc J. (4.9) 

where cpa is the inverse matrix of lxu, xYJ, i.e., 

cpa lxa,xYJ = Dp Y. 

Substituting (4.9) into (4.6), we arrive at 

iHil-;::;:dhe + ap dt P - lhc>~JcuP d~, (4.10) 

where the indeterminacy associated with the first-class con
straints appear manifestly. 

Summarizing, given a function hcEA O(M): 
(i) The linear system (4.4) will have a nonempty solution 

if, and only if, condition (4.7) is fulfilled. 
(ii) The indeterminacy of the solution H is related to the 

arbitrary Lagrange multipliers associated with the first-class 
constraints. 
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An explicit expression for H is 

H:::::{·,h~j + {.,apsPj, 

where the "star function" h ~ means21 

h ~ = he - {he,xajcaP~' 

(4.11) 

Definition 4. 8: A vector field HED (M) is said to be local
ly weakly Hamiltonian relative to (M, S, n) iff 

(i) HED(S), 
(ii)j~(iHn) is a closed differential form on S. 

The latter condition is equivalent to 

LHs(j~n) = O. (4.12) 

The proof is similar to the one of Proposition 2.1. 
A result analogous to the Poincare integral theorem 

holds as well for locally weakly Hamiltonian systems: 
Theorem 4.9: Let CPT be the local one-parameter group 

generated by a given HE D (S ). Thus, H is locally weakly 
Hamiltonian if, and only if, 

[.:i f J~n ] = 0 (4.13) 
dt J<p,oe t = D 

for any singular 2-cube on SCM. 
We finally have that the generalization of Lee Hwa 

Chung's theorem proved in the Sec. 3 leads to the following: 
Theorem 4.10: Let (M, S, n ) be a canonical system and 

aEA P(M) such that 

LHs(j~a) = 0 

for every locally weakly Hamiltonian field H. Thus we have 
that: 

(i) If either p > 2R or p = 21 + 1, I <R, thenJ~a = O. 
(ii) Ifp = 2/, I <R, then a functionfEA D(M) exists such 

that 
I 

f'S(a - fn 1\ .. , 1\ n ) = 0 

and thatfo j is a constant on any connected component com
ponent of S. 

5. CANONICAL TRANSFORMATIONS 

Throughout this section, (M, S, n ) and (M " S " n ') will 
denote two given canonical systems andjs: S'"-+M andjs': 
S' ~ M', the natural injections. We shall also assume that 
j!n is a form of constant rank on S. 

Definition 5.1: The map <P: M ~ M' is said to be a ca-
nonical transformation of (M, S, n ) into (M " S " n ') iff: 

(i) <P is a diffeomorphism; 
(ii)<P(S)=S'; 
(iii) the Jacobian map <p.: T(M) ~ T(M') maps every 

locally weakly Hamiltonian field relative to (M, S, n ) into a 
locally weakly Hamiltonian field relative to (M', S', n '). 

Thanks to condition (ii), the map <P induces a diffeo
morphism cP: S ~ S' by merely taking 

VxES, 'P (x) = <P (x)ES'. 

(We denote this mapping by other symbol than <P because its 
domain is not M but S.) Since cP has been purposely defined, 
we have that the diagram 

M <P • M' 

js t t js' 

S cP • S' (5.1) 

is commutative. 
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The aim of this section is to give several characteriza
tions of canonical transformations between constrained sys
tems. 

Lemma 5.2: If HE D (S ), then <p. HE D (S '). 
Proof Vs'EA D(M'),suchthatj!,s' = 0, we have, taking 

the commutativity of diagram (5.1) into account, that 

j!(<P *S') = (j~o<p *)(S') = cp*(j!. S') = O. (5.2) 

Ifwe now make <P* H act on any function S'EA D(M'), such 
thatJ~'S' = 0, we obtain 

<P.H(S') = H(<P *S') = 0 

because HE D (S) and <P * S ' vanishes on S. Hence 

<P.HE D(S'). r:8J 
Theorem 5.3: If conditions (i) and (ii) are satisfied by a 

given map <P: M ~ M', then <P is a canonical transformation 
if, and only if, 

<P *(j~.n') = cJ~n, (5.3) 

where cEA D(S) is a locally constant function. 
Proof <P *((j~,n ')) is a differential 2-form in the sub

manifold S which, at its tum, is endowed with the presym
plectic structure given by J~n. 

Let H be locally weakly Hamiltonian relatively to (M, 

S, n ). According to Lemma 5.2, since HE D (S ), then <P * H 

will belong to D (S ') as well. Furthermore, using Eq. (5.1), it 
can be seen in an obvious way that the vector field (<P. H)S' 
associated with <p. H by Eq. (4.2) is none but cp. (Hs ). Thus, 

for every HE D (S ), we can write 

LHs(cp *(j~,n')) = cp *{L<p.IHSI(j~,n')) 

=cp*{LI4> .. HIS(j!, n')J. (5.4) 

(a) If <P is a canonical transformation, then <p. H is a 
locally weakly Hamiltonian field relatively to (M', S', n '). 
Therefore, we have, by Eq. (4.12), that the right-hand side of 
(5.4) vanishes. Whence the hypothesis of Theorem 4.10 is 
fulfilled and, consequently, Eq. (5.3) follows. 

(b) Conversely, if Eq. (5.3) holds, we then have that 

LHs(<P *(j~,n')) = cLHs(j! n) = O. (5.5) 

That is, the left-hand side of Eq. (5.4) vanishes. Therefore, 
since rp is a diffeomorphism, we arrive at 

LI4>*HIS(j~,n') = 0, 

which means that <p. H is locally weakly Hamiltonian rela
tively to (M', S', n '). 

In most cases occurring in analytical dynamics, the 
symplectic forms nand n ' are not only closed forms but 
exact as well and can be derived from the respective Liouville 
forms,OEA I(M)andO'EA I(M'),i.e.,n = dO and n ' = dO'. 
Then there follows immediately: 

Corollary 5.4: A map <P: M ~ M', fulfilling conditions 
(i) and (ii) of Definition 5.1, is a canonical transformation if, 
and only if, for every zESCM, there exists an open neighbor
hood U C M, a function FEA D( U), and a constant c such that 

J~(<P *0' - cO - dF) = O. (5.6) 
Lemma 5. 5: Let HED (M) be a weakly Hamiltonian field 

and hEA D(M) a Hamiltonian function for H. If <P: M ->- M ' is 
a canonical transformation, then h '=(l/c)<P *-Ih is a Ha
miltonian function for H' -<p ... HED (M '). 
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Proof According to the hypothesis and Eq. (4.4), we 
have that 

l"!,(iHa - dh) = O. (5.7) 

Since cP is canonical, Theorem 5.3 can be applied to express 
(5.7) as 

~i I s·lcp*(]"!, a')-(cp*Oj~,)d(cp*-lh)l =0 
e '1'; IH' ) 

or 

(cp *0 J"!') [ill/e)H,a' - d (CP *-Ih )] = O. 

Finally, as cp* is a diffeomorphism, we arrive at 

l"!' [i(lle)H,a' - d (¢ *-Ih)] = 0, 

which proves the lemma. 

(5.8) 

Using the Poincare lemma, a similar result can be 
proved to hold for locally weakly Hamiltonian fields. Taking 
Eq. (4.11) into account, we can then use Lemma 5.5 to write 

CP*H as 

CP*H !.,eh),*+!.,iiut u)" (5.9) 
s 

here! ' J' and! , J '* are, respectively, the Poisson and 
Dirac brackets corresponding to (M', S', a '), and 

h CP*-lh, au=cp*-lau' 'tu=cp*-lsu. 

If we now apply H to any Hamiltonian function g, we 
obtain, taking (5.9) and (4.7) into account, that 

(Ug) =! g,h J* (5.10) 
s 

and, for cP * H acting on g, we also have 

(5.11) 

where g-CP * - Ig. 
Comparison of both equations, (5.10) and (5.11), suggest 

to us the following: 
Theorem 5.6: A map CP: M ~ M' fulfilling conditions (i) 

and (ii) definition 5.1 is a canonical transformation if, and 
only if, 

(a) For every couple offunctions g and h, which are 
Hamiltonian relative to (M, S, a ), 

!g, h j'*ocp:::::(lIe)! g,h J*. (5.12) 
(b) If gEA o(M) is Hamiltonian relative to (M, S, a ), then 

g_<P *-lg is Hamiltonian relative to (M', S', a ') as well. 
Proof Provided that cP is a canonical transformation 

and taking Eqs. (5.10), (5.11) and the commutativity of (5.1) 
into account, it follows that 

! g,h J * = l"!(Ug) = (cp *0 l"!' ocp * -I HUg) 

= cp *0 l"!' [(CP * H)(g)] 

= e! g,h )'*, 

and (a) is proved. 
Statement (b) follows immediately applying Lemma 

5.5. 
Let us now conversely assume (a) and (b) and try to 

prove cP is a canonical transformation. According to Eq. 
(5.12), for every weakly Hamiltonian vector field HED (M) 
with the associated Hamiltonian function hEA O(M), and ev
ery Hamiltonian function gEA O(M), we have that 
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[(CP*H-eXi,Ji]Ojl =0, 

where Xj, E D (S ') is a solution of 

l"!,(ixa' - dh) = o. 

(5.13) 

(4.4') 

The assumption (b) guarantees the existence of such a solu
tion Xi,. It is also this assumption which ensures that 
gEA O(M) will be Hamiltonian relative to (M', S " a '). From 
Eq. (5.13) we can therefore state that 

[(<1>*H-cXi,lf]Ojs' =0. (5.14) 

Finally, taking Proposition 2.6 into account, Eq. (5.14) im
plies immediately that 

(CP*" - eXjj)o js,E.J#(j!,a ') 

or 

cP H = eXi, + .J#(]"!a ') 
* s' 

which, by inner product withJ"!,a " yields 

l"!,(i~ Ha ') = cJl(ix,a ') = ell dh = j!, d (eh), 
~. h 

whence <P HED (M ') is a weakly Hamiltonian field relative-
* -Iy to (M', S', a ') and eh is an associated Hamiltonian func-

tioo. ~ 
Theorem 5.6 will be a useful tool to characterize canoni

cal transformations of constrained Hamiltonian systems in 
terms of the Dirac brackets. Indeed, let us consider a Shan
mugadhasan set of coordinates and momenta q a' P B; Q}, p!; 
Q L P~ (a, b = 1, ... ,r;/, g = 1, ... ,/; k, h = 1, ... ,t) defined on 
some open domain UCM. In terms of this coordinates the 
submanifold S is defined by 

(first class) P! :::::0, g = 1, ... ,/, 

(second class) Q ~ :::::P ~ :::::0, k, h = 1, ... ,t 

(r and t are related to the dimension 2n and s by 2r = s -I 
and 2t = 2n - s - 1 ), the differential 2-forms a andJ"!a can 
be written as 

r 1 

a = L dqa Adpa + L dQ}AdP} 
a= 1 J= 1 

I 

+ L dQ~ AdP~ 
k=1 

and 
r 

l"!a = L dqa Adpa 
a= 1 

and, according to (4.7), Hamiltonian functions are charac
terized by 

(:F
1

) = 0, g = 1, ... ,1, 
Q g Iq,p;Q'.O,O,O) 

that is, the elementary Hamiltonian functions are q a' P B' p} 
(a, b = 1, ... ,r;! = 1, ... ,/). (Realize that, although the second
class constraints Q ~ , P ~ also satisfy the latter relations, they 
are not relevant since their Dirac brackets with any other 
function vanish.) 

In the most cases of interest in mathematical physics, a 
canonical transformation cP acts from (M, S, a ) into itself. In 
terms of the above set of Shanmugadhasan variables, cP is 
expressed by 2n functions za (zp) (a, fJ = 1, ... ,2n), where zp 
denotes generically the coordinates and momenta q, P; Q I, 
pI; Q2,p2. 
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Theorem 5.6 then states that </> is a canonical transfor
mation of (M, S, n ) into itself if, and only if, 

(i) Q i (q, p;Q 1,0;0,0) = 0, 

Pi(q,p;Q 1,0;0,0) = 0, k,h = 1, ... ,t, 

P!(q,p;Q 1,0;0,0) = 0, g = 1, ... ,/ 

that is, </> (S) = S. 

(5.15) 

(ii) </> transforms Hamiltonian functions into Hamilton
ian functions, that is, 

and 

!qa'P! j ;::::0, ! Pb'P! j ;::::0, !i> j,P! j ;::::0. 
(iii) There exists a constant cER such that 

! qa' Pb j* ;::::coab 

6. CONCLUSION AND OUTLOOK 

(5.16) 

(5.17) 

(5.18) 

In this paper we have studied in depth constrained Ha
miltonian systems. In particular, we have introduced the 
concepts of Hamiltonian function and Hamiltonian vector 
field relative to a given constrained Hamiltonian system. 

The Hamiltonian study of a dynamical system leads to 
the concept of canonical transformation in a natural way 
(i.e., that which preserves the canonical formalism). In the 
nondegenerate formalism, the invariant integral of Poin
cares and the theorem of Lee Hwa Chung l2 permit us to 
characterize canonical transformations as those which pre
serve the symplectic structure apart from a multiplicative 
constant (</> *n '= cn, cER) or, equivalently, as those pre
serving the Poisson brackets (except for a constant factor). 

In a similar way, we have here derived a generalization 
of Lee Hwa Chung's theorem for constrained Hamiltonian 
systems which, insofar as the generalization of the Poincare 
integral invariant has been already obtained, has allowed us 
to characterize canonical tranformations of a given con
strained system into itself as those preserving: (i) the subman
ifold Sand (ii) the induced presymplectic structure on S [i.e., 
</> *(j~n ) = C j~n; cER]. 

We have also derived a formulation for the latter condi
tion in terms of the elementary Dirac brackets. 

Previous attempts to generalize the concept of canoni
cal transformations for a constrained system (M, S, n ) were 
based on the condition of preserving the Poisson bracket on 
the constraint submanifold S. In the present work we have 
intended to clarify that this condition is too restrictive. This 
is owing to the fact that the physical system is completely 
represented in the presymplectic manifold (S,j~n) and the 
degrees of freedom beyond S are physically irrelevant. On 
the contrary, in order to avoid unphysical restrictions, our 
study of canonical tranformations starts from the most pri
mary characteristic, that is, to transform weakly Hamilton
ian vector fields into weakly Hamiltonian vector fields. 
Then, the results obtained in Secs. 2, 3, and 4 permit us to 
give more elaborated characterizations of canonical trans
formations for constrained systems, either in terms of the 
presymplectic formj~n or in terms of the Dirac brackets 
and weakly Hamiltonian functions. 
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It is finally interesting to remark that a good definition 
for canonical transformations will be of great help to study 
the symmetries of a given constrained Hamiltonian system, 
and a forthcoming paper will be devoted to this problem. 
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APPENDIX 

Throughout this appendix 'l? is a finite dimensional lin-
ear space (dim'l? = s) and wEA 2('l?) is an alternated 2-form. 

The 2-form w defines the linear mapping 

'l? ~ 'l?* =A I('l?), (AI) 

V ~ ivw, 

the kernel of which is d(w) = !VE'l? /ivw = OJ. Also, it can 
be easily proved that its image is 

i"w = d 1(w) !AE'l?*/ivA = 0, VVEd(w)} (A2) 

The rank of w is defined by 

rank w = dim d1(w), 

which is always an even number 

rank w = 2R<s. 

(A3) 

(A4) 

Let A P('l? / d(w)) be the space of alternatedp-forms on 
the quotient space'l?l d(w), and let us consider the map
ping: 

A P('l? I d(w)) ~A P('l?), 

such that 

VV1, ... ,VpE'l?, a(V1, .. ,Vp)=a([V1], .. , [Vp])' 

where [Vi] E'l? / d(w) is the class of ViE'l? 
Proposition A.l: The mapping a ~ a defines an isomor

phism between A P('l? I d(w)) and 

A Pl(w)=1 yEA P(t )livY = 0, 

VVEd(w)} CA P('l?). (A5) 

The latter result is an immediate consequence of proposition 
(1.1.12) of Ref. 19. 

Since 

dim('l? I d(w)) = dim d1(w) = 2R, (A6) 

we have thatp> 2R ~A P('l? / d(w)) = 10j, which, by Pro
position A.l, implies the following: 

CorollaryA.2: IfaEA P('l?),p > 2R and iva = 0, for any 
VEd(w),then a = 0. 

Now, let Y be a linear subspace of 'l? (dim Y = m). 
Proposition A.3: If yEA P(Y), P < s - m, and A 1\ Y = 0, 

for any AEYl, then y = 0. 
Proof Let us choose a basis €1, ... ,c' - m of Y 1 (i.e., the 

subspace of I-forms annihilating Y). There will exist s - m 
vectors 

X1,· .. ,Xs_mE'l? 

such that 
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ix/ = c5j, l,j = I, ... ,s - m. 

By the hypothesis c /\ r = O,j = I, ... ,s - m, and taking 
into account that 

ix(E} /\ r) = r - E} /\ix r, j = I, ... ,s - m, 
J ) 

we conclude 

r=E}/\ixr, j= I, ... ,s-m, 
) 

whence it immediately follows that 

r = E P /\E J /\(ix ix r), j,l = 1, ... ,s - m. 
J P 

A recursive application of this method leads to 

1'=0 if p<s-m 

or 

Particularizing the latter proposition for the cases 
y = ° and Y = d(liJ) we have, respectively: 

CorollaryA.4: IfrEA P(if ),p <s, and r /\ r = 0, for any 
AEif*, then r = 0. 

Corollary A.5: If rEA P( if), p < 2R = rank cu, and 
A /\ r = 0 for any AEd1(cu), then r = O. 

Finally, we are going to prove the main result of this 
appendix which is needed in the proof of Theorem 3.1. 

Proposition A.6: If dEA P(if), p<.2R, satisfies 
(i) VVEd(liJ), iva = 0, 
(ii)VX, YEif, ixw/\iya+iycu/\ixa=O, 

(A7) 
(A8) 

then, either p = 1, which implies a = 0, or p > 1, which im
plies that there exists a( I)EA P - 2( if), fulfilling (A 7) and (A8), 
such that 

VXEif, ixa = ixw/\a(l). 

Proof In accordance with Eq. (A2), we have that, given 
any AEd1(liJ), there exists VEif such that A = ivw. 

Condition (A6) and Corollary A.4 ensure that, given 
any two VI' V 2,Eif such that iv, cu = iv, cu = A; then 

iv,a = iv,a. (A9) 

Therefore, there is no ambiguity in defining the map
ping: 

4>: d 1(cu) --.A P-I(if), 

A -- 4> (A ) = iva, 
(A 10) 

V being any vector such thativw = A. Then, taking X = Yin 
Eq. (A8), we obtain 

VXEif, ixw/\ixa = 0, 

which, due to Eq. (A2), is equivalent to 

A /\ 4> (A ) = 0, VAEd l(liJ). 
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This implies that either (i) 4> (A) = Oifp = I or (ii) there exists 
a(!)EA P - 2( if), such that 

4> (A ) = A /\ a(!) if p > 1. 

Recalling now (A 10), we see that this is equivalent to either (i) 
a = 0, if p = 1, or (ii) there exists a(l)EA P - 2( if) such that 

ixa = ixw /\a(l), VXEif if p> 1. (All) 

To complete the proof, we must still check whether a(l) ful
fills conditions (A 7) and (A8). 

By inner product of both sides ofEq. (All) with any 
VEIf, and, since ix and tv anticommute, we obtain that 

ivw /\ixa{l) + ixw /\iva(l) = 0, VV,XEif. 

That is, condition (A8) holds good for a(1) also. 
Taking VEd(cu) in Eq. (Al2), it yields 

ixcu /\ iva(l) = 0, VXEIf, VVEd(cu), 

which, by virtue of Eq. (A2), is equivalent to 

A /\iva(!) = 0, VAEd1(w), VVEd(w); 

applying corollary A.S, it implies that 

iva(l) = 0, VVEd(liJ), 

and the proof is completed. 
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We study the transition from molecular dynamics to hydrodynamics. Convergence of 
subsequences and absolute continuity of the limit are proven for the local distributions of mass 
and momentum. The corresponding limit dynamics is discussed with regard to the foundations of 
hydrodynamics. A Chapman-Enskog-like procedure leads formally to local equilibrium with the 
parameter functions obeying the system of the Euler equations. 

PACS numbers: 03.40.Gc, 05.20.Dd 

INTRODUCTION 

The rigorous derivation of the foundations of hydro
dynamics from molecular dynamics is the most challenging, 
but also most difficult problem in nonequiIibrium statistical 
mechanics. In fact, there is general agreement that at present 
there is no hope for the solution of this problem. In order to 
get a deeper insight into the underlying dynamical structures 
and to develop methods for a solution, one can proceed in 
two different ways. One can study simplified models, which 
are exactly solvable, but in spite of their idealized character 
show the desired physical features. A typical example is the 
one-dimensional systems of hard rods I (for further examples 
see, e.g., Refs. 2-5). An alternative possibility, which we 
shall stress, is the study of the original model as to partial 
rigorous results and formal expansions which explain the 
transition to hydrodynamics and might be made rigorous 
one day. 

We premise a section on the general form of the approx
imation of molecular dynamics by continuum dynamics in 
order to fit our procedure into the general frame. Our ap
proach follows Lanford's work on the Boltzmann equation. 6 

According to the respective situation we shall distinguish 
three degrees of approximation. 

In the second section we prove the convergence of sub
sequences and the absolute continuity ofthe limit of the local 
distributions of mass and momentum for quite general deter
ministic initial configurations. We discuss the correspond
ing limit dynamics in the third section and illustrate in parti
cular how the hydrodynamical pressure arises. Finally we 
treat the case of random initial configurations. We formulate 
the evolution equations of the correlation functions as a sin
gular perturbation problem. A formal approximation, 
whose derivation is reminiscent of the Chapman-Enskog 
method, leads to the correlation functions of local equilibri
um. Their parameters, inserted into the conservation equa
tions, satisfy the system of the Euler equations. 

The present work originated in the further development 
of the preliminary results of Ref. 7. Our procedure is roughly 
comparable to an old paper of Morrey,8 as we realized dur
ing its accomplishment. He treats for the most part the ran
dom case. Though his paper is technically too involved and 
there are some gaps in it, it is a remarkable paper for that 
time and already indicates the way one should attack the 
problem. 

1. APPROXIMATION OF MOLECULAR DYNAMICS BY 
HYDRODYNAMICS 

A hydrodynamical behavior of molecular systems is ex-. 
pected to hold approximately if the microscopic quantities 
are small compared to their corresponding macroscopic 
ones. We choose as the basic parameter to express their rela
tion the value 

microscopic unit length 
a= 

macroscopic unit length ' 

and formulate such an approximation mathematically by an 
idealized limit theorem with a---+D or by an expansion in a. 
According to the actual physical situation, further quantities 
like time, mass, etc., have to be suitably scaled in dependence 
ona. 

In this section we shall demonstrate by means of typical 
examples in what sense these approximations hold. First we 
have to make precise how microscopic states are approxi
mated by macroscopic ones, before we treat the approxima
tion of the dynamics. In this paper we are dealing with classi
cal systems in the d-dimensional Euclidean space Rd(d> 1). A 
microscopic state is given by an element 

XN = (Xl,· .. ,XN)ER2Nd 

with 

where N is the number of particles (molecules) and qi' resp., 
Vi denotes the position, respectively, velocity of the ith parti
cle. 

We describe a macroscopic state by a density f, defined 
on R2d

, with the meaning 

1 f!(q,V)dq dv = mass of fluid elements located in 

A with velocities in B. 

In order to approximate microscopic states by macroscopic 
ones we conceive both as measures. We replace XN by ~i OX;' 
This neglects the order of the indices and thus refers to indis
tinguishable particles. It has the further advantage of treat
ing systems with variable particle numbers N as objects in 
one space. The density fwill be identified with the measure 
having this density with respect to the Lebesgue measure. 
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The approximation of microscopic states by macro
scopic ones is realized with respect to the weak topology of 
measures. For this purpose the microscopic state}:';8 Xi has to 
be properly normalized to m(a)}:';8Xi ' where m(a) can be in
terpreted as the mass of a single particle in a macroscopic 
scale. 

Thus, roughly speaking, a state m(a)}:';8x , is approxi-
mated by J, if for microscopically large, but macroscopically 
small setsA,BCRd

, 

m(a)l! i:q;EA, v;ElJ J I;:::; i I!(q,V)dq dv. 

Rigorous results involve the limit a-o and the dependence 
of the X; on a. We suppress the quotation of a to make the 
formulas more lucid, whereas the normalization m(a) will be 
explicitly specified. 

Now supposed that there is a microscopic time evolu
tion, which is given on the macroscopic scale by 

A macroscopic time evolution 

defined for a suitable class of smooth densities is an approxi
mation to the microscopic dynamics, if the following holds. 

If for each a > ° there is given an initial configuration 
xN(O) such that m(a)}:.i8X,{OI-fo weakly as a!O then for each 
(;.0, or at least in some interval [O,T], m(a)}:.i8x,(t I-I, weak
ly as a!O. 

Such a limiting behavior means a drastic reduction of 
the degrees offreedom, since the approximated density only 
depends on the occupation numbers of microscopically large 
sets. It can be interpreted as deterministic macroscopic be
havior of matter. 

There is one example where such a result is true, namely 
the Vlasov or weak-coupling limit. 9.10 In this limit m(a) = ad 
(dense gas) with the Newtonian dynamics with respect to a 
weak, long-range potential realized by the scaling 
¢a (q) = a

d¢ (q). 
The limit dynamics is given by the Vlasov equation. 

This form of a purely deterministic behavior is an exception. 
In most cases, where a limit dynamics exists, there are initial 
configurations, which are not approximated by it. But they 
are in a minority. The overwhelming majority behaves as in 
the deterministic case. At this stage probabilities have to be 
introduced to attach small weight to the exceptional configu
rations. From a probabilistic point of view the correspond
ing limit theorems are weak laws oflarge numbers. Remark 
that the notion of probability has a different meaning than in 
the ensemble conception. For a detailed discussion see Refs. 
6 and 11. 

The most important example is the Boltzmann-Grad 
limit6 with m(a) = ad- 1 (rarefied gas) and elastic collisions 
of hard spheres of radius a. This limit dynamics is governed 
by the Boltzmann equation. In the model, which we shall 
treat iIi this paper, a further reduction of the kind of approxi
mation is necessary. We briefly introduce the model in order 
to formulate this type of behavior. 
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We deal with the case of dense gases: m(a) = ad, with 
the dynamics given by a smooth, even potential ¢, which we 
rescale to ¢ Jq) = ¢ (q/ a). This keeps the total cross section 
fixed. The corresponding force is 

Fa/q) = - V¢Jq) = a-1F(q/a) withF= - V¢. 

The equations of motion are 

qi = Vi Vi = IFJqi - qj). (1.1) 
j#i 

Since the approximation of states is realized with re
spect to the weak topology, we express the time evolution of 
ad}:.i8X,H I by its application to smooth test functions rp 

(1.2) 

The last term behaves singularly as a!O because of the factor 
a-I, since }:.Ui F((qi(t) - qj(t))/ a) is of order 1. This is the 
crucial difference to the Vlasov and Boltzmann-Grad limit, 
where the coresponding term is of finite order. 12 No limit 
theorems of the former kinds can be expected to hold. But 
realize that the singularity cancels for certain functions rp, 
e.g., those which do not depend on the velocity. This corre
sponds to the application of the reduced measure a d }:'8q,{tl' 

More generally, we shall see in the next section, that the 
singularity, at least formally, cancels for the local distribu
tions of the conserved quantities, i.e., for the partly signed 
and vector-valued measures 

v; = adIvi(t )8q,{t)J (l.3b) 

e; = adI {1.Vi (f )2 + 1. I¢ (qi(t) - qj(f ))}8q'{t l ' (l.3c) 
i 2 2Ui a 

Thus the third kind of approximation only concerns the lo
cal distributions of the conserved quantities. 

Rigorously we prove under suitable, quite general con
ditions on the potential and the initial configurations the 
following results. 

(1) For each sequence an!O there exist a subsequence 
an1kl!O such that p;nlk I and v;nlkl converge uniformly on each 
compact time interval. 

(2) Each limit of p; and V; as a!O has a density with 
respect to the Lebesgue measure. 

As we shall explain at the end of the next section, we 
conjecture that under the mentioned general conditions, 
only these results are possible. Stronger results require spe
cial initial configurations, e.g., local equilibrium. (See Sec. 4). 

The three different kinds of results are presumably re
lated to the behavior of a test particle. In the purely deter
ministic case its dynamics can be approximated by a deter-
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ministic one.9
•
10 In the stochastic case, its time evolution 

converges to a nonlinear Markov process. 13 The behavior of 
the whole system can be conceived in both cases as resulting 
from the composition of all particles by some law of large 
numbers, in the first case a deterministic one. Finally, in our 
model the singularity of the motion of the single particles 
makes a similar convergence result rather unlikely. A limit 
behavior can only be expected to hold for special collective 
quantities, which locally vary slowly, namely the conserved 
quantities. 

2. DETERMINISTIC CONFIGURATIONS: RIGOROUS 
RESULTS 

2.1. General results 

We now set up the model in detail. Let 

cP:Rd-+Ru{ + 00 J 

be a two-body potential, which is 

(i) real valued and C I on Rd \ {O J, 
(ii) even, cP (q) = cP ( - q), 
(iii) superstable. 

We use the definition of superstability in the following 
form l4

: 

Let Rd be decomposed into cubes: Rd = u Wk with 
kEZd 

W, d = {q = (qt, ... ,qd):kl<4<kl + 1, 1 <.l<d l· 
Ik •...• k ) 

Then there exists A > 0, B>O such that for ql, ... ,qNERd, 
N>2: 

I cP(qj -qj» I [A N(qN,Wd -BN(qN,Wd] 
l<i<j<.N kEZd 

with qN = (ql,. .. ,qN)' N(qN'C) = I (i:qiEC J I for 
CCRd. (2.1) 

Concerning the initial configurations we make the following 
assumptions. For each a> 0 there is a configuration xlv (a) 

= xlv In) (0) such that the following expressions are uniformly 
bounded in a > O. As before we omit the superscript a. 

(total mass) 

(total energy) 

(spread) 

In the following these general conditions are always assumed 
without further mention. The time evolution is given by 
(1.1), resp. (1.2). The following boundedness properties are 
easy consequences of the general assumptions. 

Lemma 2.1: (i) The potential energy and the kinetic en-

ad ~ fV j (t)2 

are separately bounded, uniformly in a > 0, t>O. 
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(ii) For each T> 0 there exists D (T) > 0 such that 
ad l:j qj(t )2<D (T) for a > 0, O<t< T. 

Proof (i) By the conservation of total mass and energy 
their bounds are preserved in time. Since vi(t )2>0, the asser
tion concerning the potential energy is clear. For the kinetic 
energy we use the stability of the potential (replace A by its 
lower bound 0 in the superstability estimate) 

~ad I vi(t )2<E - ~ad I' cP (qi(t) - qj(t I) 
2 i 2 jJ a 

<E +Bad II<E +BM. 

(ii) This follows from the estimate 

ad ~ Iqi(t) -qj(0112 = <flL Vi (s)ds I 2 

<ad ~t f Vj(S)2 ds 

and part (i). 

Now denote,u;: = ad I {jX"t)· 

i 

Proposition 2.2: For each T> 0 the set 
{,u~:a > 0, O<t<T J is tight. 

Proof For a > 0, O<t< T there follows from Lemma 2.1 

flxI2d,u;(x) = ad~(lqj(tW + Ivj(tW)<C(T) 

for some constant C (T) > O. Hence 

,u;({x:lxl>R Jl<C(T)/R 2 

which implies the result. 
From this proposition we can conclude the following: 

Let {t l,t2, ... J be a dense subset of Rd. Then for each sequence 

an J.O there exists a subsequence an (k )J.O such that ,u~;(k I con
verges weakly as k-+ 00 for each tj • 

This property is not very helpful. To get interesting re
sults we need convergence for each t>O. This needs suitable 
estimates of the differences,u; - ,u;, which are generally not 
valid for the reasons mentioned in the last section. We can 
get sufficient estimates, however, for the local distributions 
of certain conserved quantities. 

2.2. Convergence 

If we apply the time derivatives (1.2) to the local distri
butions (1.3) of the conserved quantities, we get 

df d - rp (q)d p;(q) = -d ad L rp (qi(t)) 
dt t j 

= ad LV rp (qj(t ))vi(t), (2.2a) 
i 

df d - rp (q)dv;(q) = -d ad L rp (qj(t ))Vj(t) 
dt t i 

= ad L (Vrp (qi(t ))Vi(t ))Vi(t) 
i 
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XF(q;(t):qj(t)) 

= ad L(V tp (q;(t ))V;{t ))V;(t) 
; 

1 d ~' tp (q;(t)) - tp (qj(t )) 
+-a ~ 

2;J a 

In the last transformation we use the symmetry of ¢. The 
singular term now remains bounded as a W, ifF decays suffi
ciently strongly at infinity. Rigorous estimates will follow 
below. 

We omit the derivative of the energy distribution (1.3c), 
since we shall not need it. One can similarly verify that the 
singularity a -I cancels at least formally in the same way. 

For the mass and momentum distributions we also have 
tightness. 

Proposition 2.3: For each T> ° the sets 
{p;:a>O, O..;r..;Tj and {v,:a>O, O..;t..;Tj are tight. 

Proof: The tightness of the mass distribution is a direct 
consequence of the proof of Proposition 2.2. 

The tightness of the momentum distribution follows 
from the estimate 

(We denote the indicator function ofa set Cby Ie.) 
Now we fix a denumerable dense subset! t l ,t2 , ••• } oflR+. 

For each sequence an W there exists a subsequence anlk I W 
such thatp;n1k l and v;nlkl converge weakly as k-oo for each 

J J 

tj • We want to show that under suitable assumptions on ¢ the 
convergence holds for each t~O. This is true, iff or each T> ° 
and each continuously differentiable bounded tp with bound
ed derivatives 

!!.. J tp (q)d p;(q)and!!.. J tp (q)d V,(q) 
dt dt 

is uniformly bounded in a> ° and O..;t..; T. 

From (2.2b) it is easily seen, that this holds under the condi
tion 

adf;'lq;(t):q}(t)IIF(q;(t):qj(t))1 is uniformly 

bounded in a > 0, O..;t..;T for each T> 0. (2.3) 

[For (2.2a) it holds without further assumptions.] In the dual 
of the bounded Lipschitz norm, which generates the weak 
topology, 15 

IIJlII:L = sup{ If tp dJl/ :lItp I/BL ..; II 
with 
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[[tpIlBL = sup! [tp(q)[: qElRd I 
+ sup( [tp(qd - tp (q2)/[ql - q2[:ql,q2ElRd, ql #q21, 

the convergence of p;nlk I and v;nlk I is then even stronger, 
namely, uniform on O..;t<T for each T> 0, and the limit 
distributions are weakly continuous in t. So we have to show 
the validity of (2.3) under suitable assumptions. We shall 
prove it for two different cases. Both reduce the boundedness 
condition (2.3) to that of the potential energy and require the 
common assumption: 
there exists a > 0, 8 > ° such that 

[q[[V¢(q)[<a¢(q) forO<[q[<8. (2.4) 

This condition is not too restrictive. It prevents a singularity 
of infinite order at ° and is fulfilled, if ¢ (q) behaves like [q[-" 
near 0. 16 Furthermore we either assume that ¢ has a finite 
range or is of the following type which was studied by Do
brushin, Fisher, and Ruelle: 

there exists ° < 8\ < 82 and monotone decreasing functions 

tpl:(0,8t1-+lR+, 

tp2:[82 , 00 )-+lR + 

such that (nonintegrable singularity at 0) 

¢(q)~tpl([q[) for O</q[..;8u 

f"tp(t)t d
-

1 dt = + 00, 

(integrable decay of the negative part at 00) 

¢(q)~ -tp2([q[) [q[~82' 

(2.5) 

(2.Sa) 

(2.Sb) 

These potentials are superstable. We shall call them DFR 
potentials. In this case we have to assume additionally that 
- [q[[V¢ (q)[ satisfies condition (2.5b) also. 

We first treat the case of a finite range potential. The 
crucial step is the following lemma, which even holds under 
the general assumptions. 

, 
Lemma 2.4: adI 1"q,{II_qpll<al is uniformly bounded 

iJ 
in a>O, 1~0. 

Proof Let lRd = Uk Wk be the decomposition of lRd into 
cubes as it is given in the definition of superstability (2.1). Fix 
a> 0, 1~0 and let k,k 'E'I/ be such that there exists i #j with 
[q;(t) - qj(t )[<a; q;(t)/a EWk; qj(t)/a EWk .. Then 
/ k I - k '1/ < 1 holds for the coordinates of k, k ' (1..;I";d). For 
each k there are 3d different k ' with this condition. For these 
k, k', the number of pairs (i,JJ withq;(t )laEWk;qj(t )/aEWk. 
can be estimated by 

N(qN(t )/a,Wd N(qN(t )Ia, W k) 

{
HN(qN(t)/a,Wkf + N(QN(l)laWk.)2) for k #k' 

..; N(QN(t)la,Wd for k = k'. 

There follows from superstability (2.1) 

d~'l 3d d~ N(qN(t ))2 
a ~ IIq,{II-qpll<al"; a ~ --

;J k a,Wk 
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<3dadA -l{+ ?;' ¢ (qj(t): qj(t )) + BN( qN:t) ,Rd)}, 

which is uniformly bounded in t> 0, a >0 by Lemma 2.1. 
Now let ¢ be a potential of finite range. Without restriction 
we assume 

¢(q) =0 for Iql>l. 

Condition (2.4) and the finite range property imply that there 
exists (J> 0 such that 

IqIIF(q)l<a¢(q) +(Jlllql<lJ forqERd, 

and (2.3) follows from Lemmas 2.1 and 2.4. 
The treatment of a DFR potential (2.5) is based on an 

ideal of Morrey,8 which he used in his proof of Theorem 5.1. 
We formulate a more general statement in a separate lemma, 
which we shall need later on again. 

Lemma 2.5: Let ¢ satisfy (2.5), and let ¢I be a two-body 
potential with the properties 

(1) there exists a, 0> 0 such that 

¢M)<a¢ (q) for Iql <0, 

(2) - ¢I satisifes (2.5b). 
Then the potential 1/1 (q): = ¢ (q) + (a¢ (q) - ¢M)) is super
stable and ad~j.j4>, ' ([ qj(t) - qj(t)] I a) is uniformly bounded 
in a >0, t>O. 

Proof One easily verifies that 1/1 is a DFR potential and 
hence superstable. The stability estimate of 1/1 implies the 
second assertion. 

We apply this Lemma under the mentioned assump
tions to¢I(q) = Iql IV¢ (q)1 and get (2.3). So we finally proved 
the following theorem. 

Theorem 2.6: Assume that ¢ satisfies (2.4) and either has 
a finite range or is a DFR potential with the additional prop
erty that - IqIIV¢ (q)1 satisfies (2.5b). Then for each se
quence an!O there exists a subsequence an(k) to such that 
p;n(k) and v;n(k) converge uniformly on each compact time 
interval with respect to the weak topology, and the limit 
distributions are weakly continuous in t. 

2.3. Absolute continuity 

The proof of the absolute continuity of the accumula
tion points of p;' and V;' as a to holds even for limits at fixed 
time and needs weaker conditions than the convergence of 
subsequences. 

Theorem 2.7: Let ¢ satisfy at least one of the following 
conditions: 

(1)¢>0, 
(2) ¢ has finite range, 
(3) ¢ is a DFR potential, 

and let t>O and an !O be such thatp;n--..p , and v;n--..v, weak
ly. Thenp, is absolutely continuous with respect to the 
Lebesgue measure, and v, is absolutely continuous with re
spect top,. 

Proof The first part of the proof only needs the super
stability and coincides for the different cases. 

We again use the decomposition of Rd into the cubes 
Wk , kEZd. Let CCRd be a bounded set, and denote by K (a) 
the number of cubes Wk with (a-1C)nWk #0. Then the su
perstability (2.1) implies 

1360 J. Math. Phys., Vol. 25, No.5, May 1984 

+ad?;' Idqj(t ))ldqj(t)) ¢ (qj(t) : qj(t )) 

>ad[A~N(qN:t) ,(a-IC)nwkr -BN(qN(t),C)] 

>A ([ ad~N( qN:
t

) ,(a-IC)nwk ) ]/adK(a))) 

-BM= A( [adN(qN(t),C)]2/adK(a)) -BM. 

Now assume that the potential energy is bounded sub
sets CC Rd, i.e., the first expression of the above estimates, is 
uniformly bounded in a > 0 and C. The proof of this fact is 
different for the different assumptions and will be given be
low. 

Then by the above estimate there exists a constant L > 0 
such that 

adN(qN(t ),C)<L (adK(a))I/2 for each a > O. 

If C is a finite union of bounded rectangles, then 
adK (a)--"IC I, the Lebesgue measure ofC, as atO, and hence 

lim sup ad N (qN(t ),C )<L I C 1112. 
,,10 

The absolute continuity of p, then follows from the following 
Lemma: 

Lemma 2.8: Let (fl,..of) be a measurable space, and let 
CG be a ring which generates ..of. Let /1, v be O'-finite measures 
on ..of with the property 

for each E> 0 there exists 0 > 0 such that /1 (A ) < E 
for every AECG with vIA ) <0. 

Then /1 is absolutely continuous with respect to v. 
The easy proof of the Lemma uses outer measures to 

carryover the assumed property to sets A in ..of with " < E" 

replaced by "<E." 
It remains to show the uniform boundedness of the po

tential energy in bounded subsets. It is trivial for the nonneg
ative case (1). 

Let ¢ have a finite range. We again assume without 
restriction ¢ (q) = 0 for Iql> 1. Then 

Since ¢ is bounded below by superstability, the second term 
is bounded above by Lemma 2.4. 

In the case of a DFR potential the stronger results holds 
that ad~;.j I¢ ((qj(t) - qj(t))1 a)1 is uniformly bounded in 
a > O. The proof uses the same idea as the proof of Lemma 
2.5, though it directly does not apply. The potential 
I/I(q) = ¢ (q) + (¢ (q) - I¢ (q)llisaDFRpotential.Theproper
ty (2.5a) directly carries over from ¢ to 1/1, and property (2.5b) 
holds with qJ2 replaced by 3qJ2' From this the uniform boun
dedness of ad~;'j I¢ ([ qj(t l - qj(t )]1 all follows as in 
Lemma 2.5. 
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Finally, the absolute continuity of V t with respect to Pt 
follows from the estimate 

2.4. Remarks 

We conjecture that under the general assumptions con
cerning the initial configurations, the form of the results can
not be improved for the following reasons. 

There is great evidence-see the intuitive, though not 
rigorous example in Ref. 16-that a small number of parti
cles may collect a non vanishing part of the energy in finite 
time and transport it to infinity or concentrate it in a small 
region. So neither tightness nor absolute continuity can be 
expected to hold for the energy distribution. 

Furthermore, since the time evolution ofpt and Vt is not 
closed and hence presumably not unique, P; and V; may be 
near different limit evolutions for different small a. Then no 
convergence for a W can hold, but only convergence of sub
sequences. 

3. ON THE LIMIT DYNAMICS 

In the last chapter we proved a convergence and a regu
larity theorem for the local distributions of the mass and 
momentum. Now we study the time evolution of these limit 
distributions with regard to conclusions for the limit dynam
ics. 

So let an !O such that p;n and v;n converge weakly on 
some time interval O<t<T. We denote the density oflimn~oo 

p;n with respect to the Lebesgue measure by Pt and the den

sity oflimn~oo v;n with respect tOPt by U t (O<t<T). 
It is easy to derive the continuity equation in a weak 

form. We integrate Eq. (2.2a) with respect to time, take the 
limit an!O and differentiate. Then there follows 

:t J q:; (q)Pt(q)dq = J Vq:; (q) ut(q)pt(q)dq 

for continously differentiable, bounded functions q:; with 
bounded derivatives. One cannot proceed in the same way 
with Eq. (2.2b) since the derivative consists of terms whose 
convergence may not hold for similar reasons as mentioned 
in Sec. 2.4. But we can study this equation in the integrated 
version and examine in particular the behavior of the force 
term in order to explain how the hydrodynamical pressure 
arises in the limit. We first prove a convergence theorem for 
this term and then discuss its limit behavior in a formal way. 

We represent the force as a vector-valued measure. So 
denote the force at time t exerted on particles in a Borel set 
AClRdby 

F;(A) = ad-1i=' lA(qi(t))F(qi(t) ~ qj(t)) 

= ad - 12;IA (qi(t ))lcA (qj(t ))F(qi(t) - qj(t )). 
',J a 

This equality holds, since F is odd, and is analogous to the 
transformation of (2.2b). 

1361 J. Math. Phys .. Vol. 25. No.5, May 1984 

Thus F; is the vector-valued measure 

F; = ad- 1 ~(~r(qi(t): qj(t))}5q,jt l ' 

Ifwe integrate a test function q:; with respect to F;, then we 
just get the force term of (2.2b). Integration with respect to 
time yields 

L (J q:; (q) dF;(q))dS 

= r(~adL,q:; (qi(S)) - q:; (qj(s)) F( qi(S) - qj(S))) ds. 
Jo 2 iJ a a 

This can be approximated for small a and smooth q:; by 

L (~ ad

t
'( Vq:; (qi(S)) qi(S): qj(S)) F( qi(S): qj(S))) ds. 

(3.1) 

The difference of both expressions tends to ° as a W if 

adt'lqi(t):qj(t) 1
2

IF (qi(t):qj(t))1 

is uniformly bounded in a > 0, O.;;;r< T. (3.2) 

Conditions, under which (3.2) holds, are derived in the 
same way as for (2.3). In the finite range case (2.3) implies 
(3.2), and in the case of a DFR potential, the decay of IF (q) I at 
infinity has to be one power stronger. 

Expression (3.1) can be represented as 

J V q:; (q) dn ;(q) 

with the tensor valued measure n; given by 

(l<k.l<d). 

We want to derive for n; a convergence theorem similar to 
Theorem 2.6. But again for reasons as mentioned in Sec. 2.4 
there is no tightness. We can avoid this difficulty by replac
ing the weak topology by the vague one. The set 
! n ;:a > 0, O<t< T J is relatively compact with respect to 
the vague topology, if 

is uniformly bounded in a >0, O>t>T (compare 2.3). 

The same condition is needed to estimate the differences 
n; - n;. Then we can proceed as in Sec. 2.2 and prove a 
convergence theorem for n;. Ifwe combine this with the 
approximation of S~ F; ds by - V n; in the sense of distri
butions we get the following. 

Theorem 3.1: Assume that ¢ satisfies (2.4) and either has 
a finite range or is a DFR potential with the additional prop
ertythat - IqI2IF(q)1 satisfies (2.5b). Then for each sequence 

an W there exists a subsequence an(k I W such that n;nlk I con-
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verges vaguely to some Ilt and f~ 'F;nlk Ids converges to 
- V Ilt as distributions (0 ,,;r <; T). The dependence ofIl

t 
ont 

is vaguely continuous. 

Thus the limit behavior of the force leads us to the in
vestigation of Ilt • We do this in a formal way, i.e., we calcu
late as if Ilt had a sufficiently smooth density. Let Pt denote 
the density of (d /dt) Ilt with respect to the Lebesgue mea

sure. Then f q:; (q)d'F;nlk) (q) converges to 

f V q:; (q) Pt (q)dq = - f q:; (q)V P, (q)dq. 

We now may set q:; = I A for sets A C lRd with sufficiently 
smooth boundary and get 

'F;nlk)(A)-+ _ r V P,(q)dq = - r n(q)P, (q)dajq) 
JA JaA 

with the outer normal n and the surface measure a on aA. 
This is the usual hydrodynamical form of the force with 
pressure tensor P,. 

Obviously, the same reasoning that led to Theorem 3.1 
holds for the local distributions of the potential energy and 
the kinetic energy and for the,u;(a > 0, t>O), integrated with 
respect to time. We omit an explicit formulation of a corre
sponding theorem, since we shall draw no physical conclu
sions from it. 

4. RANDOM CONFIGURATIONS: A FORMAL 
EXPANSION 

As conjectured in Sec. 2.4 the kind of results of Sec. 2 
cannot be improved under the general assumptions concern
ing the initial configurations. On the other hand, they are 
obviously not satisfactory. For stronger results we shall need 
special initial configurations. 

In this section we shall approach this problem by treat
ing the case of random configurations. The evolution equa
tions for the correlation functions, the BBGKY equations, 
lead to a singular perturbation problem. Approximate outer 
solutions are the correlation functions of local equilibrium. 
So they are the natural candidates for special random initial 
configurations. Because of the great difficulties the proce
dure in this chapter is only formal. 

Let (p~" )n> I denote the sequence of correlation func
tions of random configurations, which evolve according to 
the dynamics (1.1). They satisfy the BBGKY equations (see, 
e.g., Ref. 6): 

ap~,,(Xn) 

at 

n 

- I Vi Vqip~,t(Xn) 
i= 1 

x V Vi p~ + l,,(Xn ,xn + ddxn + I (n> 1). (4.1) 

We introduce the local correlation functions by means 
of the following transformation of the space variables: 
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ql =q, 

q2 = q + aS2, 

The corresponding correlation functions describe the distri
bution of particles in a microscopic neighborhood of the 
macroscopic point q. The appropriate normalization is 

r~,t(q,vI,S2,V2'''' ,Sn,vn) 

: = adp~.,(q,vl,q + aS2'V2, ... ,q + aSn,vn). 

Equations (4.1) are transformed into equations of the form 

a~,t -I ----at -VIVq~,,=a [Ln~,,+Cn~+I,,) (n;;;.I). (4.2) 

The operators Ln and Cn do not depend on a and t and do not 
act on the macroscopic variable q. 

We write it shortly in the form 

(4.2') 

for the sequence of functions r ta = (r::" )n> I . This is a familar 
kind of singular perturbation problem. It is well known in 
physics from the Champman-Enskog solution of the Boltz
mann equation. 

The first-order outer problem is the equation Art = 0. 
In order to solve this equation we transform the BBGKY 
equations to a purely microscopic level by setting additional
ly 

q = qo + as with a fixed qo, 

7 = fa-I. 

The corresponding equations for the microscopic correla
tion functionsln,r(s,vl,S2,v2, ... ,Sn ,vn): = a - drn,ar 
(qo + as,V I,S2'''''vn) do not depend on a. They are 

aln,r 
--;;:;- VI Vt;ln,r =LJn,r + CJn+l,r (n;;;.I), 

with the same operators Ln and Cn as above. Remember 
that they do not act on the transformed variables. 

The equilibrium correlation functions in these varia
bles, 

In,eq(S,V I,S2' ... , vn;p,u,e) (n>I), 

are time-independent solutions. They are parameterized by 
the mean density p, velocity u, and energy e. Since they are 
translational-invariant, they do not depend on S and hence 
satisfy V t; In,eq = 0. There follows 

LJn,eq + CJn,eq = 0 (n;;;'l). 

Therefore the correlation functions oflocal equilibrium giv
en by 

rn,t(q,vI,S2' ... , Vn) 
= ad In,eq (S,V I,S2' ... ,Un; p(q,t ),U(q,t ),e(q,t j), (n> 1), 

with arbitrary functionsp(q,t), u(q,t), e(q,t), are solutions of 
the outer equation Ar, = O. 

If we insert these solutions into the conservation equa-
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tions (Z.Za) and (Z.Zb) completed by the conservation equa
tion for the energy, and modified for the random case by 
taking the expectation, we get the system of the Euler equa
tions 

a at P + Vq(pu) = 0, 

a at !pu) + Vq(pu U + p) = 0, 

a at !pe) + Vq {pu(e + p)j = 0. 

The pressure p can be explicitly represented as a function of 
p, u, e. 8 This equation of state is the same dependence as the 
one derived from the virial theorem, 17 which is not surpris
ing after our calculations in Sec. 3. 

The procedure that we carried out in this section is a 
modification of the Chapman-Enskog method. It seems to 
be extremely difficult to make it rigorous. An even more 
difficult problem would be to study the transition from more 
general initial configurations in an initial time layer of the 
order a to local equilibrium distributions. 
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A KdV soliton propagating with varying velocity 
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Physics Department, University of Hong Kong, Hong Kong 
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Using one solution to the KdV equation found previously by Au and Fung [Phys. Rev. B 25,6460 
(1982)] we apply the Backlund transformation again to obtain a new set of solutions which are 
divergent at certain points in the special case where the vacuum parameter is zero. While one set of 
solutions is static, the other set is an asymptotic one-soliton solution propagating with a varying 
velocity in a "transient" domain of space and time. To demonstrate the main features of our 
discovery, we have carried out a detailed numerical analysis of our analytical solutions. 

PACS numbers: 03.40.Kf 

I. INTRODUCTION 

Recently, I we have obtained analytical solutions to the 
KdV equation via a Backlund transformation2

•
3 using a dif

ferential geometrical approach. The appearance of a vacuum 
parameter b (which represents the disturbance at infinite dis
tance) in our solutions leads us to the result that a KdV 
soliton can propagate to both directions and that the ampli
tude width and velocity of the soliton are functions of this 
vacuum parameter b. Our result suggests that different vacu
um states have different effects on the observable physical 
state. 

In this paper, we follow up our previous work by obtain
ing another set of new analytical solutions to the KdV equa
tion using one solution obtained earlier via a repeated use of 
our Backlund transformation in the special case b = 0. Our 
new set of solutions are divergent at certain points, and the 
soliton propagates with varying velocity values as it propa
gates through a spatial region bounded by the stated singu
larities. As the propagation properties are rather complicat
ed, we carry out a numerical analysis of our analytical 
solutions, in order to demonstrate the main features of our 
new soliton. 

II. NEW ANALYTICAL SOLUTIONS TO THE KdV 
EQUATION (b = 0) 

Previously, we have obtained solutions to the KdV 
equation 

u, + Uxxx + 12uux = ° (1) 

via the Backlund transformation 

u* = b, (2) 

u* = u(x, t), (3) 

u* = - u(x, t) - y2 + A, (4) 

where y(x, t) must satisfy 

Yx = - 2u(x, t) - y2 +A, (5) 

y, = - 4[u(x, t) + A lyx + 2uxx - 4ux Y' (6) 

These solutions are 

u* = b, (7) 

u* = b - -------::
(x - 12bt - xo)2 ' 

A =2b, (8) 

(Ce,p.-=-Zhr _ e - ~~T:::2b':)2 

u* = A - b - (A - 2b) (9) 
(Ci). ~ 2br + e -,fJ. - 2br)2 ' 

where r = x - 4(b + A )t. Solution (9) has been analyzed. I In 
this paper we shall take our solution (8) under the simple 
situation b = ° (and Xo = 0), namely, 

(10) 

and attempt to obtain explicit expressions for the functiony. 
Obviously, since our "seed" in (10) is a divergent function at 
x = 0, our solutions to the KdV equation found later will 
also have divergent properties. Using this set of y solutions, 
we can obtain a new set of u* solutions by using again our 
Backlund transformation (4). In our procedure, we first 
write (6) in the following form, using (10): 

4(A - 1Ix2)yx + y, = - 4[3/X4 + (2/x 3)yl. (11) 

The characteristic equations related to the above first-order 
inhomogeneous linear partial differential equation are 

dx =dt= dy (12) 
4(A - 1Ix2) - 4[3/X4 + (2/xl)yl 

Note that for A> 0, A < 0, and A = 0, the solutions (5) 
and (12) belong to three different types, giving the following 
solutions after some elementary manipulation: 

1 x 2 

Y = - - + for A = 0. 
X ~X3 + 4t +D 

(14) 

( 15) 

Here D is a constant, and we are not considering the case of 
complexy in this paper; also, the time-dependent argument t 
is given by 

t=x+_1_ln{llXx- 1 11 -4At 
2Jr Jrx+ 1 

for A> 0 and 

t = x - (11k) arctan(kx) - 4At 

for A >0. 

( 16) 

( 17) 
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We would like to remark that superficially C can take 
on any value in (14); however, there are only two different 
classes of solution specified by C = ± 1, as mentioned in 
Ref. 1. 

Substituting relations (13)-(15) into (4), keeping in mind 
solution (10), we obtain 

u* - - A + --:-------,---(Ax2 + 1) _ U 3/2x } 
- (Ax2 - W (Ax2 - I)IAxl 

- 11 
for .,1,>0, 

(Ax2 + 1) _ U 3/2x 
u* = - A (AXl _ 1 )2 + (Ax 2 - W 

u* _ Ax2 + 1 { 1 
- x 2 - x 2(Ax2 _ 1)2 

U 3/2x (ce[Xs _ e-fJ:s) 
+ (Ax2 - 1)2 Ce[Xs + e-'P's 

A 3X 4 [Ce[Xs - e-[Xsp} 
+ (Ax2 _ qz [Ce[Xs + e _ [Xs p for .,1,#0 

(Loh has obtained this solution4 for A> 0), and 

(18) 

(19) 

X4 
for .,1,= O. 

Hx3 + 4t +D)2 

2x 
u*=-----

!X3 + 4t + D 
(20) 

These are our new divergent solutions to the KdV equation 
for A # o. It is not difficult to check by direct substitution 
that they satisfy the KdV equation. By inspection, we see 
that there is a static contribution to solution (19). The ampli
tude here is a function of distance. There is a term, namely, 

U 3/2 (Ce"A S _ e -;;. S) 
2 X c , 

(AX - 1) Ce,AS + e-\AS 

which is a function of time and distance. For small x, this 
term influences the propagation properties of u* around the 

region -,[T < x <,[T. At large x, this terms tends to zero, 
and the whole solution (19) then becomes 

u* = A sech2 ,[T(x - 4At) (21) 

for C = 1. We thus call solution (19) the asymptotic one
soliton KdV solution. 

III. ANALYSIS 

In order to demonstrate the interesting propagating 
properties of soliton (19), we shall compute u as a function of 
x as time evolves, taking C = 1.0 and A = 1.0 (we shall drop 
the superscript * in u* from now on, and consider only the 
situation A > 0). 

Note that 5 is the only quantity depending on time in 
solution (19). In order to study some basic dynamic charac
teristics of solution (19), we consider the variation of x with t 
according to (16) for constant 5. We choose 5 = 0 in particu
lar and show such an x-I plot in Fig. 1. 

As we follow the condition 5 = 0 when time evolves 
from - 00 to 00, we see that the x space is separated into 
three regions (see Fig. 1); 

(I) from x = - 00 to x = - 1/,[T; 

(II) from x = - 1/,[T tox = 1/,[T; 
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FIG. I. x vs t following t = 0 according 10 Eq. (16). 

(III) from x = 1/,[T to x = 00. 

At every instant, there are three values of x for which 
the condition 5 = 0 is satisfied. 

To show some basic specific propagation characteris
tics of the soliton, we plot in Fig. 2 the variation of the distur
bance u with x at various specified times according to Eq. 
(19). At t = - 2.0, Fig. 2(a) shows that a one-soliton appears 
on the left side. At t = 0 [Fig. 2(b)], the soliton has entered 
the middle branch II and we see that as if it has been cut off at 

x = - 1/,[T = - 1 and reappears at x = 1/,[T = 1. We 
shall study the interesting features of propagation through 
branch II shortly. In the meantime we show the soliton at 
t = 1.0 and t = 2.0 in Figs. 2(c) and 2(d). We observe in our 
analysis of other graphs that the amplitude of the soliton at 
large x is unity and remains the same most of the time [see 
the asymptotic one-soliton solution as represented by (20) for 
large x]. Close to branch II, however, the amplitude has val
ues different from A = 1. 

It is worth noting that previously the velocity of a KdV 
soliton is taken to keep a constant value of 4.,1,. Even with the 
inclusion of our vacuum parameter, the velocity remains 
constant as it propagates. The solution to our soliton found 
in this investigation, however, gives a varying velocity as the 
soliton propagates. The dependence of velocity on distance is 
indicated in Fig. 3. From this study, we observe another new 
feature of nonlinearity. We would point out that the KdV 
equation has a well-known one-soliton solution with uni
form velocity, and at the same time the equation also allows a 
one-soliton solution corresponding to propagation with 
varying velocity, as reported here. In linear physics, the 
change of velocity is caused by an external influence. Here in 
a nonlinear situation, the solution itself affects its own veloc
ity, like a dog bites its own tail. In our case, from Eq. (6), we 
see that the solution u(x, t) = - 1/x2 decides the velocity 
variation since 5 is deduced from (12). Based on Eq. (4), u(x, 
t) = - 1/x2 constitutes part ofthe new solution u*(x, t). It is 
exactly due to the singUlarity of u(x) at x = 0 that the veloc
ity tends to - 00 at x = O. In fact, such a nonlinear nature is 
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FIG. 2. A KdV soliton propagates to the right according to Eq. 119), taking C = 1.0 and A = 1.0. The u-x plot is calculated at (a) t = - 2.0, (b) t = 0.0, (e) 
t = 1.0, (d) I = 2.0. 

governed by the nonlinear term uU x in the KdV equation. 
Now we shall leave the asymptotic behavior and turn to 

study the transient behavior of the soliton as it propagates 
through branch II. As clearly seen in Eq. (19), the u solution 
is composed of a static part and a dynamic part. In Figs. 4(a)
(m) we show the u-x plot during different instants of time: 
- 0.25, - 0.20, - 0.15, - 0.10, - 0.05, 0, 0.05, 0.10, 

0.15,0.20,0.25,0.50, and 0.87. In each diagram, the dotted 
line indicates the static contribution and the dash-dot line 
indicates the dynamic contribution ofEq. (19). The solid line 
shows the overall u solution. During the transient period 
specified roughly in time scale by - 1.0 < t < 1.0, we do not 
observe the "normal" propagation of the soliton through 
branch II. In fact, the value of u vibrates up and down in all 
the three branches, I, II, and III, while propagating slowly to 
the right. We would note that there are two singular points 

specified by x = ± 1/.JT in Eq. (19). When the soliton pro
pagates, the dynamic contribution influences the static con
tribution, causing rather complicated behavior around 
branch II. The points x = ± 1/.JT mayor may not be sin
gular points at different times, depending on whether u ap-

proaches the vertical lines x = ± 1/.JT from the left or 
from the right. For example, in Fig. 4j, at t = 0.20, x = 1 is 
not a singular point. Across these two lines, there are discon
tinuities of the u solution during the transient domain. 
Slightly later than t = 0.87 in this case (e = 1.0, A = 1.0), 
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branch II joins branch III and the soliton propagates out in 
the manner indicated in Fig. 2. 

IV. CONCLUSIONS 

(1) In this investigation, we have used the divergent 
KdV solution u = - 1/x2 obtained earlier' and obtained a 
new set of solutions to the KdV equation via our Backlund 
transformation (4)-(6) again. This set of solutions for a non
zero value of the A parameter is given in (18)-( 19). The solu
tion given in (18) is static and more obvious. The dynamic 
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FIG. 3. Variation of the normalized soliton velocity v/(4A.) with position x. 
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FIGS. 4(iHm). (i) t = 0.15; U) t = 0.20; (k) t = 0.25; (1) t = 0.50; (m) t = 0.87. 

solution (19) is an asymptotic one-soliton solution. These so

lutions can be divergent at x = 0, ± 1I.jT. 
(2) Solution (19) has a transient domain in space and 

time. The existence of singular points at x = ± 1I.jT sepa
rates the space into three regions, I, II, and III. At time t = 0, 
no soliton satisfying the normal soliton definition appears 
[Fig. 2(b)]. As time evolves, disturbance u of each branch 
oscillates while propagating relatively slowly to the right. 
When branch II has joined up to branch III, the soliton ap
pears and transmits to the right. The soliton, however, does 
not travel with a constant velocity ( = 411. ) as assumed in the 
past. The variation of velocity with distance is shown in Fig. 
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3. In linear physics, we need an external force to change the 
velocity of an object. In the nonlinear regime, the value ofthe 
velocity can be "self-adjusted" to vary. 

(3) Since we have chosen a coordinate system such that 

the singularities - 115, 115 are symmetrical with re
spect to the origin, there appears to be an "absolute time" 
instant (t = 0) in our solution (19). The solution to u at 
t = - t1 say [see Fig. 4(a), t1 = 0.25] is identical to u at 
t = 0.25 if x is replaced by - x. This image property in time 
is very interesting and we believe that it is significant physi
cally. 

(4) If we have physical situations represented by the 
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KdV equation, the features of the propagating soliton (19) 
reported here could be detected. Further analysis needs to be 
carried out before we can understand fully the physical im
plications of a KdV soliton propagating with varying veloc
ity. In particular, we call for new experimental work like a 
transmission line system to study the transient behavior of a 
KdVsystem. 

(5) In our analysis reported in this paper, we have only 
treated the situation where the vacuum parameter b is zero, 
corresponding to u = 0 at x_ ex) • Our soliton studied here is 
unidirectional under this special situation. For nonzero b, 
we anticipate that the soliton can propagate to both direc
tions. Before we understand the b #0 case, we must study 
carefully the simpler case (b = 0), which has brought up a 
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new concept in the KdV soliton-a soliton can propagate 
with varying velocity. 
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A series of new analytical solutions to the nonlinear equation 
Yt + Yxxx - 6y2yx + 6AYx = 0.1 

P. c. W. Fung and C. Au 
Physics Department. University of Hong Kong. Hong Kong 

(Received 30 September 1983; accepted for publication 16 December 1983) 

Following the Backlund transformation and using the theorems proved by the same authors, 
previously we obtained sets of new solutions to the KdV equation and the nonlinear equation 
y, + yxxx - 6y2yx + Myx = 0 which transforms into the modified KdV equation when A = O. In 
this paper we present another new series of solutions to the above nonlinear equation. One of our 
analytical solutions under a certain special condition (vacuum parameter b = 0 and A = 0) is 
found to be identical to the one-soliton solution obtained via the inverse scattering method. 

PACS numbers: 03.40.Kf 

I. INTRODUCTION 

The same authors have employed the Backlund trans
formation 1>2 approach to study the mathematical and phys
ical properties of a number of nonlinear equations. Using our 
methodology, via Backlund transformation we put in a 
"seed" (a KdV solution) and obtained previously a set of 
solutions to the KdV equation. In particular, using u = b as 
our "seed," we have found2 certain new soliton solutions to 
the KdV equation 

u, + Uxxx + 12uux = 0, (1) 

and have discovered that the solutions contain the vacuum 
parameter b (in the KdV case, b is the asymptotic value of the 
solution as x-- ± 00) which has important physical signifi
cance; the soliton velocity, amplitude, and width are all func
tions of b. In the second paper of our series,3 we have used 
rather powerful theorems to relate the solutions of the KdV 
equation and nonlinear equation 

y, + Yxxx - 6y2yx + Myx = 0 (2) 

which transforms into the modified KdV equation if A = O. 
The Miura4 transformation is a special case of one of our 
theorems. One set of our solutions to Eq. (2) is a kink-anti-

kink solution,3 which tends to ± ~,1. - 2b as x-- ± 00, in
stead of simply b in the case ofKdV equation. It is interesting 
to note that the solutions so far found for the KdV equation 
are nontopological,3.5 while the solutions3 to Eq. (2) are to
pological. It would be meaningful to find out whether other 
solutions to (2) can be nontopological via our Backlund 
transformation; in this paper we shall provide an answer to 
this equation based on all the solutions obtained so far. 

In the third and fourth of our papers,5,6 using the KdV 
solution u = - l/x2 as the seed, we have derived other new 
solitons to both the KdV equation and Eq. (2) using our theo
rems3 which bridge these solutions. While these new soliton 
solutions to the KdV equation are close to the nature of the 
conventional one-soliton solutions (nontopological), the so
lutions to Eq. (2) are kink-antikink solutions (topological). 
We have discovered that the new soliton solutions to (1) andl 

(2) change their velocities, amplitudes, and widths as they 
travel from remote distances. Such properties lead us to dis
cover that soliton solutions can show "annihilation and cre
ation" phenomena as they propagate. 71t is worth noting that 
these two equations [( 1) and (2)] are classical wave equations. 

In this and the following papers, we shall use another 
seed, namely, 

[where r = x - 4(b + jl)! and C, jl are constants and b is the 
vacuum parameter 2] to find other new analytical solutions 
to the KdV equation (1) and Eq. (2). 

Since both the KdV and the modified KdV equations 
have been applied to many physical situations, new solutions 
to these equations are of both physical and mathematical 
significance. 

II. SEVERAL SETS OF NEW SOLUTIONS TO THE 
NONLINEAR EQUATIONYt + Yxxx - 6y2yx + 6A.yx = 0, 
USING BACKLUND TRANSFORMATION 

According to theorems stated in Ref. 3, if u is a solution 
to the KdV equation (1) and y satisfies 

Yx = A - 2u(x,t) - y2, (4) 

y, = - 4(,1. + ulYx + 2uxx - 4ux Y, 

theny is a solution to (2), and 

(5) 

u*==.tl. - u - y2 (6) 

is also a solution to (1). 
We have already obtained a one-soliton KdV solution 

(3) with nonzero vacuum parameter. Now we use this solu
tion (3) as our seed, we find that Eq. (5) can be expressed as 

y, + 4(,1, + b + Il' - L 2)yx 

= _ 4jl,2 + 16jl'L 2 _ 12L 4 + 8{j.t'L _ L 3)y, (7) 

where the real number 

L =..f?(C exp{u,1/2[x - 4(b + jl)!]} - exp{ - jl,1/2 [x - 4(b + jl)! ]}) 
- jl C exp{u,1/2[x - 4(b + jl)!]} + exp{ - jl,1/2 [x - 4(b + jl)!]} , 

(8) 

and 
jl' f-l - 2b. 
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The parameter fl' cannot be equal to zero, otherwise seed (3) will become u(x,t) = b, leading to solutions which have already 
been found. 2 

The characteristic equations of (7) are 

dt= dx dy (9) 
4(,1, + b + fl' - L 2) = - 4fl,2 + 16f-l'L 2 - 12L 4 + 8(p'L - L 3lY' 

We now solve Eqs. (9) and (4), and obtain the following real solutions: 

y= -L (forA'=fl'>O), (10) 

y= -L+ A' 1 (forA'=f-l'>O), (11) 
A' - L 2 L/(2(A' -L)) + (11(4,1, '\/2)) In(l~ +L I/I~ - L I) - 4A't +D 

y = (p' - L 2)/L (for A' = 0, fl' #0), (12) 
f-l' - L 2 1 

y= _L (forA'=O,f-l'>O), (13) 
L L 2 [1IL - (1/(201)) In(IL + 011/IL - 011)] - 4f-l't + D 

Y = L (L 2 - f-l') + ~(A ' - f-l') (for A' > 0 II' .....LO) (14) 
A'-L2 - A'-L 2 'r- -r- , 

L (L 2 - f-l') ~(A ' - f-l') Ce'" "
12

5 - e - A "
12

5 (f, A' 0 ' 0 d A ' # ') 
y= A'-L 2 + A'_L 2 Ce'""12s+ e- A '1/2s or > ,f-l> ,an f-l, (15) 

where 

5 = 1-(_1_ In I~ - L I + _I_In 101 + L I) - 4(,1, ' - f-l')t. 
2 ~ I~+LI 01 101-LI 

(16) 

We have substituted solutions (10) - (15) directly into Eq. (2) 
and found that Eq. (2) is satisfied. 

As a demonstration of the complexity of our new solu
tions corresponding to different parameters, we list the fol
lowing two forms of the rather simple sol ution ( 12) :for f-l' > 0, 

y= ±201/sinh{201[x-4(b +fl)t]} (forC= ± 1); 

(17) 

and for f-l' < 0, 

y = ± 2M /sin{2M[x - 4(b + f-l)t]} (for C = ± 1). 

(18) 

We would remark that solution (12) is derived under the 
condition A ' = A - 2b = O. If we set b = 0, automatically 
A = 0; then Eq. (2) becomes the modified KdV equation. In 
this case, for the sake of comparison, solution (18) takes the 
form 

y = ± 27J/sin(27Jx + 87JX3t), (19) 

where 7J==(1f-l'1)I/2. 

In this article, we have concentrated mainly on new 
solutions pertaining to the case where the parameter f-l' > O. 
The other new solutions corresponding to fl' < 0 will be pub
lished in the following article. 

III. DISCUSSIONS 

( 1) We believe that if a nonlinear equation can be taken 
to represent a physical situation, then its solutions represent 
certain physical phenomena. The new solutions reported 
here have definite physical significance. We call for further 
experimental investigations pertaining to the situations rep
resented by Eq. (1) and (2). Along the line of theoretical re-
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I 
search, it would be interesting to analyze various properties 
of our new solutions (10)-(15). We shall follow up this work 
and report the result in subsequent paper(s). 

(2) We would remark that they solutions (10)-(15) sa
tisfy Eq. (2), and the system (4) and (5). However, ify is given 
by (10) - (15) then - y also satisfies Eq. (2) (Ref. 6) but not 
Eq. (4) and (5). Moreover, as we have pointed out,6ify(x,t ) isa 
solution to (2), theny(x + 6At,t) is a solution to the modified 
KdV equation. Also, since (10)-(15) are solutions to the 
modified KdV equation if A = 0, we denote it as YA = o' Then 
Y;.' = 0 (x - 6At,t) evaluated at A. = 0 is a solution to Eq. (2). 
Based on such results, we can obtain rather wide types of 
solutions to Eq. (2). 

(3) The modified KdV solution (19) is identical to the 
one-soliton solution obtained using the inverse scattering 
method. 8

,9 It is easy to see the stated identity if one trans
forms Eq. (2) into their format. 

(4) At first inspection, one observes that solution (10) is a 
topological solution, while (16) is non topological. Solution 
(17), however, has a periodic boundary condition. 

'H. D. Walhquist and F. B. Estabrook, J. Math. Phys. 16, 1 (1975). 
2c. Au and P. C. W. Fung, Phys. Rev. B 25, 6460 (1982). 
3p. C. W. Fung and C. Au, Phys. Rev. B 26, 4035 (1982), 
4R. M. Miura, J. Math. Phys. 9,1902 (1968). 
5c. Au and P. C. W. Fung, "A KdV soliton propagating with varying 
velocity," J. Math. Phys. 25,1364 (1984). 

6p. C. W. Fung and C. Au, J. Phys. A 16,1611 (1983). 
7C. Au and P. C. W. Fung, "Annihilation and Creation of a KdV Soliton" 
(submitted to Phys. Rev., 1983). 

8M. Wadati, J.Phys. Soc. Jpn. 34, 1289 (1973). 
9In their work, they have expressed the modified KdV equation as 
y, + yxxx + 6y2yx = O. Their solution isy = ± 271 sech(8713t - 271x + 8). 

P. C. W. Fung and C. Au 1371 



                                                                                                                                    

Exact solution of some nonlinear evolution equations 
Yukiko Tagami 
Institute of Physics, University of Tsukuba, Ibaraki 305, Japan 

(Received 28 October 1983; accepted for publication 2 December 1983) 

A method is developed and subsequently used to study periodic solutions of (1) the one
dimensional time-dependent Ginzburg-Landau equation, (2) an analog of the sine-Gordon 
equation, and (3) a special system of nonlinear equations associated with a problem of interface. 
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1. INTRODUCTION 

Progress in recent years in the study of nonlinear evolu
tion equations has made significant contributions to our un
derstanding of many physical systems. In this paper we deve
lop a systematic method of solving typical one-dimensional 
nonlinear evolution equations of broad physical interest. 
Specifically, we investigate (1) the one-dimensional time-de
pendent Ginzburg-Landau (TDGL) equation, (2) a dissipa
tive analog ofthe sine-Gordon equation (SGE), and (3) one
dimensional case of a set of coupled nonlinear diffusion 
equations derived by Helfand and the author! (the HT sys
tem) for the analysis of interfacial properties in polymers. 
Our method is based on the use of a set (triad) of periodic as 
well as non periodic functions associated with the stationary 
solution of SGE. Extensive use of elliptic functions2

•
3 are 

made throughout the paper. 
Section 2 along with the Appendix establishes a solu

tion triad associated with the stationary solution ofSGE. 
Using the solution triad we then calculate solutions for the 
one-dimensional TDGL equation and an analog ofSGE in 
Secs. 3 and 4, respectively. Investigated in Sec. 5 is the one
dimensional HT system as a practical application of our so
lution triad. Recapitulation follows in Sec. 6. 

2. SOLUTION TRIAD OF THE SINE-GORDON SYSTEM 

In this paper we consider a class of one-dimensional 
nonlinear evolution equations that pertain to the multitudi
nous ramification of the following equation: 

a a2,p. 
-,p (y, t) = -2 - SIn,p, at ay (2.1) 

where,p (0";;,p";;1T12) refers to an angle, andy and t stand, 
respectively, for a spatial coordinate and time. Equation (2.1) 
is an analog of SGE, and will be discussed in more detail in 
Sec. 4. 

Let us point out here that the solution of the stationary 
equation (2.1), i.e., 

d
2 

0 • -1,0 0 -,p (Y)-SIn,/, = , 
dy2 

can be written in the form 

,p O( y) = 4 arctan( 1 - h)1I2 = 2 arccos(h ), 
l+h 

(2.2) 

(2.3) 

where h (I hi..;; 1) constitutes the following triad, which we 
shall hereafter refer to as the h-triad 

{

Sn(kY,1Ik), k> 1, 

h (y) = tanhy, (k = 1), 

k sn( y, k ), 1 > k > O. 

(2.4a) 

(2.4b) 

(2.4c) 

Here sn( y, k) is the Jacobian elliptic function with modulus 
k. In Eqs. (2.4a) and (2.4c) the argument y should read y* 
which has been shifted fromy ofEq. (2.2) by a quarter period, 
viz., 

y* = y + K (k ), k =f. 1. (2.5) 
The derivation of Eqs. (2.3) and (2.4a)-(2.4c) is found in the 
Appendix. Since the form (2.4b) may be regarded as the limit, 
when k goes to 1, of either of the form (2.4a) or form (2.4c), we 
shall refer to the former case as the one with k = 1 for conve
nience, although the modulus k there has become meaning
less. Setting the h-triad in the form of Eqs. (2.4a)-(2.4c) is 
tantamount to fixing the location of the kink at y = 0, being 
h (0) = 0, as well as the kink width which is determined by 
k = h '(0) (see Sec. 3). 

It will be worth noting that the h-triad (2.4a)-(2.4c), 
upon adjustment of the modulus k, constitutes the solution 
of the equation of motion of a pendulum: the cases (2.4a), 
(2.4c), and (2.4b) correspond, respectively, to the case when 
the pendulum is undergoing revolution, when it is undergo
ing oscillation, and when it slows down as it moves up to the 
upside-down position and stops there. The utility of thus
introduced h-triad will be demonstrated in the remaining 
sections. 

3. SOLUTION OF ONE-DIMENSIONAL TDGL EQUATION 

One-dimensional TDGL equation for the order param
eter in super conductivity4 may be written as 

~ u(x, t) = L {~ u(x, t) + g [u(x, t) - f, u(x, t )3] }, at Jx2 

(3.1) 

where L andg are constants, among whichg is usually taken 
to be large. Equation (3.1) is associated with the potential 
energy 

V [u(x)] = - ~ u2 + (1I4!)u4
, (3.2) 

and constitutes an analog of the A,p 4 equation. If we assume 
the traveling-wave solution for Eq. (3.1) 

u(x, t) = M(x - vt), (3.3) 

with v the velocity of the traveling wave, then M (x) satisfies 
the following equation: 

d
2

M +.!!....dM +g(I-l..M2)M=0, (3.4) 
dx2 Ldx 6 

the kink solution of which is known4 as 

(3.5) 

Proper sign is determined by a given boundary condition. 
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Suppose we seek the solution of Eq. (3.4) of the type of a 
slowly propagating wave. For this purpose we express the 
solution in the form of expansion in terms of a small param
eter vlL = E (E> 0) as 

M(X;E) = Mo(x) + EMJ(x) + cM2(x) + (3.6) 

and substitute M (X;E) into Eq. (3.4). 
The equation for Mo(x) is as follows: 

d2MO ( 1 M 2)M --+g 1-- 0 0=0. 
dX2 6 

(3.7) 

With the knowledge that Mo(x) assumes in a particular case 
the form (3.5), we easily construct the general solution ofEq. 
(3.7) in terms of the h-triad defined by Eqs. (2.4a)-(2.4c) 

Mo(x) = ± ~12/(1 + k 2)h (~ gl(1 + k 2)X). (3.8) 

Expression (3.5) is recovered from Eq. (3.8) by letting the 
modulus k approach I. Unlike the single-kink solution of the 
case k = 1, the case k > 1 and the case 1 > k> 0 give periodic 
solutions corresponding to an alternating kink-antikink 
structure. The equation satisfied by MJ(x) ofEq. (3.6) is the 
following: 

(3.9) 

In light ofMoofEq. (3.8), we see thatMJ(x) is a function ofh 2, 

with h = h (~ gl(1 + k 2) xl. Putting 

M\(x) = M\(h 2), (3.10) 

therefore and denoting dM\ld (h 2) by M;, we rewrite Eq. 
(3.9) as 

2h 2( I _ h 2)(k 2 _ h 2)M ;' 

+ [3h4-2(1 +k2)h2+k2]M; 

+ ((1 + k 2)/2 - 3h 2)M\ 

= +(3Ig)\/2[(1_h2)(k2_h2)]\/2. (3.11) 

The observation that this equation admits a hypergeometric 
function of h 2 as its stationary solution leads to the following 
solution: 

M\(x) = + _1_+,~(1_ h 2)(k 2 _ h 2) 
- ffg k k' 

X {[ k '2U - (1 + k 2)E (u) 

- k '2h 2( k 2 ~ h 2 - 1 ~: 2)}' (3.12) 

where u = F(sin-\(h Ik ),k) and E(u) = E(sin-\(h Ik), k) 
are the incomplete elliptic integrals of the first and the sec

ond kind, respectively, with modulus k. k' = J1=7(2 and 
h = h (y) with 

y=~gl(l +k 2)x. (3.13) 

Especially when k = 1, Eq. (3.12) reduces to 

M\(x) = + ~ tanh
2

( Jf x )( 2 + COSh2( Jf X)), 

(3.14) 
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while when h = k sn( y, k), 1 > k > 0, Eq. (3.12) becomes ex
plicitly 

M\(x) = + -1-~dnycny[ [k'2y - (1 + k2)E(y) 
- ffg kk' 

+ sny(dcy + k4 cdy)]2 - k '2(tn2 y - k 6 sd2 y)], 
(3.15) 

wheredny = dn(y, k ),cny = cn(y, k ),andsdy = sd(y, k) 
are the Jacobian elliptic functions. Calculation of the func
tions M 2(x), M 3(x), ... in Eq. (3.6) will similarly be facilitated 
by making use of the h-triad. 

Of the prominent features of the thus-obtained travel
ing-wave solution M(X;E) = Mo(x) + EM\(x) + ... let us 
look at the kink width Ll (k ), which is defined in the usual 
fashion 

Ll(k)=[/dM(X)/ ]-\, 
dx x~o 

(3.16) 

x = 0 being the location of the kink. Noting that dM\(x)ldx 
(at x = 0) vanishes, we obtain to 0 (E) 

Ll (k)lLl (1) = (1 + k 2)/2k, (3.17) 

withLl (1) = lIffg. That the ratio (3.17) increases from 1 ask 
deviates from 1 in either direction will imply that in the case 
of the TDGL equation the kink width tends to broaden once 
the periodicity sets in. 

4. SOLUTION OF SGE ANALOG 

Consider the following equation [see Eq. (2.1)]: 

a { a2 

} - u(x, t) = L -2 u(x, t) - g sin u , at ax (4.1) 

which is the counterpart of Eq. (3. I) in the sense that both 
equations are derived from the same equation except Eq. 
(4. I) is now associated with the potential energy 

V[u(x)] = I - cos u. (4.2) 

Equation (4.1) has been used in the investigations of Joseph
son current-voltage characteristics5 in a large junction limit, 
and of kink dynamics.6 As was the case with Eq. (3. I), we 
assume the solution of Eq. (4. I) to be of the type of a slowly 
propagating traveling wave expressible in the forms (3.3) and 
(3.6). 

Equation for Mo(x) is the following: 

d2MO . M 0 ---gsm 0= , 
dx2 

which is solved in light of Sec. 3 as 

Mo(x) = 4 arctan -=- , (
1 h)1!2 
I+h 

(4.3) 

(4.4) 

where h = h ([g x) stands for our h-triad of Eqs. (2.4a)
(2.4c). In the next step we write down the equation for 
M\(x) = M\(h 2): 

or 

d 2M dMo 
--2-

1 -gM\ cosMo = ---
dx dx' 

4h 2( I - h 2)(k 2 - h 2)M;' 

+2[3h 4 -2(I +k2)h2+k2]M; 

- (2h 2 - I)M\ = (2/[g)(k 2 _ h 2)1/2. 
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Since Eq. (4.6) again admits a hypergeometric function of h 2 

as its stationary solution, its solution derives straightfor
ward: 

M.(x) = _ 1 ~k2_h2{[k'2U-E(U) 
[gk 2k'2 

h ~]2 _ k'2h
2 

}. 
+ -V k 2 _h 2 k 2 _h 2 (4.7) 

where u and E (u) are given in Eq. (3.12) and h = h (y) with 

y = [gx. (4.8) 

Especially when k = 1, Eq. (4.7) becomes 

M.(x) = _1_ tanh2(vgx)cosh(vgx), (4.9) 
vg 

while when h = k sn( y, k) Eq. (4.7) becomes explicitly 

M.(x) = __ I_ cny ([k,2y _E(y) 
vgkk'2 

+ dn y tn y] 2 - k '2 tn2 y J. (4.10) 

Calculation of the functions M 2(x), M 3(x), ... will similarly be 
performed by taking advantage of the h-triad. 

As in Sec. 3, evaluation of the kink width Li (k) is in 
order. Since dM.ldx (at x = 0) vanishes, we obtain to 0 (E) 

Li (k)/Li (1) = 11k, (4.11) 

with Li (1) = l/2vg. The behavior of Li (k ) for the case of an 
SGE analog visualized in Eq. (4.11) is clearly distinguishable 
from the corresponding behavior for the TDGL equation 
described by Eq. (3.17). 

5. SOLUTION OF THE ONE-DIMENSIONAL HT SYSTEM 

As another example of the expedience of the h-triad, let 
us investigate the one-dimensional version of the system of 
nonlinear partial differential equations derived by Helfand 
and the author· which has proved to be a useful tool in the 
analysis of properties of interface between immiscible poly
mers. Since it is not the purpose of the present work to go 
into detail about the chemical aspects of the system, only a 
cursory description of the system is provided here. 

Consider a mixture of two mutually immiscible poly
mers A and B. By a polymer A (or B ) we imply a chain of Z 
(usually taken to be a large number) identical beads of A 
species (B species). We assume for simplicity that a bead of A 
species and that of B species are physically indistinguishable. 
Then the properties of A -B interface exhibited by the mix
ture is characterized by the densities P A ( y) and P B ( y) of bead 
A and bead B, respectively, at location y, defined by 

(5.1) 

PB(y) - i· --=PB(Y)= dtqB(y,l-t)qB(y,t), 
Po ° 

(5.2) 

where Po is the density of pure A (or B) bead evaluated at 
locations far away from where the mixing takes place. 
qA (y, t) and q B (y, t) are the solutions of the following sys-
tem: 
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(5.3) 

(5.4) 

Here X is a small number related to the strength of interac
tion between A andBbeads, andE(E> 0) is a small parameter 
indicative of the effect of finite compressibility. Unlike the 
case of the two equations of the preceding sections, 
t (0 < Zt <Z ) above does not stand for time but the location of 
a bead on a polymer chain expressed by the distance mea
sured along the chain. As the concept of "velocity" and thus 
the traveling-wave picture in such a 1 + I-dimensional coor
dinate system is meaningless, we shall attempt the usual lin
ear stability analysis, instead, to obtain the time dependent 
solutions ofEqs. (5.1)-(5.4) in the form oflinearperturbation 
near the corresponding stationary solutions. 

The symmetry with respect to A and B in Eqs. (5.3) and 
(5.4) allows the solutions to be written as 

with 

qA(y, t) = R (y, t)sin B(y, t), 

qB(y, t) = R (y, t)cos B(y, t), 

(5.5) 

(5.6) 

(5.7) 

B(y, t;E) = Bo(y, t) + EB.(y, t) + ~B2(Y' t) + .... (5.8) 

We easily obtain 

R o = 1. 

The equation for Bo( y, t) writes as 

/J" 1. (4/J) _ 1 aBo 
00 --sm 00 ---, 

4 XZ at 

(5.9) 

(5.10) 

where 19 ~ stands for aBoiay. Use of the result of Sec. 2 yields 
the stable solution of Eq. (5.10) as follows: 

Bo(y, t) = BoO(y) + oBo(y)exp( - At), (5.11) 

with 

BoO( y) = arctan (1 - h)l12 , 
l+h 

oBo( y) = Ch (y), 

A =k2XZ 

(C is a constant). 

(5.12a) 

(5.12b) 

(5.12c) 

The function R.( y, t) satisfies the following equation: 

(5.13) 

which is solved as 

R.(y) = i (h 2 - (2 + k 2)13). (5.14) 

The equation for B.(y, t) is as follows: 

2R ; 19 ~ + R.B f{ + 19;' - ~ R. sin(4Bo) - B. cos(4Bo) 

= _1_ (R. aBo + aB.), 
XZ at at 

(5.15) 

which is solved as 
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with 

(S.16) 

(J0(y)= - ~{(7k2_2)h 
1 32k 2 

-2 ~ [(2k 2-1)E(U)+k '2U]}, \j I-h 2 

(S.17a) 

<5(Jl(y) = - ~ k 2h{[E(U)+ ~(I-h2~k2-h2)r 

2 k
2 

2E I e(u)} +(1 +k )---u --2 og--. 
h 2 K e(o) 

(S.17b) 
I 

and that of bead B by 

,oB(y) =,oA( -y). (S.20) 

The implication of the results shown above will be evi
dent in the following sketch of the interface picture derived 
therefrom. The thickness of the interface, or the kink width, 
is obtained by replacement of M (x) by,oA (y) in Eq. (3.16). We 
obtain, for the unperturbed term in Eq. (S.19), 

.d (k)f.d (1) = 11k, (S.21) 

with.d (1) = 2. ThecoincidenceofEq. (S.21)withEq. (4.11)is 
predictable on account of the similarity between Eqs. (4.4) 
and (5.12a). Another quantity often used to characterize the 
strength of kink-anti kink interaction is the interface tension 
y, which is defined 1 as 

f
cYO 

= const -Yo dy[(l - h 2(y)) - (1 - h 2( - Yo))], (5.22) 

where Yo represents a quarter period of the h-triad (see Ap
pendix). (For the nonperiodic case k = 1 we takeyo to be 00.) 
Again using the unperturbed term in Eq. (5.19) we immedi
ately obtain 

r(k )fy(l) = E(k) - k 12K(k). (5.23) 

It is easily seen thatthefunctionE (k) - k 12K (k) varies con
tinuously from 1 to 0 as k decreases from 1 to O. For the case 
k> l,sinceE(k) - k 12K(k) = E(K)fK, withK = 11k, we see 
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Here K = K (k), E = E (k), and e (u) refer, respectively, to 
the complete elliptic integrals of the first and the second 
kind, and the Jacobian theta function, all with modulus k. 
U is that ofEq. (3.12). In Eqs. (S.16) and (S.I7b) A. and Care 
those ofEqs. (S.12c) and (S.12b). Especially when k = 1 (the 
case of single kink solution) Eqs. (S.17a) and (S.17b) reduce, 
respectively, to 

(Jl°(y;k = 1) = -l,h ~ = - f2 tanhy sechy, 
(S.ISa) 

C D81(y;k = 1) = - - h 10g(1 - h 2) 
16 

C = - tanhy log(coshy). 
S 

(S.ISb) 

Altogether the density profile function of bead A is given by 

that this function continuously increases from 1 as k in
creases from 1. 

In periodically or non periodically striated structures 
obtained upon the mixing of two mutually immiscible poly
mers, observations appear to point to the tendency that the 
thickness of the interface becomes broader and the interfa
cial tension smaller once the periodicity sets in. From this we 
infer that in such a system only the case 1 >k > 0, but not the 
case k> 1, is realized under usual experimental conditions. 
Stationary solutions of,o A (y) and,o B (y) for the case k = 1 
have been analyzed in Ref. 1, while periodic solutions for the 
HT system have not been presented elsewhere. 

6. RECAPITULATION 

A class of one-dimensional nonlinear evolution equa
tions that is known to have soliton solutions is investigated, 
and exact periodic solutions are presented explicitly for such 
equations of physical interest as (1) the one-dimensional 
TDGL equation, (2) an SGE analog, and (3) an HT system of 
equations for polymeric interfaces. Our method consists of 
introduction of the h-triad in the fashion described in the 
Appendix and identification of the known solutions of the 
type of hyperbolic tangent function with a member of the 
thus-introduced h-triad. The periodic solutions calculated in 
this paper will be of use in the analysis of many a periodic 
physical systems. 

Furthermore, in view ofthe two different types ofbeha
viors of the kink width calculated for (1) [viz., Eq. (3.17)] and 
for (2) as well as for (3) together [viz., Eqs. (4.11) and (5.21)], 
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and in conjunction with the remark made at the end of Sec. 5, 
we consider it to be often the case that in a physical system 
only the alternative of the case k;;d or the case l;;.k > 0, but 
not both, will become amenable to observation. This should 
correspond to the pendulum motion mentioned in Sec. 2 in 
which each of the three cases k > 1, k = 1, 1> k > 0 refers to 
a completely different physical picture from each other. 
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APPENDIX 

Equation (2.3) with the h-triad (2.4a)-(2.4c) is derived. 
Consider the equation 

d 2 

-2 ¢> D( y) - sin ¢> D = 0, (2.2) 
dy 

and assume its solution to be of the form suggested from the 
solitary wave solution of SGE7 

¢> D( y) = 4 arctanf( y), (A 1) 

withf( y) > O. Then the functionf( y) satisfies the following 
equation: 

(1 + Fv;,y - 2ff; - f(1 - F) = 0, (A2) 

where;;, = df /dy. It can be easily seen that the solutionf( y) 
of the following equation: 

f; =Af4 +BF + C (A3) 

(A, B, and C are constants) also satisfies Eq. (A2), provided 

B = 2A + 1, C=A. (A4) 

Hence the solution ofEq. (A2) is given by 

f [Af4 + (2A + Ilf2 +A ]-1/2 df=y + const (AS) 

with A> - 1/4. Equation (AS) is made explicit as follows: 
(i) case when A > O. 

If we put 

and 

a2 = [2A + 1 + ~4A + 1 ] /2A, 

b 2 = [2A + 1 - ~ 4A + 1 ] /2A, 

k 2 = (a 2 _ b 2)1a2, 

then Eq. (AS) is solved as 

fly) = $' tn(y/(l - k '), k). (A6) 

Application of the Landen's transformation to Eq. (A6) fin
ally gives 

fly) = (1 - cd(ky,1/k ))112, k> 1. (A7) 
1 + cd(ky,11k ) 

In Eqs. (A6) and (A 7) tnt y, k) and cd(ky, 11k) = dc( y, k) are 

the Jacobian elliptic functions, and k' =!l=P, 
(ii) case when A = O. 

Equation (AS) is solved as 

fly) = e -y = (1 - tanh y)I12. (A8) 
1+ tanhy 

e + y gives the other solution. 
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(iii) casewhenO>A > -1/4. 
If we put 

and 

a2 = - [2A + 1 +~4A + 1]/2A, 

b 2 = - [2A + I - ~4A + 1] /2A, 

k 2 = (a2 _ b 2)1a2, 

then Eq. (AS) gives 

fly) = $' nd(y/(l + k '), k), (A9) 

which becomes, upon performing the Landen's transforma
tion, 

fly) = ( 1 - k cd(y, k) )112, 1> k>O. (AW) 
1+ k cd(y, k) 

In Eq. (A9) nd( y, k ) is the Jacobian elliptic function. 
Altogether we have the solution of Eq. (2.2) in the form 

¢> D(y) = 4 arctan( I - ~)1/2 = 2 arccos(ii), 
I+h 

with Iii I.;;; 1, where ii stands for the following triad 

{

Cd(kY,1/k), k> I 
ii (y, k) _ tanhy, 

k cd( y, k ), 1 > k > O. 

(All) 

(AI2a) 

(AI2b) 

(AI2c) 

Equation (A 12b) corresponds to a single kink solution, while 
Eqs. (AI2a) and (AI2c) refer, respectively, to periodic solu
tions with period 4( 1/ k )K (1/ k ) and 4K (k ), whereK (k ) is the 
complete elliptic integral of the first kind with modulus k. 
Neither form (A 12a) nor form (A 12c) tends, in the limit when 
k goes to 1, to the form (A 12b). However, we may transform 
the triad ii (y, k) into more familiar forms 

{

Sn(kY.,1/k), 

ii(y,k)= tanhy, 

k sn(y·, k), 

by shifting the argument by a quarter period, viz., 

y. = y + K (k ), k =f. 1. 

We then redefiney· asy to obtain the h-triad 

{

Sn(kY,1/k ), 

h (y, k) - tanhy, 

k sn(y, k), 

(ABa) 

(ABb) 

(ABc) 

(AI4) 

(2.4a) 

(2.4b) 

(2.4c) 

Incidentally, the h-triad is associated with the equation 
of motion of a pendulum, which is Eq. (2.2) except the sign in 
front of sin ¢> ° is now opposite. The solution of the pendulum 
equation written in the form of Eq. (A 11) is 

( 1_~)1/2 ¢> o( y) = 4 arctan = 2 arcsin(h ). 
I+~ 

(AIS) 

Unlike the ii-triad, in h-triad both the form for k > 1 and that 
for 1 > k > 0 tend, in the limit when k goes to 1, continuously 
to the form tanh y. As seen in the main text the h-triad, by 
way ofEq. (2.3), will ever appear in our problem in the form 
h 2; accordingly, the choice of two solutions in the case (ii) will 
in no way affect the consequence of our calculation. 
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Backscattering and localization of high-frequency waves in a one
dimensional random medium 
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Total reflection of waves by a one-dimensional random medium is superficially inconsistent with 
the decoupling offorward and backward propagating waves in the WKB limit (when no real 
turning points are present). Actually, complex turning points yield exponentially small reflection 
terms; in the random case, their cumulative effect over large distances can be evaluated using 
Fokker-Planck techniques, and total reflection is recovered. We also calculate the localization 
length as a function of wavenumber and strength of the random fluctuations. 

PACS numbers: 03.40.Kf, 02.30.Hq 

I. INTRODUCTION 

We shall be interested in the one-dimensional Helm-
holtz equation written in the form 

d 2 '/1 
-2 (x) + k2V(X)'/I(x) = 0, V(x) = n2(x); (1.1) 
dx 

k is the wavenumber; nIx) > 0 is a (real) refraction index as
sumed to be analytic for real x and statistically homogeneous 
(translation-invariant). V(x) will be denoted, somewhat im
properly, the "potential." It is known that, in one dimension, 
randomness prevents propagation in the following sense: (i) a 
wave incident upon a semiinfinite random medium is totally 
reflected 1.2; (ii) in the bilaterally infinite case, those solutions 
of (1.1) satisfying outgoing wave conditions at ± 00 are "lo
calized," i.e., have their amplitude decreasing for Ixl-+oo 
asymptotically like e - Ixl/,'; , where (j is the localization 
length. 3.4 

Localization is a very well-known concept in solid state 
physics.3 It may also play an important role in connection 
with macroscopic media, e.g., for propagation in very long 
optical fibers. It is easily shown that the condition for nearly 
total reflection by a finite random medium is that it should 
extend over a distance large compared to the localization 
length. 

Localization and total reflection results are established 
using ergodic theory4.5; therefore, in general, the localization 
length can only be calculated numerically. A more quantita
tive theory can be made however when the randomness is 
small, e.g., when 

n(x) = no + €Il(x), (1.2) 

where Il has zero mean value and €-+O: it may then be shown 
that the (complex) reflection coefficient for a medium of 
length L / c tends, as € W, to a Markov diffusion process; an 
explicit equation is obtained for the mean reflection and 
transmission coefficients, and this localization length varies 
as €-2.6.7 A number of applications have been worked out 
along similar lines. 8-10 

We shall here be interested in a different limit: the fluc
tuations mayor may not be weak but the wavenumber k, 
proportional to the frequency, becomes very large, so that 
the wavelength is small compared to the scale of fluctu
ations. In the limit k-+ + 00, the solution of (1.1) can be 
represented locally in the form of a WKB expansion 

'/I (x) = A + '/I +(x) + A -'/I-(x), (1.3) 

'/I± (x) = V -lI4(X) exp{ ± [ik f VI/2(y) dy 

+k- 1a l (x)+k- 2a 2(x)+ ... }]. (104) 

The trouble with the (traditional) WKB approximation is 
that it predicts zero reflection of an incoming wave (say, a 
pure 1/1+ wave), and this to all orders in k - I. Indeed, '/I + and 
'/1- are separately (asymptotic) solutions of the Helmholtz 
equation (1.1) provided there are no real turning points 
[zeros for V(x)] or singularities. 11 Therefore, we have the 
paradoxical situation that ergodic theory predicts total re
flection and WKB theory predicts no reflection. As in other 
high frequency problems, such as the intermittency prob
lem, this difficulty can be resolved by going into the complex 
domain: the analytic "potential" V (x) will usually have com
plex turning points (and possibly singularities). Such turning 
points contribute exponentially small (in k ) terms to the re
flection coefficient, which are not captured by real WKB 
theory, but are by its complex versions. 12-17 Since the statis
tics of V (x) are assumed to be translation-invariant, so will be 
the statistics of the real parts of the turning points. There
fore, there can be cumulative effects of many exponentially 
small terms over a large distance, yielding a finite contribu
tion, even in the limit k -+ + 00. It is our purpose in this 
paper to evaluate the localization length in the limit 
k-+ + 00 and also to find its dependence on the strength of 
the randomness. 

The essence of the method and the outline of the paper 
are as follows: Turning points giving the largest contribu
tions are usually those closest to the real axis. Such points are 
widely spaced. It is therefore possible to calculate their indi
vidual contributions using complex WKB theory with a sin
gle pair of complex conjugate singular points (Sec. II). When 
moving along the real axis and upon crossing a pair of ran
domly located complex conjugate turning points, the 
ratio of the amplitude of the WKB solution undergoes a ran
dom change which is exponentially small for large k. After 
an exponential rescaling of distances, a Markov diffusion 
process is obtained for this ratio. The statistics of the reflec
tion coefficients are then calculated using Fokker-Planck 
techniques (Sec. III). Finally, in Sec. IV, we calculate the 
localization length and study the dependence on wavenum
ber and on the strength of randomness. 
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II. COMPLEX WKB THEORY FOR THE DETERMINISTIC 
CASE 

Ordinary (real) WKB theory is unable to capture ex
ponentially small terms in the wavenumber k. In the com
plex WKB theory, it is found that exponentially small terms 
are contributed by the complex turning points and singulari
ties ofthe "potential" V(x). We shall restrict our attention 
mostly to the former. It is possible to carry out complex 
WKB theory with many turning points. This, however, will 
not be necessary. It will turn out that in the limit k~ + 00 

the dominant contributions come from those turning points 
which are closest to the real axis. Since, eventually, we shall 
be working in a probabilistic context where there is a distri
bution of turning points, the most relevant turning points 
will be widely spaced; it is then sufficient to patch connection 
formulae relating to individual pairs of complex conjugate 
turning points. The logics of the bootstrapping procedure is 
quite the same as in the intermittency calculation for the 
nonlinear Langevin equation discussed in Ref. 18. 

To investigate the deterministic problem, we therefore 
assume that the "potential" V(x) has a single pair of turning 
points located at a ± ib (b > 0). With the elementary WKB 
solutions 1/1 + (x) and 1/1- (x) defined by (1.4), we assume that 
the wave function 1/1 for large Ix I can be represented in the 
following form: 

l/I(x)=A ; I/I+(x) +A ;I/I-(x), x~- 00, (2.1a) 
l/I(x)=A ;-1/I+(x)+A ~-I/I-(x), x~+ 00. (2.lb) 

Complex WKB theory gives connection formulae relating 
the A < 's to the A > 's, namely, to leading order 

A ; = A ;- + ie - 2kYe - 2ik</>, 
A; =A ; - ie-2kYe2ik</>, 

where 

y = 1m [+ ib VI/2(Z) dz, 

1,6 = Re [+ ib V 1I2(Z) dz. 

(2.2a) 
(2.2b) 

(2.3a) 

(2.3b) 

In Eq. (2.3b) the contour from 0 to a + ib is along the real 
axis from 0 to a and then a straight line from a to a + ib. The 
determination of V 1/2 is the positive square root along the 
real axis and its analytic continuation along the path from a 
to a + ib. The fact that the origin of coordinates 0 plays a 
particular role in the connection formulae from + 00 to 
- 00 is because the origin is also singled out in the defini

tions of 1/1 + and 1/1 - . 
Here a brief digression is useful. There are various 

methods for establishing the connection formulae (2.2). The 
traditional way is to use Stokes lines. 12.13 This approach, 
however, has been put on a systematic footing only in limited 
cases so far,19 and its extension to singularities other than 
turning points is not obvious. A different, compact and quite 
general method has been introduced recently by Berry. 16 He 
uses a decomposition of the form (1.3), but with 1/1+ and 1/1-
limited to the first term and with X-dependent coefficients 
A + and A -. A set of coupled first-order equations are ob
tainedbyBerryforA + andA - in which a change of in de pen
dent variables is made from x to kS~ V 1/2(y)dy. This system is 
then solved by a Born series in all order of multiple scatter
ing. Term by term asymptotic expansions are performed on 
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the multiple integrals and the resulting series is resummed to 
produce the complex WKB formulae. 

For our purpose, the calculation of reflection coeffi
cients, it is sufficient to consider the ratio of the amplitude 
A + and A -. Defining the complex amplitude ratio 

R = A -I A +, (2.4) 

we have the connection formula 
R< =(R> _ie-2kYe2ik</>)I(1 +iR>e-2kYe-2ik</».(2.5) 

III. THE STATISTICAL CASE 

We now assume that the "potential" V(x) is random, 
homogeneous, and calculate the reflection coefficient for a 
finite slab of the medium of length X large compared to the 
typical separation between successive real parts of turning 
points. The geometry ofthe problem is shown in Fig. 1. At 
the end (x = 0) of the slab there is no incoming wave, so that 
R = O. The problem is to find the statistics of R (X) at the 
beginning (x = - X), where there are both incoming and 
reflected waves. When x is moved from 0 to - X, each time 
x passes between a pair of complex conjugate turning points, 
the new value of R is given (to leading order in k ) in terms of 
the preceding one by (2.5), with the parameters 1,6 and y given 
by Eqs. (2.3) appropriate for the corresponding turning 
points. Strictly speaking, the connection formulae are valid 
only from + 00 to - 00 for individual pairs of turning 
points. Nevertheless, they will still be valid, to leading order, 
if the typical (real) separation between successive pairs of 
turning points is large compared to k -Iy-I. 

To characterize the diffusion process, we need to know 
the change oR = R < - R > up to second order in the 
parameter e - 2ky; this is because, after averaging, all first
order contributions to Fokker-Planck coefficients will van
ish. Let us denote this change by (oR )lTP for "one turning 
point." From Eq. (2.5), we obtain 

(oR )ITP = - ie - 2kY(e2ik</> + R 2e - 2ikY) 

_Re- 4k</>(1 +R 2e- 4ik</». (3.1) 

Here R stands for R > . 

We now perform a k-dependent rescaling of length: 
XI1(k)=x., R(X)=R*(x.), (3.2) 

where I (k ) will be determined later. When x. is incremented 
by ox., the complex amplitude ratio undergoes a change 
oR * given by (3.1), provided there is a pair of turning points 
in the interval (x. ,x. + ox. ). In order for R *(x.) to become 
a diffusion process in the limit k~ + 00, we must show that 

(oR*lox.), «(OR*)2Iox.), (loR*1 2Iox.) (3.3) 

have finite limits as k~ + 00, first, and then ox. to, and also 
that higher-order coefficients tend to zero. The first- and 
second-order limiting coefficients are the Fokker-Planck 
coefficients. 

To evaluate the various moments in (3.3), we need to 
know the distribution (per unit length) of (complex conjugate 

x =-x 

~<_> I )( )( )( )( )( )( I~ 
FIG. 1. A finite slab containing many (real parts of) turning points. 
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pairs of) turning points having a phase factor ¢ (within d¢ ) 
and an amplitude factor r (within dr). Actually the phase 
argument appearing in (3.1) is k¢. so that. for k---+ + 00. the 
phase (defined mod 21T) becomes uniformly distributed and 
independent of r; hence all oscillating exponentials that pos
siblyremainin8R *,in(8R *f.andin 18R *12 average to zero. 

To perform the remaining averages. we need to know 
the distribution per unit length of r which we denote by 
M(r)· 
M (r) dr 8X = mean number of turning points in an 

interval 8X with damping factor r with dr. 
(3.4) 

In this section, we aSSume that M (r) is known. It will be 
shown in the next section how it can be evaluated from a 
Rice-type formula. Putting 8x = I (k )8x •• we obtain 

(8R*18x.) = -1(k)«e- 4yk »R*. 
«(8R *)2/8x.) = _ 21(k)«e-4yk»R *2, 

(18R * 1218x.) = I (k )«e - 4yk »(1 + IR * 14
). 

(3.Sa) 
(3.Sb) 
(3.Sc) 

Here. the double brackets denote an average per unit length r + oc 

«e-
4yk » = Jo e-

4yk
M(r) dr. (3.6) 

It is now clear that finite Fokker-Planck coefficients are ob
tained in the relevant limit by taking 

l-I(k)= «e- 4yk ». (3.7) 

It is also easily checked that the coefficients of order higher 
than 2 vanish. 

Knowing the Fokker-Planck coefficients. we can write 
the diffusion equation for the probability distribution of the 
complex amplitude ratio. This is conveniently done in terms 
of variables u and 0 defined by 

R = ul/2eiO. (3.8) 

Note that u is the reflection coefficient for the energy. It is a 
simple matter to calculate the Fokker-Planck coefficients in 
the u and 0 representation in terms of the previously known 
ones. We thereby obtain the diffusion equation for 9(x •• u. 
0), the joint probability density of u and 0 

a 
-9(x.;u.O) 
ax. 

a a2 

- -((1 - u)29) + -lull - u)29) 
au au2 

+.l~((l+U)29). (3.9) 
4 a0 2 u 

The "initial" condition is 

9(0; u. 0) = 8(u). (3.10) 

which expresses the fact that the complex amplitude ratio is 
zero when the slab length vanishes. 

In the sequel, we shall be interested only in the marginal 
distribution of u, the energy reflection coefficient 

r2ff 

P(x.; u) = Jo 9(x.; u, 0) dO. (3.11) 

Integrating (3.9) over O. we obtain an equation for P: 
a a a2 

--P(x.; u) = - -((1 - U)2p) + -2(u(1 - U)2p), 
~. ~ ~ 

(3.l2a) 
P(O; u) = 8(u). (3.l2b) 

In a somewhat more compact form, the diffusion equation 
may be written 
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ap a [a 2 ] -=-u-(l-u)P. 
ax. au au 

(3.13) 

We now proceed to solve this equation. We introduce the 
Laplace transform 

P(P;u)= i''''e-px,p(X.;U)dX.. (3.14) 

P satisfies the following equation: 

pP(P; u) - 8(u) = ~[u~(l- U)2p(p; U)]. 
au au 

(3.15) 

This equation may be solved by a moment method. We note 
that the support of P is in the interval [0, 1]; this merely 
expresses that the energy reflection coefficient is nonnega
tive and cannot exceed unity. We define the moments 

Cn(P) = funp(P;U)dU, n=O.I..... (3.16) 

Simple manipulations on (3.15) lead to the following recur
sion relations: 

co(P) = 1/P. (3. 17a) 
pcn(P) = n2 [cn_ I (P) - 2cn (P) +cn+ 1(P)]. n.;;.l. 

(3.17b) 

From this. we can construct a continued fraction representa
tion for cl(P). the Laplace transform of the mean energy re
flection coefficient 

(p + 2.1 2 )(p + 2.22
) 

1 

(p + 2.22
) (p + 2.32

) 

1 
(3.18) 

This continuous fraction has one obvious singularity at 
p = 0 which just reflects the fact that the mean reflection 
coefficient tends towards a nonzero value (namely, unity) as 
x. ---+ 00. It may be shown that its other nearest singularity is 
at p. = - 1/4. As a consequence. the mean energy reflec
tion coefficient behaves as follows for large x: 

1 - (R *(x. )2) -exp( - x./4) for x.---+ + 00 (3.19) 

(with possible algebraic prefactors). The same exponential 
factor is obtained for all the higher moments of the energy 
reflection coefficient. We have thus shown that the WKB 
limit is not inconsistent with total reflection when the slab 
length increases. 

IV. THE LOCALIZATION LENGTH 

Putting together various pieces from the previous sec
tion. we find that the mean energy reflection coefficient, in 
the original variable X, has the following exponential behav-
ior: 

1- (IR(XW)-exp[ -XI(4/(k))] for X---+ + 00, 
(4.1) 

with r + 00 

I-I(k) = Jo e - 4ykM (r) dr. (4.2) 

where M (r), the distribution of damping lengths, is defined 
by (3.4). 
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Hence, the localization length is given by 

D (x) = 4/(k). (4.3) 

We recall that the damping length y is expressible as an inte
gral from the real axis up to the turning point at a + ib 

y= 1m f+ib Vl/2(Z)dz. (4.4) 

It appears not possible to go much further in calculating the 
localization length without making some specific assump
tion about the random "potential" V(x). Henceforth, we 
shall be interested in the case where the fluctuations are 
weak. Gaussian fluctuations of the form V(x) = 1 + Em(x) 
[with Gaussian m(x)] are not consistent with the assumed 
positivity of V(x) everywhere on the real axis. 

A simple model, consistent with positivity, is 

V(x) = 1 + Em2(x), E small positive, (4.5) 

where m(x) is a zero-mean-value Gaussian process with ana
lytic correlation function. We assume that the fluctuations 
are around unity, since a different choice can be reduced to 
the present one by rescaling the wavenumber k. We also 
normalize E and x in such a way that (m2) = (m'2) = 1, 
which means, in particular, that we take as unit length a 
typical scale of the random fluctuations. 

It is now easy to locate the most relevant turning points, 
i.e., those giving the smallest y. They are found to be the 
turning points closest to the real axis. The latter may be 
obtained simply by Taylor-expanding near the real axis up to 
second order 

m(x + iy) = m(x) + iym'(x) - !y2m"(X) + .... (4.6) 

Substituting into (4.5) and demanding that the "potential" 
vanishes, we obtain, to leading order, 

1 17)1 1T E- 112 
m(x) = 0, y2m'2(x)~-;, y"-'4~4 Im'(x)I' (4.7) 

So the most relevant turning points are located near the real 
zeros of m(x) having a very large derivative. As a conse
quence, the high-k behavior of the localization length is gov
erned by the small-ybehavior of M (y), which in tum depends 
on the far tail of the conditional distribution of the absolute 
value of m'(x) at those points where m vanishes. The situa
tion here is very similar to what is discussed in Sec. II of Ref. 
18 for the nonlinear Langevin equation. We shall therefore 
skip some redundant details. We denote by p(O) = (21T)-II2 
the probability density of m at m = 0 and by 
Q (w) = 2(21T)-1/2e - w'/2 the conditional probability density 
of m' at those points where m = O. The localization length, 
as given by (4.2) and (4.3) is reexpressed, asymptotically for 
k---+ + 00 (at fixed E), as 

D-1(k )-4P(O)i+ 00 exp( - 1TC 1/2k /w)wQ(w) dw. (4.8) 

The integral on the right-hand side is now evaluated asymp
totically for k---+ + 00 by Laplace's method. We thereby ob
tain 
8- 1(k )_25/2Z-1121T-1/6k 1/3E -1/6exp( _ ~r/3k 2/3E-1/3). 

(4.9) 
Note that the precise functional form depends here on the 
Gaussian assumption made for m(x). To ensure consistency 
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of the present analysis and of that of Sec. III, it is necessary 
that the localization length be large compared to the mean 
spacing between relevant zeros. We found that the latter be

haves for k---+ + 00 as exp(r /3k 2/3E- 1/3), which is indeed 
smaller than D (k) given by (4.9). 

We have thus found that: (i) the localization length is 
exponentially large with the wavenumber (but involves a 
fractional power of k ); (ii) it is also exponentially large with 
1/ E. This is in contrast to the limit studied in Refs. 6 and 7 
where it is found that when k is fixed and E to, the localiza
tion length goes like 1/ E2. 

Finally, we wish to stress that in more than one dimen
sion, backscattering from a random medium in the WKB 
limit may proceed by a very different mechanism, involving 
just transport along the rays obtained from a straightfor
ward geometrical optics approximation. The rays are gov
erned by a stochastic ODE20; their direction can angularly 
diffuse. In the limit of weak fluctuations, the direction of the 
rays may undergo a random walk, allowing appreciable 
backscattering over a characteristic reflection distance 
which is likely to vary proportionally to an inverse power of 
the fluctuation strength E. It is not at all obvious that, in 
more than one dimension, the characteristic reflection dis
tance will be the same as the localization distance; indeed, 
localization involves subtle interference phenomena which 
are not captured by geometrical optics. 
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The inverse problem for the reduced wave equation Llu + k 2n
2(x)u = 0 is considered where the 

quantity to be determined is the value of nix) in a compact domain D in R 3. The data consists of a 
finite set of measurements of the scattered field produced by different incident fields. The 
measurements are made at various points exterior to D and at possibly different frequencies. The 
mathematical problem involves solving a system of nonlinear functional equations. Conditions 
are developed which indicate when the measured body is close to a particular comparison body (a 
linearized perturbation is valid). A new higher order nonlinear iterative procedure is developed 
for the full nonlinear problem, which reduces to the usual solution in the linearized region. The 
method is illustrated by computational results for the one-dimensional case. 

PACS numbers: 03.40.Kf, 42.20. - y 

I. INTRODUCTION 

The multifrequency inverse problem associated with 
the reduced wave equation 

Llu + k 2n2(x)u = 0, xER 3, (1) 

is considered here for the case of sparse data and an uncon
trolled environment. In such an environment all that can be 
specified about the scattering object is that (i) it is located in a 
prescribed bounded region D and (ii) it is characterized by a 
real index of refraction nix). The region D has piecewise 
smooth (C 1) boundary. The index of refraction is sectionally 
continuous, i.e., it is continuous everywhere apart from a 
finite set of piecewise smooth surfaces across which it has 
finite jump discontinuities. The host medium exterior to D 
will have n(x)= 1. 

The data consists of a finite set of measured values of the 
scattered field at different locations external to the scatterer, 
and at different frequencies. Since the data set is sparse, the 
solution to the inverse problem is not unique. Additional 
constraints would have to be imposed to get uniqueness 
(such constraints can lead to more complicated and less trac
table problems). In this connection the fixed frequency in
verse problem with sparse data was analyzed where the im
posed constraints consisted of finding the solution closest to 
a given object. 1,2 However, in this paper we will concentrate 
on generating a solution to the full nonlinear problem with
out imposing any artificial a priori constraints. It will be 
shown in a subsequent paper that the method developed here 
contains an intrinsic natural condition of stability, which 
makes it superior to present nonlinear techniques. 

A brief outline of the paper is as follows: In Sec. II, the 
direct scattering problem is formulated in terms of the (Lip
mann-Schwinger) integral equation. From this the inverse 
problem is expressed in terms of a system of nonlinear func
tional equations. In Sec. III, the linearized version of the 
inverse problem is discussed where the measured body is a 
small perturbation ofa known (comparison) body. A nonlin
ear algorithm is developed for the full nonlinear inverse 
problem in Sec. IV. Here it is pointed out that the method 
has an additional advantage over previous methods in that 
the regularization process that must be used (for inverting 

almost singular matrices) is much simpler involving only one 
constraint (related to the error in the matrix). This is fol
lowed up in Sec. V, by a brief discussion of computational 
results for the one-dimensional case. To simplify analysis 
and give more clarity, a lot of the mathematical details are 
relegated to the three appendices. 

Some of the notation that will be used throughout the 
paper is as follows: If/(x) andg(x) are real X' 2(D) functions, 
then the corresponding inner product and norm are 

(f,g) = f!(X)g(X) dx, 

IVII = (f!(X f dx y12, 
whereas if 11 is a column vector in R 2N, its norm will be given 
by 

1111112 = (1Ji + 1J~ + ... + 1J~N ) 112 
and a square 2N matrix H = ! Hij 1 will have corresponding 
norm denoted by lIB 112' 

II. BASIC MATHEMATICAL PROBLEM 

To simplify analysis, set 

u(x) = n2(x) - 1 (2) 

and note that v(x)-O outside D. Let v. and Vrn denote the 
value of u corresponding to the comparison and measured 
body, respectively. 

The data set will then consist of the set of N complex 
numbers u:" (x[, k[), which is the measured value of the scat
tered field at a pointx[ outsideD The scattered field associat
ed with each measurement is generated by a particular inci
dent field ui(x, k[) impinging upon the obstacle (v = vrn) at a 
frequency w[ (corresponding to the wave number k[). 

Let G. (x, y; k[) denote the Green's function for the re
duced wave equation associated with the comparison body 
(n = n. ) and which satisfies the radiation condition. The to
tal field u(x, k[) (where u = ui + US) generated by the incident 
wave ui (x, k[) impinging upon an arbitrary scatterer v (with 
support in D ) will satisfy the integral equation. 
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u(x,kl ) = u. (x,kj ) + k 7 i G. (x,y;kl ) 

X [v(y) - v. (y)] u( y,ktl dy. (3) 

Here u. (x, k j ) is the total field produced by the same inci
dent wave ui (x, k l ) impinging upon the comparison body 
(v= v.). 

The scattered field at a point Xl exterior to D is then 
given by 

uS(x1,kl ) = u~(xl,kl) + k7i G.(xj,y;kl ) 

x [v(y) - v. (y)] u( y,ktl dy, (4) 

where the term in the integrand u( y, k l ) is obtained by solv
ing integral equation (3). The direct scattering problem is 
given by Eqs. (3) and (4). 

The inverse problem consists of finding the value ofv(x) 
such that 

uS(xl,ktl = u:"(xl,kl ), 1 = 1,2, ... ,N, (5) 

where the left-hand side of system (5) is given by Eq. (4) and 
the right-hand side are measured values. Since the solution 
u( y, k l ) of Eq. (3) is a function of v - v.' expression (4) is a 
nonlinear function of v - v •. The basic mathematical prob
lem is thus reduced to solving a system of nonlinear complex 
functional equations for the real variable v(x). 

The usual nonlinear techniques like Newton's method 
cannot be applied to the nonlinear system because the Fre
chet derivative of the nonlinear function does not have an 
inverse due to non uniqueness. 

III. LINEARIZED PROBLEM 

If the actual measured body is sufficiently close to the 
comparison body so that Vrn lies in the set v such that 

mk~x k~JJIG~(x,y;kl)l(v-v.fdXdY<l, (6) 

1=1.2 •... ,N DXD 

then the solution of integral equation (3) could be approxi
mated by 

u(x,kl)-u. (x,kl ), 

and system (5) in tum approximated by the linear system 

hi =k7LG.(XI,y;ktlu.(y,kl)w(y)dy, 1= 1,2, ... ,N, (7) 

with 

W=v-v., (8) 

where the complex number 

hi = u:"(x/tkl ) - u~(xl,kl) (9) 

is the difference between the measured value of the scattered 
field and the calculated value corresponding to v. ' at the 
point XI and wave number k l • 

The system of N linear complex equations can be re
duced to a system of2N real equations. The complex quanti
ties involved in the system are decomposed as follows: 

k~G.(xl,y;kl)u.(y,ktl = HI(y) + iHI+N(Y)' (10) 

(11) 
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System (7) can then be reduced to the system of2N real equa
tions 

(HI,w) = BI, 1 = 1,2, ... ,2N. (12) 

With X I exterior to 15, both G. (x I ,y;k I) and u. ( y,kl ), and 
hence HI (y), will be continuous functions of yin 15, when v. 
is a sectionally continuous function (see Appendix A). 

If the measured body Vrn is in the linearized region of the 
comparison body v. [i.e., condition (6) holds for v = vrn]' 

then the system of 2N real linear equations (12) provides a 
useful model for solution. The system as it stands is ill-posed, 
with a nonunique solution, and any reSUlting matrix that 
may be used to invert the system may be ill-conditioned. 
Moreover, due to errors in data, one would not want an exact 
solution of system (12), but a solution that satisfies the equa
tion to within the errors of the data (errors in Btl. The usual 
techniques of regularization may be employed. In particular, 
the technique of Backus and Gilbert3 is most suitable. 

IV. NONLINEAR PROCESS 

A. Conceptual approach 

If one has a catalog of comparison bodies, then linear 
system (12) can be solved for each value of v. belonging to a 
catalog of prescribed comparison bodies! v. ), obtaining a 
solution W which is a function of v •. Then the comparison 
body that is closest to the measured body is selected. If this 
comparison body is in the linearized region of the measured 
body, then the technique mentioned in the previous section 
or others may be employed to get the optimum solution. 
There are a number of criteria for closeness than can be used. 
The usual approach is to employ the following quantity: 

N 

¢ (v.) = L I u:" (xl,k[) - u~ (xl ,ktlI 2
, 

1= 1 

which is the sum of the squares of the differences in the 
measured and calculated scattered fields. This quantity by 
itself will not indicate when the linearization process is valid, 
but is useful to eliminate possible choices of comparison bo
dies. 

The best choice from the theoretical viewpoint is to se
lect the comparison value v. such that 

min max k~JJ IG~ (x,y;kl )lw
2(v.) dx dy. (13) v. kl 

l=l,2 .... ,N DxD 

If the minimum value is much less than unity, then the lin
earization process employing the value of v. yielding the 
minimum would be valid, A better choice from the practical 
computational standpoint would be to choose v. so that 

(14) 

This latter choice provides an obvious answer of nonunique
ness of linear system (12). Condition (14) immediately infers 
that one would want the least squares solution of system (12). 
The main difficulty in using condition (14) is that it will not 
signify directly whether the linearization process is valid. As 
it stands, it can be only used for comparison. However, an 
additional condition to go along with (14) will be given. 

If either one does not have a catalog of comparison bo
dies to begin with, or else the comparison body belonging to 
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a catalog is not in the linear region of the measured body, a 
nonlinear iterative scheme will be used based upon the above 
concepts. The idea is to obtain a sequence ! v~ l of compari
son bodies which minimizes the function in expression (14). 
Note that when v. = Vrn , then the absolute minimum is ob
tained. 

B. Linear inversion 

The iterative procedure (which will be developed in the 
next section), at each step, will require the inversion of a 
linear system corresponding to Eq. (12), with the solution 
subject to a condition ofform (14). In order to get such a least 
squares solution [in the !L' 2(D) sense] of the linear system a 
fundamental assumption has to be made. 

Assumption: The data points !x,l and wave numbers 
! k, l are chosen so that I H,(xm~ 1 is a linearly independent 
set. 

Since the problem of interest here is the sparse data 
case, this means that, in any numerical application, the num
ber 2N will be much less than the number M, the dimension 
of the finite dimensional subspace used to approximate 
!L' 2(D ), and any redundant set of measurements which vio
lates the assumption will be culled out. 

It will be shown that, due to the nature of the iteration 
process, the assumption must be checked out only at the 
initial step of the iteration process. 

With the above asumption, the matrix I H ij l whose ele
ments are given by 

Hij = (Hi,Hj ) (15) 

will be positive definite, since then the quadratic form 

2N (( 2N )2 
iJ2; ICiHijCj = JD i'?;ICiHi(x) dx 

will vanish onl~if ~2Ni= 1 ciHi(x)=O. Hence IHij l will be 
invertible. Let H,} represent the elements of the inverse ma
trix, 

Set 

2N 

"LHijHjk = Dik · 
j= 1 

2N 

Si(X) = "LHijHj(x); 
j=1 

(16) 

(17) 

then it can be shown thatsj(x) and Hj(x),j = 1,2, ... ,2N, form 
a biorthogonal set 

(s;.11;) = D,}. (18) 

The least squares solution of system (12) is then given by 
2N 

w(x) = "LBJSj(x) 
j= 1 

2N 
= "L'I]jHj(x) (19) 

j= 1 

where 
2N 

77j = (Sj'w) = "L HjkBk . (20) 
k=1 

Note that w(x) is a continuous function of x over the domain 
D. 
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c. Iteration procedure 

An iterative procedure based upon a descent type pro
cess applied to the nonlinear functionalf(v.), where 

f(v.) = LW2(V.)dX (21) 

will be used. A minimizing sequence I v~ l will be sought 
such that 

f(v~ + I) <f(v~). 

This will require the Taylor expansion 

f(v. + DV.) =f(v.) + (F(v. ),DV.) 

+ ! HY'(v. )DV. ,DV.) + ''', 

(22) 

where F(v.) is the gradient off(v.) and ty' the Frechet deri
vative of F 

(23) 

Here F'(v.) denotes the kernel of the integral operator ty'. 
Explicit expressions for these quantities can be obtained 

using expansion (19) for the solution w(v.). 
First note thatf(v.) can be represented by the following 

quadratic form: 
2N 

f(v.) = "L BiHijBj . (24) 
iJ= 1 

Using the result given in Appendix B that the Frechet differ
ential of Bj is given by 

DBj = - (Hj,DV.), 

it follows that 
2N 2N 

Df = - 2 "L BiHij(Hj,DV.) + "L Bi(DHij)Bj 
iJ= 1 iJ= 1 

= - 2(WDv.) - 2(q,DV.), 

where, from Appendix C, it is shown that 

q(x) = p ~l 77 p L H; (x,z)w(z) dz. 

Here H ; (x,z) is defined as follows: 

DHp = L H; (X,z)DV. (z) dz 

(25a) 

(25b) 

(26) 

(27) 

and its precise form is given by Eq. (B4). Thus the gradient F 
is given by 

- ! F = w(x) + q(x), (28) 

which will be, at least, a continuous function over D. From 
Eq. (25) the second Frechet differential off(v.) is given by 

2N 

D 2f = 2 "L (Hi ,DV. )DHij (Hj ,DV. ) 
iJ= ! 

2N 

- 4 "L (H;.Dv. )t>HijBj 
iJ= 1 

2N _ 2N 
- 2 "L BiHij(t>Hj,t>v.) + "L BiWHij)Bj' (29) 

Y=l Y=! 

The explicit form for F '(x,y) may be derived (see Appendix C) 

! F'(x,y) 

= ,,~! {R,(X)H,pRp(y) - 77p 77, L H ; (x,z)H ;(y,z) dZ} 
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(30) 

where 

Rp(x) 

= Hp(x) + fJH;(X,z)W(Z) + m~l7]mH;"(X,z)Hp(Z)} dz.(31) 

Here the differential of H ' is given by 

f>H'(x,y) = 1 H " (x,y,z) f>v.(z) dz, (32) 

and its precise form is given by Eqs. (B5) and (B6) in Appen
dix B. 

From Eq. (30) it is seen that the operator tf has the 
following decomposition: 

fr' = ~ - ~ - !\152 -~, (33) 

where ~ is a positive operator with kernel 
2N 

a(x,y) = 2 I R/(x)H/pRp(y) (34a) 
/.p~ 1 

and \15 and ~ are self-adjoint integral operators with respec
tive kernels 

2N 

b (x,y) = 2 I 7]pH ; (x,y), 
p~l 

c(x,y) = 2p~I7]P 1 H;(x,y,z)w(z) dz. 

For further analysis it is convenient to define 

/3 = (~F,F )I(F,F), 

r = - ((\15 + ~ \15 2 + ~)F,F)/(F,F), 
where F is the gradient (28). It should be noted that 

r<! - (~F,F)I(F,F). 

(34b) 

(34c) 

(35) 

(36) 

Some important properties of Fand fr' are summarized 
as follows. 

Lemma: In the neighborhood of the absolute minimum 
point off, the gradient has the behavior 

- V = w + 0 (lIwI12), (37) 

IIqll/llwll-O(llwll). (38) 
Proof From Eqs. (20), (21), and (24), it follows that 

2N 2N 

IIwl12 = I B;HijBj = I 7];H,j7]j; 
;J~ 1 ;J~ 1 

hence it may be deduced that 

IITJI12<llwII/A ~~, 
IIBI12<llwII/A :';;x' 

(39) 

(40) 

where Amin and Amax are the smallest and largest eigenvalues 
of the positive definite matrix H. From Eq. (26) it is immedi
ately seen that 

Ilqll-O (llwI12), 
and the results for F follow from Eq. (28). 

Theorem: fr' is a compact operator with polar kernel 
given by Eq. (30) which maps!? 2(D ) into C (D ). It has a de
composition of the form 

fr' = ~ - ~ - ! ~2 - @: 
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where ~ is a positive operator. In the neighborhood of the 
point w=O, the behavior of fr' is given by its kernel 

2N 

F'(x,y) = 2 I H;(x)HijHj(y) + O(llwll), (41) 
;J~ 1 

and in particular 

(fr'F,F)I(F,F)-2 + O(llwll). (42) 

Proof It follows from Eq. (C 12) in Appendix C that fr' 
has a polar kernel, and from Eqs. (34a), (34b), (34c) together 
with Eqs. (39), (40) that ~ -0 (llwll), ~-O (llwI12), and the 
kernel a(x,y) of ~ has the behavior 

2N 

a(x,y) = 2 I H/(x)H/pHp(Y) + o (II will· 
I,p~ 1 

This yields expression (41). Since 

- !F(x) = w(x) + O(llwI1 2
) 

2N 

= I 7]j H j (x) + 0 (llwI1 2), 
j~1 

it follows from Eq. (35), that/3 = 2 + 0 (llwlll and Eq. (36) 
that r-O(llwll). The results given by Eq. (42) then follow. 

Since the operator fr' does not possess an inverse at 
W_O [it is seen from Eq. (41), that fr' has finite rank at w-O), 
Newton's method for a minimizing sequence cannot be em
ployed. Instead the descent approach (Vainberg4) given by 
the sequence 

(43) 

will be employed. The real positive coefficient an in the des
cent method is obtained by5,6 minimizing the function 

g(t) = f(v~ - tF (v~ )) 

of the positive real variable t. However, it appears that com
mon iteration techniques such as the Curry step-length spe
cification to determine min t = an are too complicated to 
apply here. This would require the solution of the direct scat
tering problem at each step. The simplest choice then is to 
choose an by minimizing the quadratic approximation to 
g(t ), giving 

an = IIF(v~ lII2/(fr'F(v~ ),F(v~)). (44) 

Unfortunately, expression (44) cannot be directly used 
and has to be modified. There are two problems with (44). 
The derivation of (44) omits the contribution from the cubic 
term corresponding to the higher order Frechet derivative 
which may dominate the quadratic term. In this case the 
value given by (44) may be too large. To take care of this, a 
relaxation factor (i)n is included in expression (43). A suitable 
value of (i)n < 1 would take care of this problem. However far 
more serious is the fact that the operator fr' is not a positive 
definite operator. Expression (44) may be negative! The in
verse of the expression by the right-hand side ofEq. (44) can 
be written as the sum of two terms/3n and rn defined, respec
tively, by Eqs. (35) and (36) (with the subscript n denoting v. 
replaced by v~ ), where /3n is positive and r n is positive or 
negative. For negative values of r n it is better to use the 
expression 

1/an = /3n = (~F(v~ ),F(v~ ))IIIF(v~ lII2 
in place ofEq. (44). 
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In the neighborhood of the absolute minimum point 
w=O,{3n is the dominant term with yn-o. In fact, from Eq. 
(42) it is seen that 

1/an -2 + O(lIwlll. (46) 
This provides a useful tool to indicate when the descent se
quence has approached the linearized region of the solution. 

The optimum choice of Wn and an still has to be investi
gated. A particular choice for these quantities based upon 
preliminary numerical computations is given in a later sec
tion ofthis paper. 

There still remains to be considered the question of the 
invertibility of the matrix (H ij ) at each iteration step. It is 
assumed throughout that for each v~ the corresponding set 
(HI (x)) ~":: 1 is linearly independent over D. All that is needed 
to achieve this is to select the data points XI and wave number 
kl so that (HI (x)Ji":: 1 is linearly independent for the initial 
value v~ of the minimizing sequence (v~ ). The reason for 
this is that the quantity to be minimized,j(v.), involves the 
inverse matrix (Hij) [as indicated by Eq. (24)]; he~e the 
effect of changes in the inverse matrix given by (t)Hij ) is 
included in the process for obtaining v~ + 1 from v~ . In 
expression (25) for the differential t)/ the first term on the 
right-hand side essentially is due to change in data, and the 
second term t)Hij is due to the change in the inverse matrix. 
The term q(x) in expression (28) for the gradient of/repre
sents the change of the inverse matrix. Thus for step sizes 
(values of Ilv; + 1 -2:; II) such that the Taylor expansion is 
valid, the matrix (H ij) will remain bounded. 

The descent process will in theory terminate when a 
stationary point is reached. The stationary points are those 
values of v. such that 

- !F(v. )=w + q = O. (47) 

The stationary point of main interest here is the one that 
gives the absolute minimum of/(v.), namely, w-O, which 
implies that BI = 0 for 7 = 1,2, ... ,2N. The other stationary 
points (which could be reached by a minimizing sequence) 
correspond to a local minimum or saddle point. Since q is the 
order of IIwl12 for smallllwll, it is easily seen that a minimiz
ing sequence is in the neighborhood of the stationary point of 
main interest w=O if 

Ilw + !F(v. )ll/llwll = Ilqll/llwll<l 

and in the neighborhood of the other stationary points if 

!IIF(v. )ll/llwll = Ilw + qll/llwll<l. 

In practice the descent approach may be terminated 
when either (i) the value v; yields a computed value of the 
scattered field which differs from the measured scattered 
field by a number less than measurement error, i.e., 2.~":: 1 B 7 
< €2 or (ii) when the descent approach has reached the linear 
region of solution corresponding to the absolute minimum. 
Once in the linear region of the solution, other techniques 
may be employed like that of Backus and Gilbert to get the 
optimum smoothest structure. The following result can be 
used to determine when the descent approach has ap
proached the linearized region of the solution. 

Theorem: A necessary condition for the descent ap
proach to have reached the linear region of the solution is 
that 
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Ilqlllllwll < 1, 

(JY'F,F)I(F,F)-2. 

D. Regularization 

(48) 

(49) 

The critical juncture of the procedure is in the solution 
oflinear system (12). For the initial step (involving the initial 
choice of v. ) it was assumed that the data points (x I ) and 
wave numbers (k l ) are chosen so that (HI(x)Ji":: 1 is a linear
ly independent set of continuous functions over D; and any 
redundant set of measurements which violates this assump
tion would be culled out. As pointed out, theoretically this 
only has to be assured of initially, since the descent process 
will tend to retain the linear independence of (HI) for each 
v; . 

Recall that the minimum 2' 2(D ) norm solution of sys
tem (12) is given by substituting expression (19) 

2N 

w(x) = L 17j H j (x) 
j~1 

into system (12). This yields the algebraic system of equa
tions for 11 

H1I = B. (50) 

In the numerical computation of the solution of system 
(50) constraints have to be imposed that involve some of the 
following: 

(i) errors in H; 
(ii) errors in the data or (Bj ); 

(iii) bounds on the solution 11. 

The errors in the matrix elements Hij are the most ser
ious. These errors arise from two sources, numerical errors 
(due to computational procedures, round-off, etc.) and mod
el error due to the approximation of the space of continuous 
functions over D by a finite-dimensional space. With H a 
positive definite matrix, the errors in H will distort the com
ponent of the solution belonging to the eigenspace spanned 
by the eigenfunctions corresponding to the small eigenval
ues. Iftheerrorin the matrix His denoted by E = (Eij)' then 
the numerical solution of system (50) will be required to the 
following accuracy: 

11H1I- B112<IIE 1121111112' 

where 1111112 = 2.J~ 117J. 

(51) 

No constraint need be placed upon the bound of the 
solution 11 for the iterative scheme developed here. This is in 
contrast to the schemes employed by Coen, Mei, and Ange
lakos7 and to the Levenberg-Marquardt algorithm (More,S 
Levenberg,9 and Marquardt lO

), which require such a con
straint due to a condition like (6) being imposed on their 
iteration process. 

Errors in the data (provided they are not too large) can 
be ignored initially in the nonlinear iterative scheme. They 
become important in the linear region where v. is close to 
vrn • Generally, since no bounds are placed on 111IIb the error 
term IIE1I112 may be larger than the error in the data. 

With only the constraint (51) being considered, the sys
tem of equations can be regularized (Miller 11) by replacing 
them by 
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(H+El)'I'J =B, (52) 

where £ = liE 112' 
The regularization procedure is more important in the 

initial steps of the iteration procedure since the descent pro
cess tends to increase the values of the smallest eigenvalues 
of the positive definite matrix H as a function v; at each step. 
This is seen as follows. If A I' A2 , ... ,A2N are the eigenvalues of 
H with cl>1,cI>2, ... ,cI>2N the corresponding set of orthonormal 
eigenvectors, the solution of system (52) is given by 

2N (B'cI>i)cI>i 
'I'J= I ' 

i=1 Ai +£ 
and the function that is minimized by the descent process 
can be expressed in the form 

i 2 2N Ai(B·cI>Y 
f(v.) = D w(v.) dy = i~1 (Ai + £)2 

When the regularized system (52) is used, the expressions 
(28) and (30) for the gradient F(x) and the derivative F'(x,y) 
are modified. Apart from terms the order of £ which can be 
neglected for small £, the major change occurs in the first 
term on the right-hand side ofEq. (30), where the matrix 
coefficient Hlp is replaced by the corresponding coefficient 
of the inverse matrix (H + €I) -I. 

For regularization techniques applied to optical prob
lems, see Ref. 12. 

E. Constrained iterative process 

The descent procedure can be modified to give a solu
tion satisfying the constraint 

n2(x» 1, xED. 

This can be achieved by replacing the iterate 

v; + I(X) = v; (x) - wnanF(v;,x) (53) 

by v; + I(X) = 0, at all points x in D where the right-han~ side 
ofEq. (53) is negative. This process is equivalent to addmg a 
function f/!{x) to the gradient F so that 

v; + 1 = v; - wnan (F(v;,x) + ¢(x))>O 

essentially modifying the direction of v; + 1 - v; from that 
of the negative gradient to that of a deviation from it. The 
descent process will still be valid provided that the deviated 
direction is not more than 90', i.e., 

(F+ ¢,F»O, 

and the relaxation factor Wn or an is properly chosen. 

V. COMPUTATIONAL RESULTS 

In order to illustrate the application of the method, 
some preliminary computational results for the one-dimen
sional problem are presented here. More details of the com
putational aspects will be presented elsewhere including 
eventual computational results for higher dimensions. 

In the one-dimensional case the obstacle (or slab in this 
case) will be located in a region D where D is the interval 
- 1 <x< 1. Results are presented here for the case where the 

actual obstacle is inside the domain D. In particular, the 
scattering obstacle will be given by 
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n = 1, - l<x - 0.05, 

n = 2 + 20x, - 0.05<x<0, 

n = 2, O<x<1. 

Since n=1 outside D, the actual obstacle lies in the interval 
- 0.05<x<1. 

The factors an and Wn used in the computational algo
rithm corresponding to Eq. (43) are essentially the same as 
given in the body of the paper for the case when Yn >0. In this 
case Wn = 1 and an is given by Eq. (44). However, for the 
case where Y n < 0, these factors are modified as follows: 

(i) for IIqlllllwll>0.9, 
wnan = (f3n + Yn)-I, for -/3n!2<Yn <0, 

wnan = 2I/3n' for Yn < -/3n/2; 

(ii) for IIqll/llwll <0.9, 
wnan = 11/3., Yn <0. 

The computational algorithm was modified by using the 
constraint n> 1 described in the previous section. The regu
larization factor £ was taken to be £ = 0.000 01. 

Computations were carried out using "measured" (ac
tually computed) values of the backscattered field for a set of 
different frequencies. Different choices of initial values of 
nIx) were used. Briefly, some of the results are as follows. For 
data at the wave numbers k = 17'/4, 17'/2, 317'/4, 17', the algo
rithm converged (as far as the actual iterations were carried 
out) to the correct solution, when the initial choice for nIx) 
was (i) nIx) = 1.25, - 1 <x< 1, and (ii) nIx) = 1.5, - 1 <x< 1. 
However, the algorithm converged to a different solution 
when the initial valueofn(x) was n(x) = 1.75, - 1<x<1, but 
with the addition of more data (backscattered field at differ
ent frequencies) the algorithm tended to local minimum in
stead of indicating that it was not a true solution. One inter
esting thing is that if the set offour frequencies were reduced 
to k = 17'/8, 17'/4, 17'/2, 317'/4, the algorithm converged to the 
correct solution when the initial value of nIx) was 
nIx) = 1.75, - 1 <x< 1. Some of the computational results 
are presented in Fig. 1. 

.. 
o " 

2.0 

0
' !C • ...: ~ , • • ~ •• : ~ ~. 

~ 00 ~~o 0 

. 
N(X) 

-1·0 0.0 +1.0 
x 

FIG. 1. Computed and actual value of the index of refraction N (X): (-) 
actual profile of scattering body; (0 0 0) computed profile for 20 iterations 
starting with initial value n(x) = 1.5 for - I<x< I, with measurements at 
k = 1T14,1T12, 31T14,1T; (X X X) computed profile for 20 iterations starting 
with initial valuen(x) = 1.75 for - l<x<I, with measurementsatk = 1T/8, 
1T14, 1T12, 31T14. 
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VI. COMMENTS 

The inverse-scattering algorithm works quite well for 
the sparse data case based upon initial testing. Since the algo
rithm is sensitive to the number of small eigenvalues of the 
initial matrix {Hij l [the value of (Hij l derived from the ini
tial choice ofn(x) in the interation procedure], the algorithm 
mayor may not be useful for the large data case. This re
mains to be seen. Here the regularization parameter £ will 
playa much more important role than in the sparse data 
case. 

In the application of the iteration procedure here, no a 
priori knowledge was used to choose the initial value of nIx). 
It would be extremely useful to see if a good initial choice for 
nIx) can be made based upon physical grounds such as the 
Born approximation, and when such choices of initial nIx) 
lead to the correct solution. 

The technique developed here can be abstracted and 
applied to other inverse scattering problems, either scalar or 
vector. At present it is being applied to the inverse problem 
associated with acoustic scattering (reduced wave equation) 
by an inpenetrable object, characterized by a Dirichlet 
boundary condition on its surface. 
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APPENDIX A 

Here, some details on the nature of the solution to the 
nonhomogeneous reduced wave equation 

..du + k 2n2(x)u = - (n 2 - Ilf(x) (AI) 

are presented. The functionf(x) is taken to be continuous, 
and nIx) has the sectionally continuous properties stated in 
the introduction. To be more precise, nIx) is bounded every
where and is identical to unity in the region exterior to D. 
The compact region D is decomposable into a finite number 
N' of regions D j , each with piecewise smooth boundaries 
8D j , such that nIx) is continuous in each closed domain D i . 

With the free-space Green's function given by 

Go(x,y) = eik Ix - yi/41Tlx _ y I. 

Equation (A I) can be expressed in terms of the integral equa
tion 

u(x) - k 2 L Go(x,y)v(y)u(y) dy = L Go(x,y)v(ylf(y) dy, 

(A2) 

where v(x) = n2(x) - 1. With the decomposition 

L Go(x,y)v(y)u(y) dy = i~IL,Go(X'Y)v(y)u(y) dy 

and the fact that with v(x) belonging to C (D) the operator ®i 
given by 

®iU = L,Go(X,Y)v(Y)u(Y) dy 

maps C (Di) into C I(R 3), it is seen that the solution u(x) ofEq. 
(A2), when it exists, will belong to C I(R 3). Since the integral 
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operator in Eq. (A2) (an integral equation of the second kind) 
is compact, uniqueness implies existence of solution. Be
cause the solution for the corresponding homogeneous equa
tion belongs to C I(R 3), uniqueness follows [proof identical to 
Leis 13 for the case where nIx) is continuous everywhere). As 
an immediate result, it is seen that the scattered field US(x) 
produced by the incident wave ui(x) belongs to C I(R 3). This 
follows on takingf(x) = kV(x) in Eq. (AI). 

In addition, the properties of the Green's function 
G (x,xo;k,v) associated with Eq. (I) may be obtained. With the 
decomposition 

G (x,xo;k,v) = Go(x,xo) + k 2 L Go(x,z)Go(Z,xo)v(z) dz 

+g(x,xo), (A3) 

it can be shown that the term g(x,xo) satisfies the integral 
equation (A2) with 

fIx) = k 4L Go(x,z)Go(z,xo)v(z) dz. (A4) 

With the decomposition of the integral expression over D 
into integrals over Di' it can be shown thatf(x) given by Eq. 
(A4) belongs to C (R 3). Thus it follows from symmetry and 
previous arguments that the second and third terms on the 
right-hand side ofEq. (A3) belong to C(R 3)XC(R 3) and 
C I(R 3) X C I(R 3), respectively. 

APPENDIX B: EXPLICIT EXPRESSIONS FOR 8Bj , H;, 
AND Hj' 

As a preliminary, the differentials 8G and 8u, where u is 
the total field, are required. Using the differential equation 
for G (x,y;k,v) 

..dG (x,y;k,v) + k 2(V + I)G (x,y;k,v) = - 8(x - y) 

and the similar equation for G (x,y;k,v + 8v), it can be shown 
that 

G (x,y;k,v + 8v) 

= G (x,y;k,v) + k 2 L G (x,z;k,v)G (y,z;k,v + 8v) 8v(z) dz, 

from which it follows that 

8G (x,y;k,v) = k 2L G (x,z;k,v)G (y,z;k,v) 8v(y) dy. (BIl' 

From integral equation (3) for the total field 

u(x,k;v + 8v) 

= u(x,k;v) + k 2 L G (x,y;k,v)u(y,k;v + 8v) 8v(y) dy, 

it follows that 

8u(x,k;v) = k 2 L G (x,y;k,v)u(y,k;v) ov(y) dy. (B2) 

Now, from Eq. (9) and (11), B, is given explicitly by 

B, + iB'+N = u:"(x,,kd - uS(x"k"v); 

hence, on using Eq. (B2), it is seen that 

o(B, + iB'+N) = - k; L G(x,,y;k,,v)u(y,k,;v) 8v(y) dy, 

which, on using Eq. (10), yields 
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tJB[ = - (H[,tJv), 1= 1,2, ... ,2N. 

From Eq. (10) it is seen that 

tJ(H[ + iH[+ N) = k 7u(y,k[;v) tJ6(x[,y;k[,v) 

+ k 76 (x[,y;k[,v) tJu(y,k[;v); 

hence, on using Eqs. (B1) and (B2), it follows that 

tJH[ = L H '(x,y,v)v(Y) dy, 

where 

H,(x,y;v) + iH/+N(x,y;v) 

= k tG (x,y;k[,v) [u(y,k[;v)G (x[,x;k[,v) 

+ u(x,k[;v)G (x[,y;k[,v)). 

(B3) 

(B4) 

For v sectionally continous function, the terms in the square 
brackets will be continuous functions of x andy over D. 
Hence, from the remarks made in Appendix A, H; as a ker
nel of an integral operator will map C (D) into C I(D ). 

One can proceed in a similar position and show that if 

tJH; = L H ;'(x,y,z;v) tJv(z) dz, 

then 

H ;'(x,y,z;v) + iH ;'+ N (x,y,z;v) 

= Q (x,y,z) + Q (y,z,x) + Q (z,x,y), 

where 

Q (x,y,z) = k ~u(x,k[;v)G (y,z;kuv) 

X [G (x,z;k[,v)G (x[,y;k[,v) 

+ G (x,y;k[,v)G (x[,z;k[,v)]. 

(BS) 

(B6) 

Since the points x[ are exterior to D, it follows from the 
results in Appendix A on the behavior of the scattered field 
US(x) and the Green's function that H ;'(x,y,z;v) has the gen
eral form 

H ;'(x,y,z;y) = A (x,y,z) + A (y,z,x) 
Ix-ylly-zl Iy-zllz-xl 

+ A (z,x,y) 
Iz-xllx-yl' 

(B7) 

where A (x,y,z) is a continous function of x, y, and z over D. 

APPENDIX C: EXPLICIT EXPRESSIONS FOR F{x), F'(x,y) 

From Eq. (16), it can be deduced that the differential of 
the inverse matrix I H ij} is given by 

2N 
tJHij = - L Hip tJHpk H kj , 

k,p= I 

where from Eq. (15) 

tJHpk = (tJHp,Hk ) + (Hp,tJHk)· 

From Eq. (20) and (C1) it follows that 
2N 2N 

L B j 8HijBj = - L TJp 8Hpk TJk' 
iJ= i k,p= I 

which reduces to 
2N 

= - 2 L TJp (tJHp, w) 
p=1 
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(C1) 

(C2) 

(C3) 

on using Eq. (19). Inserting this into Eq. (25), the differential 
off takes the form 

2N 
-! tJf = (w,tJv.) + L TJp(tJHp ,wI 

p=1 

= (w + q,tJv.), 

where on using Eq. (27) 

q(x) = P~ITJp L H ; (x,z)tJv. (z) dz. 

(C4) 

(CS) 

To compute the second differential off, the differential 
of TJj is needed. From Eq. (20), tJTJj is given by 

2N 
tJTJj = L [B k tJHjk + Hjk tJB d 

k=1 

which on using Eqs. (B3) and (C2) reduces to 

2N 
L Hjp(Rp,tJv.), (C6) 

p=1 

where from Eqs. (C2) and (19) 

Rp(x) = Hp(x) + LIH;(x,z)W(Z) 

2N 
+ L TJkH~(x,z)Hp(z)} dz. (C7) 

k=i 

From expression (C4) for tJf, the second differential is seen to 
have the form 

2N 
-! tJ2f = (tJw,tJv.) + L tJTJp(tJHp'w) 

p=1 
2N 

+ L TJp [WHp,w) + (tJHp,8wl]. (C8) 
p=1 

Using the result obtained from Eq. (19) 
2N 

tJw = L (Hj tJTJj + 'T/j tJHj) 
j=1 

expression (C8) reduces to 

2N 
+ L 'T/p'T/j(tJHp,tJHj ) 

j,p= I 

2N 

(C9) 

+ L'T/p[tJHp,tJv.)+WHp,w)]. (C1O) 
p=i 

Finally, inserting expression (C6) into (CIS) and using the 
definition 

tJ2f = ((F',tJv),tJv), 

it is seen that 

V. H. Weston 1389 



                                                                                                                                    

V'(x,y) = j,p~ I (Rj(x)lijpRp{y) 

- 1lJ1Jp L H ; (x,z)H ;(y,z) dZ} 

- p~l1Jp{H;(X'Y)+ LH;(X,y,z)W(Z)dz}. 

(Cll) 

Using the result that! HI (x) J i~ I' w(x) and q(x) are con
tinuous functions over D, H ; (x.}') is a polar kernel, and 
H ;'(x,y,z) has the general form given by Eq. (B7), it can be 
shown that F'(x,y) is a polar kernel with general form 

F'(x,y) = y(x,y)llx - yl, (CI2) 

where y(x,y) is C (D) X C (D ). 
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Linear response theory revisited. IV. Applications 
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The one-body linear response expressions (diagonal and nondiagonal) for the dc electrical 
conductivity, obtained in a previous paper, are applied to specific situations. In the case of "no 
collisional current" we evaluate the relaxation times which enter an expression (diagonal) for the 
longitudinal magnetoconductivity; in the case of "collisional current" another expression 
(diagonal) for the transverse magnetoconductivity is evaluated. The calculations are carried out in 
the framework of electron-phonon interaction in crystalline materials; various kinds of phonons 
are considered. The formula for "collisional current" is also used for an analytic evaluation of the 
phonon assisted hopping conductivity in crystalline and amorphous materials. The results are in 
harmony with those of the literature or are new. Further, the nondiagonal expression leads to a 
result for the oscillatory Hall effect, which, in contrast with previous results, is independent of the 
interaction (e.g., interaction with impurities). 

PACS numbers: 03.60. + w, 72.10. - d, 72.lO.Di 

1. INTRODUCTION 

In the first paper of this series,1 referred to as LR TI, the 
Kubo-Green formulas, which relate transport coefficients 
to certain forms of the correlation function of fluctuations 
about an equilibrium state, were discussed, and a reinterpre
tation of linear response theory was given. In particular, it 
was argued that in Kubo's theory proper no dissipation oc
curs as reflected by zero entropy production and the Heisen
berg form for the time-dependent operator B (t ) of the system. 
Dissipative behavior was introduced by writing the system 
Hamiltonian asH = HO + AV, whereHo represents the mo
tion proper and A V the interaction causing randomizing 
transitions between the eigenstates of HO (e.g., electron
phonon interaction). The application of the van Hove limit, 
,1--0, t~ 00 , A 2t finite, led to an entirely different time be
havior of the reduced operators B R (t). In the subdynamics 
of HO the reduced operators show clearly relaxation 

K:(t)=e-Ad'K:(O); (1.1) 

hereK :(0) = Kd K ~ is the Schrodinger operator, and "d " 
denotes the diagonal part in the representation of HO. Ad is 
the master superoperator in Liouville space, defined by 

AdK = - Ilr)(rl[WY'y<rHIKlrH) - Wyy·(rIKlr)], 
yy' 

(1.2) 
where Ir) are the eigenstates of HO, with eigenvalues €Y' and 
where the transition rate Wyy' is given by the golden rule (the 
Van Hove limit is equivalent to the first Born approxima
tion) 

Wyy' = 21TA
2

1 (rlVlrH)lZ8(€y -€y")= Wy"y' (1.3) 
Ii 

In the second paper of the series,2 referred to as LR TIl, 
it was shown that the linear response formulae of LR TI in 
the Van Hove limit could be obtained without previous 
knowledge of the Ku~reen formulae. To that purpose, 
Zwanzig's projection operator technique was applied to the 
von Neumann equation for the total density operator. The 

01 Presently at the Max Planck Institut fur Festkiiperforschung, Stuttgart, 
FRG. 

total Hamiltonian was H = HO + AV - AF(t), where 
- AF(t), the field Hamiltonian, represents the coupling of 

the system to an external field, with F (t ) being a generalized 
force and A the conjugate extensive operator. The "projec
tion" was followed by the application of the Van Hove limit, 
and this led to a many-body inhomogeneous master equation 
(diagonal), which contains not only the relaxation terms of 
the Pauli master equation but also the coupling to the exter
nal field. The solution of this master equation gave the new 
many-body response formulae identical with those ofLRTI. 
At the same time the solution of the nondiagonal master 
equation obtained in LR TIl led to the nondiagonal many
body response formulas for the susceptibility and conductiv
ity. 

In the third paper,3 referred to as LRTIII, a reduction 
was made of the many-body results ofLRTI and LRTII to 
one-body results. To that purpose, the Hamiltonian HO was 
considered to represent a fermion and a boson gas and A V the 
interaction between them being of binary nature. In second 
quantization formalism it is 

HO = In;€; + IN'IE'I' (1.4) 
; 'I 

In these expressions II; ) J, 111]) J denote the sets of one-parti
cle states for fermions and bosons with eigenvalues €; and 
E'I' respectively. n; = 4c; and N'I = a~a'l are the number 
operators with eigenvalues n; and N'I' while the c's and the 
a's are the creation and annihilation operators for fermions 
and bosons, respectively. 

As for the field Hamiltonian - A·F (t ), in the case of an 
externally applied electric field E (t), it is F(t) = qE(t) and 
A = ~i(Ci - (ceq»), where q is the charge of the carriers, Ci 
their positions, and (ci ) eq their positions prior to the switch
ing on of the electric field. The electrical current Schro
dingeroperatorisJ = q~iv;ln = qA In, wherenisthevol
ume of the sample. 
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The diagonal form of the reduced current operator (de
noted by the superscript R ) of a variable B is [cf. LR TIl Eqs. 
(4.28) and (4.29)] 

J~d B: = -AdBd + (B)d' (1.7) 

where the time-dependence for (B R (t lld is again given by 
(1.1). Then, the many-body formula for the diagonal part of 
the conductivity, denoting by Greek sUbscripts the tensor 
components, reads ({3 = lIkT) 

~v(iw) = {3fl i oo 

dt e ~ iw' Tr [ PeqJ:J ~L (t)], (1.8) 

with 

see Eqs. (2.5) and (2.6) ofLRTIII. The reduction of the 
many-body expression (1.8) [as well of the expression (1.18); 
see below] to a one-body expression was made in LRTIII 
with the help of a few theorems connecting the many-body 
aspects, expressed by the superoperator Ad (or the master 
operator M), with the one-body aspects, represented by the 
Boltzmann operator [see LRTIII, Eqs. (2.12), (2.16), (2.30), 
and (2.32)]; the latter is defined, in function space, by 

/!lJ; 1(;) 

= II Ww 1(;)[ 1 -/(;')] - wn/(;')[ 1 - 1(;)]. 
;' 

(1.10) 

The fermion transition rates w;;' are given by 

w;.;' = IQ(;",7]";;',r()(N1],,(l +N1]')eq 
1]'1]' 

;:::; IQ(;",7]";;',7]')(N1]")eq(l + (N1]')eq); (1.11) 
1]'1]" 

as usual, it has been assumed that the bosons remain at equi
librium. The latter equality is based on the truncation rule of 
LRTII, Eq. (8.1) and the Q's are the binary transition rates 
[see LRTII, Eq. (8.18)]. Using the equilibrium Bose-Einstein 
distribution, one finds 

(1.12) 

[cf. LRTIII, Eq. (2.15)]. 
The first term of(1.9) or (1.7) represents the "colli

sional" current of LR TIl and LR TIll, the second term the 
"ponderomotive" current. In the absence of collisional cur
rent, i.e., when (; Iri - r~ql;) = 0 [see the definition of Ad' 
Eq. (1.2)], the many body conductivity (1.8) reduces to [cf. 
LRTIII, Eq. (2.55)] 

-1i • q2 "" J(n;) eq VV;VfL; 
U:·v(IW);:::; - - £.-

fL fl; J€; iw + 1h(€;) 
(1.13) 

where the relaxation time T(€;) is defined by Eq. (2.53) of 
LRTIII, i.e., 

/!lJ~VfL; = Iw;;,(v fL; - VfL;-! = _1_ vfL;, (1.14) 
;' T(€;) 

v; is the velocity matrix element (; Iv I; ). Equation (1.14) is 
valid for near-elastic collisions as can be seen from (1.10) by 
writing Ww ;:::;W;,;.4 More interesting, however, formulas 
(1.13) and (1.14) remain unaltered when we deal with nonde-
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generate systems and inelastic collisions. In this case (1.13) 
has been obtained by solving the quantum Boltzmann equa
tion ofLR TIl; it then turns out5

,6 that one has to evaluate the 
quantity /!lJ; (n;) eq VfL;' Using the definition of /!lJ ;, Eq. 
(1.10), and taking (n t ) eq ;:::;e ~ PIE; ~ EFI, one finds, on account 
of (1.12), 

/!lJ; (n;) eq vfL ; 

(1.15) 

(1.16) 

When there is only collisional current, i.e., when the 
second term of(1.9) vanishes. The expression (1.8) reduces in 
the dc limit (f..l = v = x), to 

~x(O) 

{3q2 2 
=Uxx = -I(n;)eq(l- (n;')eq)W;;,(X; -Xd, 

flw 
(1.17) 

where X; = (; Ixl;), cf. LRTIII, Eq. (2.84), This formula is 
the extended Adams-Holstein resule for processes involv
ing inelastic binary collisions. It was first given by Argyres 
and Roth. 8 It has also been obtained to within a proportion
ality constant, for amorphous materials, by Capek9 and by 
Zvagin.1O Likewise, it can be derived by solving the quantum 
Boltzmann equation of LR TIl. 11,6 

The many-body nondiagonal part of the conductivity 
reads 

U;:~(iw ) 

= fl i oo 

dt e ~ i,M f: d{3' Tr[ PeqJ ~dv( - ili/3 ')J~dfL (t)], 

(1.18) 

Here J ~ =};qvndlfl, there being no collisional current for 
the non diagonal part [compare Eq. (1.7)], Further, 

(1.19) 

and 

(1.20) 

see LRTIII, Eqs.(3.3), (3.4), and (3.5). The one-body result, 
obtained from (1.18), reads [compare LRTIII, Eq. (3.21)] 

U;:~(iw) = fl1i I '(n;,) eq (1 - (n;" ) eq) 
n" 

x [i9 1 + 1TD(€;. - €;' -W)], 
€;. - €;' -w 

(1.21) 
where 9 denotes the principal part and where the prime on 
}; means; , of.; "; this result can also be obtained6 from the 
solution of the nondiagonal Boltzmann equation ofLRTIII. 

The reason for this somewhat lengthy introduction was 
to present partly the line of development from LRTI to 
LR TIll as well as all the necessary formulas for the calcula
tions of the subsequent sections. 
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The paper is organized as follows: in the next section, 
dealing with longitudinal magnetoresistance, we will evalu
ate the relaxation times entering the expression (1.16) for 
electron-phonon interactions; various kinds ofphonons will 
be considered. In the following section, using formula (1.17), 
we will evaluate the transverse magnetoconductivity for 
electron-phonon collisions; using the same formula, we will 
finish this section by calculating the hopping conductivity in 
crystalline and amorphous materials. In the last section the 
oscillatory Hall effect will be dealt with. A study of the two 
(one)-dimensional quantized Hall effect will be undertaken 
in a future paper. 

2. NO COLLISIONAL CURRENT; LONGITUDINAL 
MAGNETOCONDUCTIVITY 

We consider the case where in addition to the electric 
field a magnetic field is present. In the Landau gauge the 
one-particle Hamiltonian reads 

h 0 = ( p + eAf 12m, A = (O,Bx,Oj, (2.1) 

the magnetic field B being in the z direction. The one-particle 
eigenstates and eigenvalues are 

I;) = tPN(X +,,1, 2kyjeik,.v/k.,IIA 1/2, (2.2) 

Er;-ENkyk, = (N + 1I2)lituo + Ifk;/2m, N = 0,1,2,.··, 
(2.3) 

where Wo = IqlB 1m is the cyclotron frequency, tPN repre
sents the harmonic oscillator wave function, and A is the 
radius ofthe Landau orbit, A 2 = fzlmwo whose center is 
Xo = fzkylm*wo, and A is the area LyLz' the linear dimen
sions being Lx, Ly' L z. For crystals, we replace the mass m of 
the carriers (electrons) by the effective mass m*. In the repre
sentation (2.2) the following matrix elements have been com
puted by Kahn and Frederikse12

: 

(; Ixl; ') = XOONN,Okk' + (fzI2m*wo)I/2[(N + 1)1/2oN'oN + I 

+ (N)I/20N ',N_1 ]Okk" 

(; Iyl;') = (LyI2)ONN,Okk' =yeqoNN,Okk" 

(; Ivz I;) = fzkzlm*, 

(; IVxl;') 
= i(lituol2m*)1/2 

(2.4) 

(2.5) 

(2.6) 

X [ - (N + 1)1/2oN'.N+ I + (N)I/2)ON',N_1 ]Okk" 
(2.7) 

(; Ivy I; ') = (lituol2m*)1/2 [(N + 1)1/20N ',N + I 

+ (N)I120N',N_1 ]Okk" (2.8) 

whereokk , = Okyk ;Okzk;' As for the density ofstatesN(t), we 
find with 

(2.9') 

the result (spin included) 

fJlitu (2m* )3/2 Nmax I N(E) = __ 0 - L ' (2.9) 
(21Tf fz2 N ~E - (N + !)wo 

where, in transforming the sum over k into an integral, we 
assumed periodic boundary conditions with limits for x, 
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- LJ2 and Lx12, and for ky, - LxlU 2 and LxlU 2; we 
also used the property of the delta function (2.22) (see below). 
Nmax is the largest N for which the radicant is positive. 

From (2.7) and (2.8) it is immediately seen that there is 
no diagonal ponderomotive current corresponding to the 
second term of (1.9) either in the x or in the y direction, but 
only in the z direction. We also note that 

(; Iz - Zeq I;) = 0, (2.10) 

which means that there is no collisional contribution to the 
current in the Z direction, along which we will take the elec
tric field in this section. We can now use, for the evaluation 
of the longitudinal magnetoconductivity formula (1.16) 
which applies to the case of "no collisional current," of 
LRTIII, i.e., ponderomotive current only. For the relaxa
tion time T(Er;) = T(Ez ) we need the transition rate w{;r;" It is 
given for electron-phonon interaction by3.13 

Ww = L[Q (;,q-+; ')(Nq )eq + Q(;-+;',q)(l + (Nq)eq], 
q 

(2.11) 
with 

Q(;,q-+;') 

= (21Tlfz)IF(qWlf N,N' 1
2ok',k + qO(E; - Er;' + Eq), 

(2.12) 

Q(;-+;',q) 

= (21Tlfz)IF(qWlf N'.NI2ok',k_qO(Er; - E{;, - Eq) 

and 

N'I 
IfNN'12= N;e- Xx N- N'[LZ- N'(x)]2, N'",N, 

(2.13) 

If ' 12= N! e-XxN'-N[LN'-N(x)] N N' 
N N N'! N' '" . 

The first term of (2.11) corresponds to the absorption of 
a phonon with wave vector q and energy Eq , the second to 
the emission. The symbol Ok'.k ± q is an abbreviation for 
Ok ;,ky ± qy Ok ;,k, ± qz and the quantity x is equal to (A 21fz2)qi 

= (A 2Ifz2)(q~ + q;). (Nq ) eq is the equilibrium number of 
phonons and F (q) is an interaction function depending on the 
model (deformation potential, etc.). All these quantities de
pend on the kind ofphonons considered. Finally, L Z' - N(X) 
is a Laguerre polynomial and N, N' are integers' correspond
ing to Landau levels. 

Since we want to evaluate the magnetoconductivity for 
non degenerate carriers we can use the expression (1.14) to 
evaluate the relaxation time. In the Ihs of (1.14), we substi
tute the expressions (2.6) and (2.11 )-(2.13), and we carry out 
the sum over k; and k ;. In addition, in the absorption term 
we put 

N' - N = M, M = 0,1,2, ... , 

and in the emission term 

N' -N= -M, M=0,1,2,oo .. 

(2. 14a) 

(2.14b) 

For the arguments of the delta functions we use (2.3) 
and for the sum over q, in cylindrical coordinates, we write 

(2.15) 
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We then find, with (Nq ) eq = No, 

lhs of (1.14) 

= - 1Tfz~)' 2 ~I dqz IF(qWqz 

X { - Na8( q; + 2kzqz 

2m* N') + -;2 (Mlimo - Eq) . IN 
n- (N+M)! 

+(I+No) 

( 
2 2m* ) XO qz - 2kzqz - -2- (Mlimo - Eq) 

(N-M)! } 
X N! I N _ M , 

where 

IN = fO e - xXM [ L ~(X)] 2 dx 

(2.16) 

(2.17) 

and where, in view of the approximations that will follow, we 
pulled the factors No, 1 + No, IF (qW and the delta functions 
in front of the integrals over x. For M> 0 the above expres
sion, upon using the values of the integrals IN from the Ap
pendix [cf. (AI) and (A2)], reduces to 

lhs of (1.14) 

e
2 I = - 1Tfz2). 2 ~ dqz IF(qWqz 

X { -NoO( q; + 2kAz + 2;* (Mlimo - Eq)) 

(N - M )! (1 N. ) + N! + 0 

( 
2 2m* )} XO qz - 2kzqz - fz2 (Mlimo - Eq) . (2.18) 

As for the rhs of (1.14) from (2.6) we get 
1 efzkz 

rhs of (1.14) = - - --. (2.19) 
r{Ez ) flm* 

To proceed further, we have to consider various kinds 
of phonons; we will consider longitudinal phonons in the 
deformation potential scheme. 

A. Undamped case 

In this subsection we will not consider any collision 
broadening tiffects; these effects will be dealt with in the next 
subsection. 

1. Acoustical phonons 

As usual, Eq ;::::fIU~, Uo being the sound velocity, and 

IF(qW = c'q = (c2/2pUO)q, (2.20) 

where p is the density and c the deformation potential con
stant. Further, expanding the exponential in 
No = (tfEq 

- 1) -I up to third order, we find 
c' 1 

IF(qWNoz -- , 
/3fzuo 1 + ! /3fzu~ + ... 

IF(qW(l + No)z _c' _ _____ _ 
/3fzuo 1 - ! /3fzu~ + ... 

(2.21) 

In (2.18) and (2.21) we take qzqz. This approximation is 
justified as follows: in evaluating (1.16) we will need the den
sity of states which diverges [see Eqs. (2.9) and (2.3)] for Kz 
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-0, i.e., for small qz; however, due to the factorjzJzr; [see 
(1.16)] this divergence disappears. Moreover, since the elec
tric field and the current are in the z direction, we expect the 
largest contribution to the current from processes involving 
large momentum transfer in the z direction, i.e., processes 
with large q z and consequently small q l' Actually the situa
tion is more complex, but, as indicated by Barker l4 and by 
Peterson 15 for the nondegenerate case, the approximation is 
justified. 

For the integral over qz we use the following property of 
the delta function 16: 

I 
O[g(x)] = I -, - o(x - xj ), (2.22) 

j Ig (xj)1 

where g'(x) is the derivative of g(x) and Xj its zeros. We then 
easily find, upon using (2.19), 

flm*cc' { I 
efzkz 1Tfz2). 2a I ~ (a~ - 2a3M ) 1/2 

X I } (N -M)l! 
I-al -a2 + !aia3M N! 

X II} 
(a 2 + 2a M ) 1/2 I + a a - I a 2 

2 3 I 2 '2 I 

X(a2 + a la 3M), (2.23) 

where a I = /3fzuo, az = kz - m*uolfz, and a 3 = m*wolfz. 
This expression for r(Ez ) is too complicated to substitute in 
(1.16). If we keep only the linear term in q in the expansion 
for No, i.e., if we take No z I + No z (a Iq) - I, then we find 

_1 __ 2flc'ap2 ,,{ I 
r{Ezl 1Tfz3a Ikz ft (a~ - 2a3M ) 1/2 

+ 
(N - M)lIN! } 

(a~ + 2a3M ) 1/2 . 
(2.24) 

In the quantum limitM = 0 and (2.18) is greatly simpli
fied; upon substituting the values of a I, a Z,a3 we find 
(c = EI/fl liZ) 

_1_ = _1_ (2m* )3/2 EikT limoEz -1/2, (2.25) 
r(Ez ) 21T fz2 ftpu~ 

where E z = fz2 k ; 12m *. This result remains the same even if 
the collisions are elastic; it is easily seen by putting Uo = 0 
only in a 2, appearing in (2.24). In the literature l5

,17 we find 
the result (2.25) to within a constant: 1/21T is replaced by 1/ 
41T. 

If the collisions are elastic, Eq z 0 and for M > 0, we find 

I _ 1 (2m* )3/2 EikT 
r(Ez ) - 21T fz2 ftpu~ 

Xlimo2] Er; - (N + ! )limo] - 1/2. (2.26) 
N 

This result is different from that of Argyres l8 only in that 1/ 
21T replaces 1/41T. 

2. Piezoelectrical phonons 

The only difference from the procedure of Sec. 2Al up 
to (2.24) is that IF(qW = P /q, where Pis a piezoelectric con
stant; we find 
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(2.27) 

3. Optical phonons 

As usual, we take Eq;::::,E = const and 

IF(qW = fl2~ =D', 
2{}pE 

(2.28) 

where D is a constant; we then find 

-=-- -- woL 1 f!D2 (2m*)3/2 { No 
r(€z) 8rrpE fl2 M -J€z-(M(i)o-E) 

+ (N -M)! 1 +No }. 

N! -J€z + (Mwo - E) 
(2.29) 

If the phonon energy is such that N - M> 1, then (N - M)lI 
N! may be approximated by 1 and (2.29) becomes identical 
with the result of Peterson 15 and of Kharus and Tsidil'kovs
kii. 19 This approximation, however, is redundant in the 
quantum limit, where M = O. 

4. Polar optical phonons 

The only difference from Sec. 2A3 is that 

JF(qW = ~ ;::::, ~, (2.30) 
q qz 

where A is a constant; the result is 

1 {}Am*I/2 1 

T(€z) = 2Y11Tf12 wo~ Mwo - E 

+ (N-M)! 1 +No }; (2.31) 
N! -J€z + (Mwo - E) 

this expression is much simpler than that given by Kharus 
and Tsidil'kovskii. 19 

We now go back to (1.16) and transform the sum into an 
integral; using the density of states (2.9), we find, with 
€z = € - (N + 1I2)wo, 

u = _ _ e_2_ ( 2m* )3/2W 
zz 2rm* fl2 0 

00 L[ €,(N + 1I2)wof12 xf N a(n,) d€,. (2.32) 
fUuo12 IIT(€z) a€; 

To proceed further, we have to substitute the various 
relaxation times. (2.32) is identical with the results of Ar
gyres 18 and of Peterson. 15 For acoustical phonons these 
authors have carried out the complete calculation with 11 
r(€z) given by (2.26); for optical phonons the calculation has 
been done by Peterson 15 and by Kharus and Tsidil'kovskii 19 
with (N - M )lINb 1 in (2.29). Finally, an approximate re
sult was given for polar optical phonons. 19 
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B. Collision broadening 

As indicated by formula (2.26), the experimentally ob
served oscillations of the magnetoresistance are due to the 
oscillating relaxation times [see the various expressions for 
l/T(€z)]. Note also that the relaxation time due to simulta
neous scattering processes is given, as usual, by 

1 _ L 1 (2.33) 
T(€z) - ; T;(€z) ' 

where i indicates a scattering process, e.g., scattering by opti
cal phonons, impurities, etc. However, the experimentally 
observed broadening of the oscillations of the magnetoresis
tance is not shown nor suggested by the above relaxation 
time formulas. A simple and heuristic way to include broad
ening in the calculations is to replace the delta functions, 
appearing in (2.18) by Lorentzians of constant width rand 
shift Li. In general, rand Li depend on the energy but the 
results one arrives at are similar. 20 Thus, using the represen
tation of the delta function 

8 (€k - €) = lim J..- Im(€i< - € - is)-1 (2.34) 
s--o+ 11" 

and letting €k ---+€k + Li - ir, the above-mentioned Lorent
zian has the standard form 

r 
rr (€k - € + Li )2 + r 2 . 

1. Acoustical phonons 

(2.35) 

We take Eq ;::::,flu~z and No;::::' 1 + No;::::' ( f3f1u~)-I; on 
account of (2.35), we get from (2.18) 

Ihs of (1.14) 

2Bc'F foo 
= - rfi3,1 2u

o
f3 ~ _ 00 dqz qz 

1 x---------------------------
[(2Bkz - fluo)qz + Bq; + CT + r 2 

+ (N -:- M)lI N! , (2.36) 
[ - (2Bkz - fluo)qz + Bq; _C']2 + r 2 

where B = fl2/2m * and C' = Mwo; for simplicity we took 
Li = O. In the absorption term we puty = qz 
+ (kz - fluol2B), in the emission termy = qz 
- (kz - fluol2B). The integrals over y can be found from 

tables,21 and the result for the absorption term is 

f: 00 dqz qz ! '" J 

= _ (k _ flU o ) ~ Re {E' + i r } - 112 (2.37) 
z 2f3 2Br B' 

where E' = (kz - fluol2B)2 - C'IB; for the emission term 
wefind(2.37)multipliedby - (N - M)lIN!. Combining this 
with (2.19) we find for the relaxation time 

1 m*c'{} kz - fluol2B 

2. Piezoelectrical phonons 

The procedure is identical; using the approximations of 
Sec. 2B 1, we find 
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m*Pfl 1 
---
r(Ez ) 21TfN.2uJl kz(kz -liuol2B) 

X~(I+ (N~~)!)Re{EI+i~}-1I2.(2.39) 

3. Optical phonons 

Using the approximations of Sec. 2A, we find 

_1_ = m*D 'fl "[N. + (N - M)! (1 + N. )] 
r(Ez ) 21rif3A 2 1:; ° N! ° 

{ 
r } - 112 

XRe E" +i li ' (2.40) 

where E" = k; - C I B, C = Mwo - E. (2.34) is in agree
ment with the result of Barker20 except for the factor 
(N - M)!/ N!, if it is approximated by 1 then, as shown by 

Barker,20 who used Poisson's formula for the sum ~ 
M 

Re!E" + ir IB J -1/2, (2.40) leads toa good agreement with 
experimental results of Stradling and Wood. 22 

4. Polar optical phonons 

As in Sec. 2A4, we easily find (q2;::::,q;) 

_1_ = m*Afl _1_ "[N. + (N - M)! (1 + N. )] 
r(Ez ) 21T1i3A 2 k; 1:; ° N! ° 

{ 
r}-1I2 

XRe E" +i li . (2.41) 

3. COLLISIONAL CURRENT 

Weare interested in the electrical conductivity in crys
talline materials in the presence of a magnetic field perpendi
cular to the electric field which is taken in thex direction. As 
stated at the beginning of the previous section, there is no 
diagonal ponderomotive current [see (2.7)]; there is only a 
diagonal collisional current as is seen from (2.4) and formula 
(1.17) for the transverse magnetoconductivity 
[X; = (; Ixl;)]. 

The situation is the same, i.e., there is only collisional 
current, in the case of the hopping conductivity because, as 
indicated by Mott and Davis,23 the diagonal matrix element 
of the velocity operator between localized states vanishes. 
Thus, in both cases formula (1.17) applies. In what follows 
we will evaluate the transverse magnetoconductivity in crys
talline materials for scattering by phonons (longitudinal 
phonons only in the deformation potential scheme) and the 
phonon assisted hopping conductivity in crystalline and 
amorphous materials. 

A. Crystalline materials, Landau states 

The Landau states and eigenvalues are given by (2.2) 
and (2.3). The transition rate w;;, is given by (2.11)-(2.13). 
From (2.4) it is seen that 

X; = (; Ixl;) = -A 2ky • (3.1) 

This means that the factor (X; - X;, f, appearing in (1.17), 
varies like (ky - k ;)2 = q;, due to the Kronecker deltas of 
(2.12). When (2.11)-(2.13) and (3.1) are substituted in (1.17), it 
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is easily seen that the only dependence of ax x on ky, k; 
comes from the factor (X; - X;, )2, i.e., axx -q;. But due to 
the cylindrical symmetry ayy must vary like q;. Thus, axx 
= ~ (axx + ayy ) will depend on ~ (q; + q;) = ~ q~ (see Ref. 

5). Carrying out the summation over k ;, we then get from 
(1.17) (n;>eq =j;J 

JTe2(JA 2 
axx = Iifl 

X I I xlF(qWlf N,N' 1
2
IN,k,(1-IN',k) 

N,N' ky,k:rk ;,q 

X [NJj(EN,k, -EN',k;+E)Ok;,k,+q, 

+ (I + No)O(EN,k, - EN',k; - Eq)ok;,k,_ qJ; (3.2) 

x, as before, is equal to A 2qi 12. As in the previous section, we 
will consider various kinds of phonons. 

1. Acoustical phonons 

a. Inelastic collisions: We take No;::::, 1 + No;::::' ( (JIiU~)-1 
and use (2.20); further, we take 

(3.3) 

this approximation is based on the fact that the density of 
states (2.9) diverges for kz-o, which means that the largest 
contributio'n to axx comes from processes involving small 
momentum transfer qz in the direction of the applied mag
netic field. 

We now change - qz to qz in the second term of(3.2) 
and use (2.22) for the integrals over qz; besides, to arrive at a 
"reasonable" integral over x, we neglect, in view of(3.3), qz 
in the factor IN',k;' Carrying out the sum over k; and the 

integral over qz' we find 

m*e
2
c' 1= 2 a xx = --4- I IIN.k,(l- IN',k,! dx xlf N,N' I 

21T1i Uo N,N'kY'k, 0 

X { (k; _ 2M IA 2 ~ 2m*uoqllli) 112 

+ 1 } (3.4) 
(k; +2MIA2-2m*u~111i)1/2 ' 

where we use (2.14). The summations over N, N I extend up to 
those values of N, N' for which the radicants are positive. 

In (3.4), we put ql = (2xIA 2)1/2, Ca = k; - 2M IA 2, 
Ce = k; + 2M I A 2 and b = (2m*uolli)(2/ A 2)1/2. The ratio 
b ICa,e is uo(2m*wo)1/2IEz + Mwo, i.e., much smaller than 
1 for M = 0; for M #0 we assume that Ez - Mwo is such 
that b ICa is smaller than 1. Using then the expansion 

(l+y)-1/2=1- !Y+ ~y2_ ti y 3+ ... , y<I,(3.5) 

we can write (3.4) in the form 
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X 1 + - - x + - - x + ... X J N,N' , ( 
1 b 1/2 3 ( b )2 ) I -r 12} 
2 Ce 8 Ca 

(3.6) 

The integrals over x are hard to evaluate in closed ex
pressions: they can be performed either numerically or by 
means ofthe hypergeometric functionY This is necessary 
only for the x mi2 terms with m odd; for m even, as shown in 
the Appendix, the integrations can be done exactly. Ifwe 
assume that the magnetic field is so strong that the phonons 
cannot induce transitions between the various levels N, N', 
i.e., if we can take N:::;N', thenM:::;O, Ca = ce = k;, the 
terms X ml2 with m odd cancel and (3.6) becomes 

m*e
2
c' l'" Uxx = ~ IIIN,k)I-IN,k,Jlca-

1I2
1 dx 

Yn~ N~~ 0 

X 1 + - - x+ -- - x 2 + ... xlfN,Nl2. (3.7) ( 
3 ( b )2 3S (b)4 ) 
8 Ca 128 ca 

The integrals over x are given in the Appendix, and we will 
consider only three terms in the expansion. 

(i) Degenerate case: SincelN,kz = (nN,k) eq is given by 
the Fermi-Dirac distribution function, we make the usual 
approximation 

PIN,k)l - IN,k,J:::;O(€z - €;'), €;, = €F - (N + ! )wo· 
(3.8) 

With (3.8), the density of states (2.9) and the results for the 
integrals over x we find [cf. (A6), (A 7), (A9)]: 

m*2e2E 2 UJ = 2 I 0 U xx 
(211lpu~fl4p 

XI{ 2N:r 1 
N €F 

3b'2 3N 2 + 3N + 1 + --- ---~----
4 €;,3 

+ ~ b,4 (2N + 1)(SN2 + SN + 3) + ... }, (3.9) 
64 €;,5 

where b' = (fJ1b 12m*) = uo(2m*wo)1/2, In the quantum 
limit N = 0 and the first term of(3.9) gives twice the result of 
Kubo et al. 24 

(ii) Nondegenerate case: As usual, we take 

r (1 I" ) . r /31€,,- €zl 
j N,kz - j N,kz :::;j N,k, = e ; 

we then find 

+ _3_S b,4 ..!...(2_N_+~1~)(S_N_2_+.:....-SN---.:+_3-!..) + ... }. 
64 €; 

From tables of integrals,21 we find 

L'" x v
- I(X + c) -Pe -I''' dx 

1 (C)V - 112 ( cll ) 
= Iii -;; e

c
p.r(v)K1I2_v 2 

[largcl<1T, Rell>O, Rev>O), 
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(3.10) 

(3.11) 

(3.12) 

where F(v) is the gamma function and Kv(x) the modified 
Bessel function. The integrals appearing in (3.11) can be writ
ten as 

m = 1,3,S, .... (3.13) 

WithF(!) = Iii,Ko(x)~ln(2Iyx)(y = 1.781), and (3.12)we 
get from (3.11) (we don't take the limit c~, though c«l) 

u
x
,,:::;2 m*2e

2
EiUJo I?[<F-IN+ 1121Iiwnlln( __ 4_) 

(21T)3pU~fl4 N ycP 

X!(2N+ 1)+ ~b'2(3N2+3N+ 1) 

+ ~b'4(2N+l)(SN2+SN+l)+ ... J, (3.14) 

As in (i) the first term of(3.14) in the quantum limit 
(N = 0) gives twice the result of Kubo et al.,24 if we take 
c = (2ely)1/2 (fluolA.):::; 1.23b; the other terms represent 
"corrections." The summation over N can easily be per
formed but the result is complicated. Assuming N max - ct:) , 

we find for the first term6 

first term of (3.14) 

:::; m*2e
2
EiUJo ?€F coth(pwoI2) In(_4_). (3.1S) 

(21Tffl4pU~ sinh( pwoI2) ycP 

b. Elastic collisions: If we repeat the calculations with 
Eq :::;0, then, instead of (3.4), we find 

m*e
2
c' l'" I -r 12 U xx = --4- I IIN.k)I-IN.k,l dxx J N,N' 

21rli Uo N,N'kyok, 0 

= { (k; - 2~ I A. 2) 112 + (k; + 2~ I A. 2) 1/2 }. 
(3.16) 

In arriving at (3.16) we replaced 1 - IN',k; by 1 - IN,k, due to 

the delta function 0 (€N,k, - €N'.k). The result for the inte

gral over x is found in the Appendix [see (A4)]; with that 
(3.16) becomes 

m*e2c' 
u"x = 21rli4 I IIN.kz(1 - IN,k) 

U o N,M ky,k, 

X + ' { 
2N+M+l 2N-M+l} 

( k; - 2M I A. 2) 112 ( k; + 2M I A. 2) 112 
(3.17) 

(i) Degenerate case: With (3.8) and (2.9), (3.17) becomes 
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e -{3E, { 2N + M + 1 2N - M + I } 
X -- + -;===;~= 

F: ~ Ez - Mwo ~ Ez + Mwo 
(3.19) 

The integral for the emission form is given by (3.12); the 
integral over the absorption term can easily be evaluated 
with a change of variables, x = Ez - Mwo. The result is 

*2 2E2 
= mel Wo ~ e[EF- IN + 11211i,"o] 

U xx 3 2 4 ~ (21T) pUo -It N.M 

X [ (2N + M + I)e - aM 

+ (2N -M + l)eaMlKo(aM), (3.20) 

where a = (3wol2. The sum over M can also be performed.6 

For M = 0, we find the first term of(3.14). 

2. Optical phonons 

From (2.28), (3.2), and (A4) of the Appendix, we get 

m*2e2D 'nwJ3 f 
Uxx = 4~-It4 N~' dEz IN.k,(1 - IN·.k) 

{ 
No(2N +M + I) 

X F:~t:z + E - Mwo 

(I + No)(2N - M + 1) } + . 
F:~Ez - (E - Mwo) 

(3.21) 

(i) Degenerate case: If Nand N' are large, we may take 
N';::::.N in/w.k,; then, upon using (3.8), we find 

m*2e2D'nwJ3 { N + N' + I 
U

xx 
= 4~-It4 J,;. ~EF - (N + 1/2)wo 

X 
No 

~EF - (N + 1/2)wo + E 

+ I +No }. 
~EF - (N + 1/2)wo - E 

(3.22) 

(ii) Nondegenerate case: If we use (3.10), the integrals 
over Ez take the same form as those encountered previously 
[see (3.12) and (3.19)]; they can be easily evaluated. 6 The re
sult is 

X [No(2N + M + l)eZ 

+(1 + No)(2N-M+ l)e-ZlKo(lzl), (3.23) 

wherez =(3(E - MWo)/2. Forz~O, i.e., whenM~L/(tJo, 
W L being the phonon frequency, we get a logarithmic diver
gence, since Ko(lzl);::::. - In(lzl). 

3Po~ropijcalphonons 

The procedure is identical with that of (3.12), the only 
differences being the use of (2.30) with q2;::::. q~ instead of 
(2.28) and the use of (AI) and (A2) for the integrals over x 

(i) Degenerate case: We find 

m*e2An 

U
xx 

= (21T-1l) 3 J,;, ~EF - (N + 1/2)wo 

{ 
No 

X ~EF _ (N' + 1/2)wo + E 
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+ N'! I +No } 
N! ~EF - (N' + 1/2)wo - E . 

(3.24) 

The quantum limit version of (3.24) (N = N' = 0) is 
much simpler than the result of Efros. 25 For N'V N!;::::. 1 we 
can perform the summations over Nand N' according to a 
method by Adams and Holstein. 7 Writing EF/WO = I 
+ 0 + 1/2, where I is an integer and where 0<0< I, we have 

I 1 1 {( E F ) 112 } I ---;::====:;;=::;::::;;:::;:=- = - 2 - + ¢ , 
N ~EF - (N + 1/2)wo ~Wo Wo 

(3.25) 

i 1 
N' ~EF - (N' + 1/2)wo ± E 

_ I {(EF-E)I12 } ---2-- +¢, 
~wo Wo 

where¢= -2(~ +o)1/2+ o -1/2+(I+o)-1/2,ForEF 
).E, the two sums become identical and (3.24) takes the sim
ple form 

U xx = m e 3 (2No + 1) 2 _F_ + ¢ . (3.26) * 2An { (E )112 }2 
(21T-1l) Wo Wo 

This expression diverges for o~. Efros,25 following a differ
ent procedure, neglects the third term in ¢ and finds a loga
rithmic divergence: 

U xx 0::: Ino(l-o), 

(ii) Nondegenerate case: The result has been obtained by 
Charbonneau5 using the same formalism and is 

U = m*e
2
An(3 Ie{3[EF-IN+ I12 lliwo] 

xx (21T-1l) 3 N.M 

X [Noez + (N -;,~)! (1 + No)e-Z]Ko(lzl), (3.27) 

with Z, as in Sec. 3A2, equal to (3 (E - MWo)/2. Equation 
(3.27) exhibits the same logarithmic divergence, obtained in 
the literature,26.2o as (3,23). 

4. Collision broadening 

The unpleasant logarithmic divergences of the previous 
subsection [cf. (3.20), (3.23), (3.27)] disappear by taking into 
account collision broadening of the energy levels or by going 
beyond the Van Hove limit (i.e., the first Born approxima
tion). Collision-broadening effects are more important at 
high temperatures, and we will consider them, in what fol
lows, in the simple way of Sec. 2B only for the nondegenerate 
case. 

a. Optical phonons: We start from (3.2) in which we 
change - q z to q z in the emission term and perform the sum 
over k ;. We substitute (2.28) and use (3.10). The delta func
tions are replaced by the Lorentzians (2.35) and for the inte
grals over x we use (A4); with the density of states (2.9) we 
find 
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xJOO d No(2N +M + 1) + (1 + No)(2N -M + 1) 
qz k 2 2 2 

- 00 (2Bqz z +Bqz + C) +F 
(3.28) 

with B = If 12m * and C = ± Mwo + E - ..1, the upper 
signs corresponding to absorption, the lower to emission. 
The integral over qz is transformed by y = qz + kz and the 
result, apart from the constants, is21 

I(kz) = (1T12BF) Re{E' + iF IB j-I/2, (3.29) 

where E' = k; - C lB. Then, the integral over kz' with 
k; = x, becomes 

1
00 

{ (C + iF) } -112 I=Re 0 dx x- B e-{3Bxx -I/2 

= Re exp [ ~ (- C + iF)]Ko[ ~ (- C + iF)]. 

(3.30) 
The result for 0' xx is 

e2[JD 'f1m*OJo I ~ ["F- IN + 112)fiwo] 

4rlj4 N.M 

X (No(2N +M + 1) + (1 + No)(2N -M + III 

xReexp [ ~ (-C+iF)]Ko[ ~ (-C+iF)]. 

(3.31) 

b. Polar optical phonons: Following the steps of Sec. 
3A4a, we find, with (2.30) and (AI), (A2), 

0' = xx 
m*e2[JAf1 I~[€F-IN+ 112)fiwo] 

(21T1if n.M 

X {No + (N ~~)! (1 + No)} 

xReexp [ ~ (-C+iF)]Ko[ ~ (-C+iF)]. 

(3.32) 

This expression is essentially the same as that given by 
Barker. 14 To make a comparison with (3.27) we define26 0 P 

= OJ LIN 0- P, where OJ L is the phonon frequency and P the 
largest integer contained in OJLIOJo. The divergent terms of 
(3.27) are those with P = M and 0 P -0 or P = M - 1 and 
o P--+l. But for these values the expression (3.32) does not 
diverge. WithKo(x)::::: -lnx,x<:l, (3.32) behaves, itsoscilla
tory part represented by the divergent terms as (0 P = 0 ) 

In I ! [J ( - C + iF)1 = In{ (fJwol2)[0 2 + (F IWO)2] j. 
(3.33) 

The same remark applies also to (3.31) when compared with 
(3.23). An harmonic analysis of(3.33), using the Poisson sum 
formula, done by Barkerl4 leads to a good agreement with 
the experimental results.22,27 

c. Acoustical phonons (elastic collisions): The calcula
tions for inelastic collisions become very complicated, there
fore we limit ourselves to elastic collisions. Proceeding as 
above, we find (Eq :::::0) 

m*2e2E 2 OJ 
0' = 1 0"~[€F-IN+1I2)fiwo](2N+1) 

xx (21T)2pu~1j4 It.t 

1399 

X Re exp [ ~ (- C + iF)]Ko[ ~ (- C + iF)]. 

(3.34) 
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where C = ± Mwo -..1. The divergence of (3.20) disap
pears again. The sum over N can be performed. 6 

B. Hopping conductivity 

In doped semiconductors at low temperatures the num
ber of the ionized impurities and the density of carriers in the 
conduction band become very small, However, transport ef
fects are observed (e.g., residual conductivity), and they are 
attributed to the formation of an impurity band; this means 
that if the impurity number is not very small, the wave func
tions of the electrons bound to impurities have a certain 
overlap and the electrons can tunnel from one impurity site 
to another. However, if the impurity number is very small, 
the overlap of the electronic wave functions becomes negligi
ble, i,e., the electronic states become localized. Yet, trans
port effects are observed, and they are due to the hopping of 
the electrons from one localized state to another, the neces
sary energy for the jump being provided by the acoustical 
phonons since the temperatures are very low. The situation 
is the same in amorphous materials with localized states. 

As mentioned earlier, there is only a collisional contri
bution to the current and for the dc conductivity formula 
(1.17) applies. In what follows, limiting ourselves to very low 
temperatures, we will evaluate the dc conductivity for both 
crystalline and amorphous materials. It will be shown that in 
the first case (1.17) leads to an activated type of conduction, 
0' = O'oe - €/kT, whereas in the second case to the variable 
range hopping law of Mott and Davis. 23 

1. Crystalline materials 

We adopt the model of Miller and Abrahams28 for near
est-neighbor hopping between donor sites in the presence of 
acceptors, i.e., "compensation"; for details see their paper. 
Starting with formula (1.17), we see that 

(X; _X;,)2 = (I; Ixl;) - (;'lxl;'W =R~;" (3.35) 

whereRw is the mean hopping length in the direction of the 
electric field, taken along the x axis. In general, R;;, depends 
mainly on the phonon energy Eq = €;, - €;, but, for near
est-neighbor hopping, according to the model, it will be ap
proximated by the mean distance between impurities (n type) 

R;;, :::::RD = (3/41TND)I/3, (3.36) 

where N D is the number of the donors, assumed sufficiently 
small for hopping to occur. 

The transition rate for electron-phonon interaction 
w;;' is given by (2.11) and (2.12); in the latterformulaef N.N' 

andf N',N are to be replaced by (;'Ieiq'rl;) and (;'Ie- icrrl;), 
respectively. For acoustical phonons, in the deformation po
tential model, w;;, has been calculated variationally by Mill
er and Abrahams,28 the result for the absorption term, when 
the effective mass is anisotropic, is 

W - ~R 3/21 A IN. - 2Rr/a 
;;' - /l, D..a oe , 

where 

( 
Ei )( 2e

2 )2( 1Ta )1/2 
A = 1TPU~ 1j4 3Koa2 4an2 ' 

(3.37) 

..1 is the phonon energy, and No is the equilibrium number of 
phonons. Miller and Abrahams have done this calculation 
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for Si and Ge in the effective mass approximation; Ko is the 
dielectric constant, a equals (alb )2 - 1, a and b are the trans
verse and longitudinal orbits of the ellipsoids, and n is the 
number of the ellipsoids. For the emission term No is re
placed by 1 + No. 

We now consider the case where almost all the states 
below the Fermi energy are occupied and the ones above it 
are not, so that the jumps (or hops) occur above the Fermi 
energy (we consider very low temperatures). The jump from 
a state above the Fermi energy to a state at or just below the 
Fermi energy has been eliminated in deriving (1.17) through 
detailed balance (see LRTIII). All this means that we may 
take 1 - <n~, ) eq ;::: 1 in (1.17), neglect the emission term of 
Ww and use the approximation (3.8) to write 

<n~)eq ;:::8(E~ - EF )/P(l - <n~)eq). (3.38) 

For the low temperatures of interest here the number of 
'11 k N. - f3

Eq phonons No in (3.37) Wl be ta en as o;:::e 
= e -f3(E;,-E;I. As for the densities of states N(E~), N(E~,), 

when transforming the sum in (1.17) to an integral, they will 
be assumed smoothly varying functions and will be replaced 
by their value at the Fermi energy (compare Ref. 28). 

We now substitute (3.36), (3.37), and (3.38) in (1.17) and 
carry out the integration over E~, after transformation of the 
sum to an integral; with x = E~, - EF , we find 

0' - 2e
2
A. R D712e - 2RJ/QIN(EFWfxe -f3x dx. (3.39) 

xx- n 
In order for the electrons to overcome the electrostatic 

attraction in hopping from one donor site to another, the 
acoustic phonon energy must have a certain minimum value, 
say E3 • On the other hand, the maximum phonon energy 
E + Ecannotexceed the Debyeenergy. Thus, E3<X<E3 + E, 
a~d this is shown schematically in Fig. 1. 

With these limits for x we easily find, for P > 1, the final 
result 

This result is of the activation energy type,28.29 
0' = O'oe - E3

IkT
; note that we have not used any percolation 

arguments in deriving (3.40); the treatments of Miller and 
Abrahams28 and of Pollak, 29 though with more details, espe
cially with regard to the activation energy, are much more 
complicated. As for the prefactor, 0'0' there is not, to our 
knowledge, general agreement in the literature. 

FIG. 1. Energies allowed for hopping transition, 
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2. Amorphous materials 

In strongly disordered materials the conductivity is ei
ther of the activation energy type for nearest-neighbor hop
ping and relatively high temperatures, or it follows Mott's 

(TofTI"· I' I law for variable range hopping: 0' = O'oe - at re atlve y 
low temperatures, see Ref. 23; the latter, experimentally 
verified, is expected to occur at very low temperatures, close 
to zero. In this case, according to Mott's ideas, the number of 
phonons available might not be enough to supply the energy 
necessary for the electron to jump to the nearest available 
site. The electron must jump among the various available 
sites, to the one which differs in energy from the original site 
by the amount of phonon energy. This means that the hop
ping might not occur between nearest neighbors, as assumed 
in Sec. 3Bl, but between more distant neighbors, i.e., we 
have a variable range hopping. The situation is depicted 
schematically in Fig. 2. 

Put in another way, the above ideas mean that the mean 
hopping length is a sensitive function of the phonon energy, 
i.e., R~~, =f(E~' - E~). Now as fa~as calculations are con
cerned, we have again to evaluate R ~~, and ww' The situa
tion, however, when compared to the one of the previous 
subsection, seems hopeless since the wave functions are not 
known. One is bound to make further approximations. As 
suggested by the result of Miller and Abrahams, the transi
tion rate w,,' will be assumed23.30 to behave as 

- 2aR'I;' -f3IEt;, - ';1 w,,' ;:::yoe "- - , (3.41) 

where a -! is a localization length and where we neglected 
again the emission term of W ~~'; Yo is a constant depending 
on the strength of the electron-phonon interaction, the den
sity ofphonons and very weakly on the energies E" E," and 

Rw' -2 

To proceed further, we have to evaluate R s," Mott's 
way of evaluating it has been criticized and we will use the 
more rigorous result of Apsley and Hughes,3! also obtained 
by Brenigetai. 32 The idea is to write the exponential in (3.41) 
as - &t, &t being the "distance" in the four-dimensional 
space shown above. By means of a model Apsley and 

£ 

1 

_R 

FIG. 2. Hopping processes between statistically distributed states,localized 
in energy and position. The jump probability is determined by the distance 
in space and energy. 
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Hughes31 show that the mean hopping length for "nearest
neighbor" hopping in the four-dimensional sense !!It nn is giv
en by 

!!It nn = C (E~' - E~ )1/4, (3.42) 

where C = r (5/4)(3a'3p I17'S)1/4; s is the number oflocalized 
states per atom and a' = 2aa, a being the interatomic dis
tance, 

The densities of states, in the model of Apsley and 
Hughes, are taken constant and equal to 8a3s. We now use 
(3.42) to find R;;- and substitute the result, together with 
(3,35), (3.41), and (3.38), into (1.17); again 1 - (n~,) eq ;:::: 1. 
After the integration over E~, we find (x = E~, - Ep) 

a - yoe
Z 

(8a3S)Zf(CX I/4 _px)ze-CXI/4 dx, (3.43) 
xx - 2f1az 

In analogy with the previous subsection we take the limits of 
x to be E3 and E3 + E', the two limits being ascribed to the 
same physical picture as before. Putting Xl/4 = w in (3.43), 
we find integrals of the type 

lIn) = f wne - c", dw, n = 5, 8, 11. (3.44) 

The integration is elementary and, for pE'> 1, we find 

/() { 
E3 114 ~ n(n - 1)···(n - k + 1) ,1/4} _ CE,·I. 

n = -- + L E3 e . 
C k~1 C k + 1 

(3.45) 

The final result for a xx is 

axx ;::::(2yolf1 )(8aZsef[ C Z/(5) + pZ/(l1) - 2/3C/(8)j. 
(3.46) 

Since C a:.p 1/4 (3.45) shows that (3.46) can be written as 
a = aoe _(T.,ITI

'/4 

with a complicated prefactor ao; that is, we 
find Mott's well-known law without making some of his al
ready criticized assumptions3o.31 and without using percola
tion arguments. 

4. THE QUANTUM MECHANICAL HALL EFFECT 

It has long been realized that the diagonal matrix ele
ments of the current, when the states are the Landau states 
(2.2), vanish [see Eqs. (2.7) and (2.8)] so no Hall effect results. 
A critique of a previous approach, IZ which included the elec
tric field in the unperturbed Hamiltonian h 0, was made in 
LRTIII, Sec. 3.2. For the Hall effect we need the conductiv
ity component ;yx; as states in LRTIII the collisional contri
bution is zero since (alY - Yeq I;) = 0 [see Eqs. (2.83)]. Con
sequently, for the Hall effect we have only a nondiagonal 
ponderomotive contribution to the current, as formula (1.21) 
shows. 

The approach of LR TIll was to start with the expres
sion (1.21) (fl = y, v = x); it was then shown with a little 
algebra and the use of Eqs. (2.7) and (2.8) for the matrix 
elements of the current that the dc version of (1.21) is given 
by [see LRTIII, Eq. (3.32)] 

de" o;x(O) = ayx = -- L(N + 1) 
2Bf1 k.N 

X [ (1JN )eq (1 - (1JN + I )eq)(1 - e -/#i"'o) 

- (1JN+ I )eq(1 - (1JN)eq)(1 - ePWo)J. (4.1) 
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This result is exact. For nondegenerate carriers (4.1) gave the 
ordinary Hall effect for strong magnetic fields, Pyx - - B I 

eno, see Eq. (3.37) ofLRTlI1. At the same time it was shown 
that ~~ (0) vanishes for nondegenerate carriers; see Eq. 
(3.39). 

In the present article we will investigate the oscillatory 
Hall effect for degenerate statistics starting from (4.1); then, 
starting from an analogous to (4.1) expression for ~~ (0) of 
LR TIll we will evaluate ~~ (0) for degenerate statistics. 

A. Oscillatory Hall effect 

To simplify the notation, we put pmo = x and 

(1JN)eq =iN = 1/(~[Ez+(N+ IIZ)"'o-EF] + 1), 

Ez = fzzk; .2m·. (4.2) 

For degenerate statistics we use the approximation (3.8) 
in order to write 

iN ~( ") ;::::---uE-Ep , 

PiN + I 

(4.3) 

where E'; = Ep - (N + 1/2)mo, and a similar expression for 
the second term of(4.1), involving E;' = Ep - (N - 1/2)mo. 
With the density of states (2.9), we then easily find 

2e ( 2m· )IIZ roo dEz 

ayx = BP(21T)zA, Z 7 ,f;(N + 1))0 Fz 

X (1 - e- X )8(Ez - E';) , + { 

~(Ez-EF) 1 

~(Ez-EF) + 1 

~(Ez-EF) + 1 } 
- (1 - eX )8(Ez - E;') " 

eP(E, - EF ) + 1 

= 2e tanh(xI2) ( 2m· )1122: N + 1 

BP(21TfA,z fz2 N ~mo 

X { ~Eplmo _ 11/2 _ (N + 1) 

+ ~Eplmo ~ 1/2 - N }, 
(4.4) 

since P (E'; - E;') = - pmo = - x. Now the summation 
over N extends up to that value of N for which the radicants 
are positive; if this number is / for the second term it is / - 1 
for the first. By writing the two sums explicitly we can easily 
show that 

I-I N+l I N+l 2: + 2: --'--
N ~ 0 ~A - N - 1 N ~ 0 ~A - n 

± 2N+ 1 

N~O ~A -N 
(4.5) 

whereA = Eplmo - 1/2. We thus arrive at the final result 
for ayx(A, 2 = fzlm.wo) 

a = e tanh( pmol2) ( 2m· )3/2(m )I/Z 

yx 4rpB fzz 0 

X ± 2N + 1 (4.6) 
N~O ~Eplmo - 1/2 - N 
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This expression shows a clear oscillatory behavior since 
the quantity EFlmO - 1/2 - N, depending on the value of 
the magnetic field B (wo = eB Im*), can become large or 
small when EFlmO - 1/2 is far or close to the value of a 
Landau level N. It is easily seen that this behavior is due to 
the oscillatory behavior of the density of states (2.9). This 
kind of oscillatory behavior has been observed experimental
ly by Frederikse and Hosler33 and by Pavlov et a/?4 

For a semiconductor with spherical energy surfaces the 
Hall coefficient R H in a semiclassical treatment is related to 
the conductivity components uyx ' u xx through35.36 (the mag
netic field is in the z direction) 

1 uyX 
(4.7) 

with 

(4.8) 

neZ 
T 

uxx = -; (4.9) 
m* 1 + (woTf 

here T is a relaxation time and n is the carrier density. For 
strong magnetic fields (WoT> 1) it is easily seen that u xx ..(uyx 

and 

R H ::::; -1/Buyx ' (4.10) 

To see the connection between (4.6) and (4.8) and to 
write RH in terms of the carrier (electron) concentration n, 
we evaluate the Fermi level (the factor 2 below stands for 
spin) 

N 2 foo n = - = - N(Elf(E) dE, n n lIZ1iwo 
(4.11) 

where N (E) is the density of states andf(E) the Fermi-Dirac 
distribution function. Since the temperatures are very low, 
possibly a few degrees Kelvin, we may takef(E)::::; 1 for 
kT<EF, E<EF, and obtain 

_ 1 (2m*mo )3/2 (EF 1 ) liZ n-- Z I ----N . 
2rr {z N mo 2 

(4.12) 

Ifwe introduce the Fermi level without magnetic field E~ 
= W/2m*)(3rrn)Z/3, we can write (4.12) in the form 

2 ( E~ )3/Z _ (EF 1 ) liZ - - -I ----N . 
3 mo N mo 2 

(4.13) 

With this expression (4.6) takes the form 

u
yx 

= ~ tanh (pmol2) ~ ( mo )3/2 
m*wo 2Pmo 2 E~ 

XI 2N + 1 (4.14) 
N ~ EFlmO - 1/2 - N 

the connection of(4.14) with (4.8) is apparent. As for the Hall 
coefficient (4.10) and (4.14) give 

(4.15) 
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the quantum limit version (N = 0) of (4.15) is extremely sim
ple: 

RH--J.- 2pmo ~(~)3 (4.16) 
- ne tanh( pmol2) 9 mo . 

The main difference of our result (4.15), leaving aside its 
simplicity, from those of the literature1Z.37 is that it does not 
depend on any interaction whereas those of the literature do, 
e.g., interaction with impurities. The only interaction enter
ing our result is that with a periodic lattice, expressed by the 
effective mass m *. Thus (4.16) is a basic general oscillatory 
Hall effect, not found before. 

However, as far as agreement with experiment is con
cerned, our result, too, exhibits the same weakness as those 
of the literature, lZ.37 i.e., the agreement is poor. An order of 
magnitude agreement is obtained in our case only for fields 
stronger than roughly 15 kG. One might think that this is 
due to neglect of uxx in the formula for R H ; however, as 
shown by Bastin et al. 37 for scattering by impurities uxx 

::::;O.luyx , so that the result remains almost the same. It is 
therefore likely that there is also a specific oscillatory Hall 
effect depending on the type of interaction, for which one 
must go beyond the first Born approximation (not allowed 
by our present formalism). A further study in this direction is 
being considered. 

B. Evaluation of u,;~(O)-uxx 

An exact formula analogous to (4.1) was derived in 
LRTIII [Eq. (3.38)] for the component ~~(O); it reads 

uxx = 2:n I(N + 1)[ (77N)eq(1 - (77N+ 1 )eq)(1 - e- iJ1iwo
) 

k,N 

+ (77N+ I )eq(1 - (77N)eq)(1 - ~1iwo)J, (4.17) 

which differs from (4.1) by the factor i and by the sign of the 
two contributions. Repeating verbatim the steps of Sec. 4A, 
which led from (4.1) to (4.6), we obtain 

~d(O) = u = _ ie tanh(pmol2) ( 2m* )3/Z 
xx xx 4rrpB {zZ 

x(mo)I/Z ± 1 . (4,18) 
N=O ~EFlmo - 1/2 - N 

For very low frequencies (w--+O) this imaginary result may 
contribute to the dielectric constant E(W) of degenerate met
als or semiconductors since 

(4,19) 
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APPENDIX 

In this appendix, we give the values of certain integrals 
involving Laguerre polynomials, which are encountered in 
the text; from tablesz1 we have been able to find only the first 
three of them, and we evaluate the remaining ones explicitly: 
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(0
00 

e - xXM [ L ~(x) ] 2 dx = r (M + N + I) 
Jo N! 

(M+N)! 
M>O, 

N! 

(OOe-XxM[L~_M(X)]2dx= r(M+N-M+ 1) 
Jo N! 

(AI) 

= 1, M>O, (A2) 

looe- X[ LN(x)]2 dx = (- I)NPN( - 1) = 1, M = 0, (A3) 

where PN(x) is a Legendre polynomial. 

(a) I = looxM+le-X[L~(x)]2dX 

=(2N+M+ 1) (N+M)!. 
N! 

(A4) 

Proof We can write I as follows: 

1= lim { - i. (OOxMe-SX[L~(X)]2dX}. 
HI as Jo 

Setting sx = Z, we have 

1= lim { - i. (OOzMe- z _
I _ [L~(Z/S)]2dX}. 

s~1 as Jo ~+I 
We take the derivative explicitly and use the re1ation21 

z.!!..-L~(z) =NL~(z) - (N +M)L~_I(z); (AS) 
dz 

further, we use the orthogonality properties of the Laguerre 
polynomials and (AI). We then easily find (A4). For M = 0, 
(A4) gives 

11 = .[xe- X[LN(XWdX=2N+1. (A6) 

(b) The integral In = looXne-X[LN(x)]2dXCanbeeval

uated in exactly the same way; we have 

In =lim{(-l)n~ (OOe-SX[LN(X)]2dX}; 
s~1 asn Jo 

we then put sx = z and use (AS) and (A4). We easily find 
(A6), 

I2=2(3N 2+3N+ 1) (A7) 

and 
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13 = 2(2N + I)(SN2 + SN + 3). 
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Relative to an irreducible representation of the canonical commutation relations convolutions 
bet~een quantum mechanical operators and between functions and operators ar~ defined, for 
whlch the usu~l Weyl transform acts as a Fourier transform. Basic properties of these operations 
an~ developed in close analogy to harmonic analysis on R2n. Using the quantum version of 
Wlener's approximation theorem, a natural one-to-one correspondence between the closed 
phase-space translation invariant subspaces of classical and quantum observables is establi~hed. 
PACS numbers: 03.65. - w 

I. INTRODUCTION 

In recent years there has been a renewed interest in the 
connections between classical mechanics and nonrelativistic 
quantum mechanics. Such studies have been less concerned 
with quantization rules, i.e., with an explanation of the 
structure of quantum mechanics in classical terms, than 
with the use of quantum-classical analogies for proving re
sults within quantum mechanics. For example, the Berezin
Lieb inequalities t provide bounds for quantum mechanical 
partition functions in terms of their classical counterparts, 
and the number of bound states of a quantum system is esti
mated by the phase space volume available to the classical 
system.2 Thus phase space intuition becomes a guiding prin
ciple for the further development of quantum mechanics. 

The purpose of this paper is to demonstrate parallels 
between classical harmonic analysis on R2n (phase space) and 
certain structures in quantum mechanics. The resulting for
malism is easy to handle and suggests quantum analogs of 
many classical theorems, some of which will be proven in 
this note by "reduction to the classical case." Some connec
tions of this type, particularly between the Weyl and Fourier 
transforms, are rather well known,3,4 but to the author's 
knowledge only special cases of the convolutions defined in 
Sec. III have so far been introduced (in particular, the convo
lution with "coherent states" 5.6). The systematic and unres
tricted use of these convolutions will playa crucial role for 
the transfer of structure between classical and quantum the
ories and, especially, for "Wiener's approximation theorem" 
and its consequences developed in Sec. IV. Theorem 4.1 is an 
important tool for studying notions of physical distinguisha
bility of quantum states and corresponding classical notions. 
This problem, which was the author's original motivation 
for the present work, will be analyzed in a separate publica
tion. 7 

II. PRELIMINARIES AND NOTATION 

In the following exposition, the close parallels between 
quantum and classical harmonic analysis will be emphasized 
by placing the classical and quantum objects side by side in a 
direct sum construction: If do denotes one of the function 
spaces of classical harmonic analysis and d t denotes its 
quantum mechanical counterpart, we shall often study di-

rectly the space d = do 6:) d I' The operations of the the
ory, like phase space translations, convolutions, and Fourier 
transforms, will be defined on such spaces d. In this manner 
pairs and qu~druples of definitions, theorems, and proofs 
can be stated in a very condensed form. The formulations for 
do and d t can be regained by introducing the SUbscripts 
"0" and" 1" everywhere and reading them as "classical" and 
"quantum." The obvious disadvantage of this notation is, of 
course, that I have to deviate from the standard notations. 
For example, the space of "observables" 
5f' 00 (X,dx) 6:) fjj (eW') will be written as Yf 00 = Yf 0' 6:) Yf ,. I 
hope that this notation will serve less to confuse the reader 
than to enhance the intuition for the correspondences 
between classical and quantum mechanics. 

The basic objects of the theory are a symplectic (real) 
vector space X (phase space) of dimension 2N < 00, whose 
symplectic form will be denoted by [.,J:X xX-R, and an 
irreducible representation of the Weyl commutation rela
tions over X in a Hilbert space JY, i.e., a strongly continuous 
map EI taking xEX to a unitary operator Et(x) such that 
[Et(x)lxEX l' = Cl and 

By von Neumann's uniqueness theorem,8 E t is determined 
up to unitary equivalence and we may set: X = RN X RN 
= momentum 6:) configuration space, [( p,q),( p' ,q') J 
= p.q' - q.p', JY = 5f'2(RN,dqN), and (Et(p,q)t/!)(s) 
= exp(i( p.q/2) + ip·s )t/'(s + q) for (p,q)EX and ~. The 
Lebesgue measure on X will be denoted by dx and normal
ized so that in any such representation dx 
= (21rli) - N dp t· .. dq N' (This choice is suggested by Lemma 
3.1) I shall set Ii = 1 in what follows. 

The space of observables will be denoted by 
Yfoo: = 5f' 00 (X,dx) 6:) fjj(eW')-YfO' $ Yf,. This W*-algebra 
carries a trace denoted tr, which coincides with the usual 
trace of &B(eW') on Yf, and with Sdx on YfO', i.e., tr (/6:) A ) 
= Sdxf(x) + tr A for fEYfO' andAEYf" provided both 
summands exist. For 1 <p < 00, we set 
Yf P = Yf 6 $ Yf r -5f' P(X,dx) $ .r P(eW'), so that Yf P is the 
closure of {A EYf 00 I tr( I A I P) < 00 J in the norm 
II A lip: = (trl A I P)IIP• For l<p < 00 andp-t + q-t = 1, Yf q 

is the dual space of Yf p. (Compare Ref. 9, p. 43.) In particu-
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lar, ~ I is the predual of ~ 00 , the canonical bilinear form 
(.,.):~I X~oo -+C being given by (T,A ) = tr(TA). For the 
norm in ~ 00 , 11·11 and 11·11 00 will be used interchangeably. 

The phase space translations are represented by 
a:X-+Aut(~OO), given by (axf)(y) =f(y -x) for fE~; 
and by ax A = EI(x)A E I( - x) for AE~ 1'. Because EI is a 
representation of X up to a factor, the representation relation 
axay = any holds on ~oo. By 11·llp-continuity, a can be 
extended from ~ I~ 00 to ax :~ p -+~ p for 1 <p < 00. On 
~ P( P < 00) a is strongly continuous, but not on ~ 00 • The 
classical analogs of the "exponential operators" EI(X)E~1' 
are the exponential functions Eo(X)E~; given by 
Eo(x)(y): = ei1x,yl. Thus for k = 0,1 the relation 
ax (Ed y)) = eilx,ylEdy) holds. 

G will denote the group of linear transformations of X, 
leaving the symplectic form { .,. J invariant. Since 
{EI(gx) JxEX again satisfies the Weyl relations, von Neu
mann's theorem asserts the existence of unitary operators 
{Ug JgEG such that UgEI(x)U; = EI(gx). One easily checks 
that U represents G up to a factor. Hence we may define a 
representation /3:G-+Aut(~ 00 ) by setting 
(/3gf)(x) =f(g-IX) for fE~; and /3gA = UgAU; for 
AE~ 1'. Again /3g is strongly continuous on ~ p for p < 00 

but not on ~ 00 • For k = 0,1 we have /3gEk (x) = Ek (gx) and 
/3ga X = a gx /3g, so that a and /3 together are a representa
tion of the affine symplectic group. The transformation /3g 
corresponding to g: Xf--+( - x) will be used very frequently 
and will be denoted by /3_. It is implemented on ~ l' by the 
unitary operator ( U _ tP)(s ) = tP( - S ). 

The space &J = &J 0 Ell &J I of complex valued functions 
on {O, 1 J xX will be the range of the Fourier transform, ana
lytical properties being postulated as needed. &J 2 C &J will 
denote the subspace of square-integrable functions. In Sec. 
IV the space 
~ = ~ o Ell ~ I = {AE~OOllimx--oOllax A -A 1100 = OJ of 
strongly continuous elements for a, will be important. ~ is a 
C *-subalgebra of ~ 00 , and ~ 0 is just the space of bounded 
uniformly continuous functions on X. Whenever sums of 
sUbscripts 0,1 occur, they are to be taken mod 2, i.e., 
1 + 1 = O. 

III. CONVOLUTIONS AND FOURIER TRANSFORMS 

We can now state the lemma which, in spite of its ele
mentary character, is the cornerstone of the entire theory: 

Lemma 3.1: Let TI,T2E~:, i.e., be trace class opera
tors. Then the function Xf--+tr(TI(ax Tz)) is integrable and 

f dx tr(TI(ax T2)) = (tr T I)(trT2) . 

Proof By bilinearity the proof is immediately reduced 
to the case T 1,T2>0 and by spectral decomposition to the 
case that Ti = P "'. are one-dimensional projections. Let 

q;q(s): = tP2(S )tPI(S + q). Then q;qE2'I(JRN,ds N) and 
(tP2,E(p,q)tPl) = ei(p.q)/2 Sds N eiP'Sq;q(S) 
= ei(P.q)l2(21Tt 12q;q (p), where q;q denotes the Fourier trans

form of q; q' Hence by the Plancherel formula: 
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f dx tr(TI(ax T2)) = (211') -N f dpNdqN I (tP2,E(p,q)tPIW 

= f dqNdpNIq;q(pW 

= f dqN dSNIq;q(sW 

= f dq
N

ds
N

ltP2(SWltPl(s+qW 

= IItPI1I211tP2112 = 1 . 0 

Various forms of this lemma exist in the literature, often 
formulated for the special case that TI or T2 is a pure or even 
a coherent state. For our purposes it is important to note that 
its classical analog for Tl> T2E~ 6 (reading tr as f dx as intro
duced above) is also true and a simple property of the convo
lution of integrable functions. In fact, the convolution of 
functions may be rewritten as (fl*};)(x) = fdy II( y)f2(X - y) 
= tr[lI(ax /3-f2] or equivalently asfl*f2 = fdy fl( y)ay f2' 

This motivates the following: 
Definition: Let fl!2E~6 be integrable functions and 

T I, T2E~: trace class operators. Then their convolutions are 
defined by 

fl*f2E~6: (f1*f2)(X): = f dyfl(Y)};(x - y), 

TI*T2E~6: (TI*T2)(x): = tr(T1(ax /3_T2))' 

fl*TI: = TI*fl: = f dYfl(y)ayT] E~: . 
By linear extension convolution becomes a composition 
*:~I X~I-+~I such that for i,jE{O,1 J:~l*~Jc~l+j' 
Convolutions between ~ I and its dual ~ 00 are defined by 

(S,T*A): = (S,A *T): = «(/3_T)*S,A) 

for T,SE~I, AE~oo. 

This definition implicitly asserts that the two definitions of 
T*A for TE~I andAE~oo ~I coincide or, what is the same 
thing, that the above formulas also define convolution on 
~I X~oo [integrals understood in the u(~oo ,~I)-sense]. 
This is justified by the following: 

Proposition 3.2: (1) Convolution is commutative and as
sociative. The convolution of positive elements is positive. 

(2) ax(T*A) = (axT)*A + (axA), 

/3g(T*A) = (/3gT)*(/3gA). 

(3) For TE~I:T*1 = (tr T).t. 
(4) For TE~ I, AE~ 00 : T *AE~ is strongly continuous 

for a and (T,A ) = (( /3- T)*A )0(0), where the subscript "0" 
refers to the first component in ~ 00 = ~; Ell ~ 1'. 

(5) Young's inequality: Let 1 ..;;p,q,r< 00 with 
p-I +q-I = 1 +r- I. Then for 

TI,T2E~I~00 :IITI*T211r<IITlilp IIT211q. Consequently, 
convolution extends by norm continuity to *:~ P X ~q-+~r. 

Proof For convolutions in ~ I, (1 )-(4) are elementary 
with the exception of the associativity 
T I*(T2*T3 ) = (TI*T2)*T3 for three operators, which again 
uses Lemma 3.1: Let ToE~: ; then 
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(To,TI*(T2*T3) 

= tr To J dx (ax Td·tr [T2(ax .8- T3)] 

= J dx tr[(axTI)To] tr[T3(ax .8_ T2)] 

= J J dx dy tr[(axTI)To(ayT3)(ax+y .8_T2)] 

= J J dy dx tr(To(ayT3)·aX ((ay .8_ T2)TI)] 

= J dy tr[ To(ayT3)] tr[ TI(ay .8_ T2)] 

= (To,(TI*T2)*T3 ) . 

These results justify the above definition and one may prove 
their extension to *: &it 1 X &it '" ---..&it '" by taking adjoints. 
The strong continuity of T *A follows from the trivial bound 
IIT*A II", <IITIIIIIA II", ,(2),andthestrongcontinuityofaon 
(&itI,II·III)· 

(5) is trivial for p = q = r = 1 and p = 1, q = r = 00 

and follows for the other values by an interpolation argu
ment to be taken verbatim from Ref. 9, p. 28ft'. Note, how
ever, that this proof does not yield the best constants. IO 0 

The map ~ T *f for TE&it: assigns an operator to each 
function on phase space, and, conversely, A~T*A trans
forms operators into functions. Maps of this kind are often 
called "correspondence rules," and the following proposi
tion characterizes the type of correspondences that may be 
induced in this manner. 

Proposition 3.3: Let i = ° or 1. A linear operator 
r:&it;'" ---..&it;"'+ I is called a positive correspondence rule, if it is 
normal [i.e., u(&it'" ,&it I)-continuous], A>O=?r(A »0, 
r(l) = 1, and axr(A) = r(axA). Then: 

(1) The positive correspondence rules are precisely the 
maps of the form r(A ) = T*A for a (necessarily unique) trace 
class operator TE&it: satisfying T;;;,O and tr T = 1. (The as
sumption of normality is essential). 

(2) ris completely positive, so thatr (A )*r(A )«A *A) 
for all AE&it;"'. 

(3) Berezin-Lieb inequalities: if A * = AE&it r' and IP is a 
positive convex continuous function on the spectrum of A, 
then 

tr lP(r(A ))<tr IP(A) . 

This result depends only on the property that r is "doubly 
stochastic" (i.e., preserves positivity, unit, and trace). 

Proof (1) LeU = 1. Since 
r:&it'1 = &1 (dfJ---...2" '" (X) = &it [; is normal, it has a pread
joint r .. :.2" l(X )---..yl(dfJ, which has to be positive, a-co
variant, and normalization-preserving. On the other hand, 
let i = ° and consider positive elements fE&itbn&it[; and 
SE&it:. Then Sdx tr(S(axf)) = Sdx (r*(S),axf> 
= (r .. (S), l)(Sdxf(x)) < 00. Hence by Lemma 3.1. r(f) is 

trace class and tr r(f) = Sdxf(x),sothatbyll·lll-continuity, 
r extends to an operator r:.2" I(X)---"Yl(dfJ which is also 
positive, normalized, and covariant. Thus both cases i = 0,1 
are reduced to the proof that this operator must be of the 
form f~T*f Consider the yl(dfJ-valued measure 
u ~r (xu) for uCX restricted to some compact subset. Then 
tr r(xa) = IIFeYa)11 =,u(u) (,u = "dx"measure). This mea
sure is countably additive, since increasing sequences con-
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verge in yl(dfJ. Thus we may invoke the Radon-Nikodym 
theorem for yl(dfJ (!.ee Ref. 11, p. 79) to obtain a strongly 
measurable function T: Xf->-yl(dfJ such that 
r(f) = S~f(x)T(x).Covarianceimpliesthat,foreach yEX, 
~T(x) = T(x + y) a.e. (dx). The measurable function 
To(x) = a -x T(x) de~nes another mapro: .2"l(X)---..yl(dfJ 
by ro(f) = Sdxf(x)To(x), satisfying ro(ax f) = ro(f). 
Hence ro(f) = (Sdxf(x))oT for a fixed TEyl(dfJ. By uni
~ueness of Radon-Nikodym derivatives, To(x) = T and 
T(x) = ax Ta.e. (dx). Hencer(f) = Sdxf(x)ax T=f*T fora 
unique TE&it: , which has to be positive and normalized. 

A nonnormal r: &it r' ~&it;~ I can be constructed from 
any state TE&itJ and invariant mean 17 as 
r(A) = 17(T,a.A »).1 for AE&it;"'. 

(2) Positive maps from or into abelian algebras are com
pletely positive. This and the result (2) are to be found in Ref. 
12. 

(3) The cone of functions IP for which the inequality is 
~alid is closed unde~suprema and the operations 
IP (t) = IP ( - t) andlP (t) = IP (t + to) [sincer (1) = 1]. Hence we 
need only consider the case IP (t) = t + = positive part: 
tr A+=inf{tr B IB;;'O,B>A J = inf{tr r(B)IB>O,B>A J 
>inf{ tr r(B )IT(B »O,r(B »(A)J >inf{tr B IB>O, 
B> r (A ) J = tr[r (A ) +]. Fortwoalternateproofs, see Ref. 1. 0 

For the comparison of classical and quantum harmonic 
analysis it is interesting to note that analogous maps r: 
&it r' ---..&it;'" are not in general induced by convolution with 
fE&it b. (Take the identity.) Thus we have made essential use 
of the Radon-Nikodym property of &it: , which fails for &it b. 

The case i = ° of Proposition 3.3( 1) is due to Holevo l3 

and characterizes covariant observables l4,l5 on phase space: 
r assigns to each u ex an operator r (x u) describing the yes
no measurement as to whether position and momentum of 
the system are in u. By far the best known example of a 
positive correspondence rule is the case that T is a coherent 
state (ground state of some oscillator). However, many prop
erties which have been stated in this context are independent 
of this special form of T. 

By proposition 3.2 (&it l,*) is a commutative Banach al
gebra, whose function space representation is, of course, re
lated to the Fourier transform. As in the classical case, it will 
be defined as the trace (or integral) of an element with the 
exponentials. For operators T, the function x~tr(TEI(x)) is 
known as the Weyl transform of T. In order to distinguish 
between functions on X, which are transforms of operators 
and of functions, respectively, we shall use two copies of X, 
so that all transforms are in &1 = &1 0 EIl &1 I> the set of com
plex valued functions on ! 0, 1 J X X. &1 2 = &1 ~ EIl &1 i will be 
the subspace of square integrable functions and the product 
in:?lJ will be defined as (fg);(x) = ~k ~ 0.1 fdx)gk + 1 (x). Thus 
we arrive at the following: 

Definition: The Fourier transform Y: &it 1 ~&1 is the 
map Y = Yo EIlYI,Y;: &itil~&1; (i = 0,1) defined by 

(Y; T)(x) = tr(TE;(x)) . 

Note that by this definition Y; Tj = ° for i=1j and TjE&it), 
since the product under the trace is taken in &it 00 • Yo is the 
ordinary Fourier transform [recall the factor 
(21T) - N = (21T) - (l!2ldim X in the definition of dx], where the 
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dual of X has been identified with X via the symplectic form. 

Proposition3.4:(I)ForT,SEPltI:Y(T*S) = (YT)(YS), 
i.e., 

Yj(T*S)(x) = 2: (YkT)(x)'(Yj+kS)(X). 
k=O,1 

(2) (YaxT)(y) = ejl y,xl(YT)(y) , 

(Y PgT)(y) = (YT)(gy). 

(3) For 11,J2EPltbn.9tij and T I,T2EPltL 

(Yo(fd2))(X) = f dy (Yofd(x - y)(Yoh)( y) , 

(YI(TIT2))(x) = f dy(YITJ!(x - y)(YIT2)(y)ej/2Ix,yl . 

(4) Y extends to a unitary operator Y:Plt2~f!lJ2, i.e., 
for T I,T2EPlt2, 

tr(TtT2) = j~.1 f dx (Yj TJ!(x)(Yj T2)(x). 

The inverse Y- I = Y o-
I EB Y 1 1 on f!lJ2 is given by 

Y-1=.2: f dx/;(x)Ej(-x). 
1=0.1 

(5) Hausdorff-Young inequality: For TEPlt ln.9t2 and 
I<p,2, q-I = 1 _ p-I: 

IIYTII p ,IITII p' 

(6) Riemann-Lebesgue lemma: For TEPIt I, YTis a con
tinuous function vanishing at infinity. Moreover, YIT 
is square-integrable. 
(7) Bochner's theorem: A function f(O,1 J XX~C is 
the Fourier transform of some positive TEPltI iff lis 
continuous and for all (xJ""xn J ex and (tJ"··tn J ec: 

(0) 2:/o(xj -xk);j tk;;;'O 
jk 

and 

(1) 2:/1(xj -xk)ej/2Ixl'x.!;jtk;;;'0. 
jk 

Proof I shall restrict myself to samples from the less 
trivial parts of the proof. 

(I) Let T,SEPIt: . Then 

Yo(T*S)(x) 

= f dy eilx,yltr(Tay P_S) 

= f dytr(TEI(x)EI(y)EI(-x)(P_S)EI(-Y)) 

= f dytr[(TEI(x))ay(EI( -x)(P_S))] 

= (tr TEI(x))(tr E I( - x)P_S) 

= (YIT)(x)(Y]S)(x). 

(2) is trivial and the relation (3) between operator pro
ducts is well known.3 

(4) follows from (3) by setting x = O. 
(5) is proven by interpolation9 between p = 1 and 

p = 2. Again this proof does not give the best constants. 10 

(6) For TEPIt:, T*TEPltb, hence (YIT)2 = Yo(T*T) 
goes to zero at infinity. The second part follows from (4) and 
PIt: ePlti. 
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(7) Necessity is proven by considering 
tr T(~j tjEj(Xj))*(~k tkEj(xk));;;,O for i = 0,1. Let 10 = 0 
and II continuous and "twisted positive definite." Let 
SEPIt:, S;;;.O. Then for any choice of (xI,,,xn J, the matrix 

Mjk = (YIS)(Xj -xk)/I(Xk -xj ) 

- (( q S)( ) + j/2Ixk'X) - v I Xj -Xk e 

X(fI(Xk _xj)e-j/2IXk,Xjl) 

is positive definite as the elementwise product of positive
definite matrices. Hence by the classical Bochner theorem 
there is a positivegEPltb with Yog(x) = (YIS)(x)/l( - x). 
The map St---+g is linear, positive, and a-covariant; hence, by 
the proof of 3.2, there is a unique TEPIt: such that 
g = S *( P _ T). Clearly the Fourier transform of T must be 
h. D 

Since the Fourier transforms of operators and functions 
are both functions on X, one may ask how operators and 
functions with "the same" transform are related. More for
mally, define the map /: f!lJ~f!lJ, (/ It(x) =/;+ I (x) and 
consider 'lr: = Y- I/ Y. On Plt2, 'lr is unitary and it 
takes each density matrix TEPIt: into its "Wigner quasipro
bability function" 16 (which is in general neither positive nor 
integrable). There is a rich literature on this subject, in parti
cular, in connection with semiclassical limits of quantum 
mechanics. It is a natural extension of the above approach to 
study the quantum analogs of test function and distribution 
spaces. (The analogs of Paley-Wiener theorems would have 
their natural place in this setting.) For results in this direc
tion, the reader is referred to Refs. 17, 18, and references 
quoted there. 

The following proposition is the basis of the results of 
Sec. IV. 

Proposition 3.5: Wiener's approximation theorem: Let 
kE (0,1 J and TEPIt 1. Then the following five conditions are 
equivalent (i = 0,1): 

(1) 'v'xEX(YkT)(x):;60; 

(2i) T * PIt : is II·IIT dense in PIt: + k; 
(3i) AEPIt t and T *A = 0 imply A = O. 

If these conditions are satisfied, T will be called regular. 

Proof (2i)<=>(3i + k ): The linear space T * PIt : is norm
dense in PIt: + k iff it is u(PIt: + k ,PIt i~ k )-dense iff T * PIt : sepa
rates points of PIt i~ k iff the adjoint of St---+ T *S for the pair
ings (PIt: ,PIt n and (PIt: + k ,PIt t'+ k > is injective. This adjoint 
is the map At---+( P _ T )*A: PIt t+ k ~PIt i=' Thus (2i) is equiva
lent to (3i + k) with P _ T substituted for T. By Proposition 
3.2(2) this is equivalent to (3i + k). 

(2k )::::?(2i + k ): LetSEPIt: + k' Since a is strongly contin
uous on PIt I, there is an IEPIt b such that II I *S - S 111,e I' By 
(2k ) there is some REPIt 1 such that II T *R -I 111,e2' Hence 
IIT*(R *S) -SIII,II(T*R - I)*S III 
+ II/*S-SIII,el +e2I1SIII' 

(3i)::::?(I): T*Ei(x) = ~jEj+j(x)'(YjT)( - x) 
= E j+ k(X)'(Y k T)( - x). By (3i) the left-hand side is non

zero; hence (Yk T)( - x):;60. 
(I)::::?(2k): (YoT*T)(x) = (Yk Tf(x):;60. Hence by the 

classical theorem of Wiener, 19 T*T*Pltb and hence 
T * PIt 1 :) T *( T * PIt 6) is norm-dense in PIt~ . D 
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The covariant observables (]l---+ T ... X C7 with TEfIl: , 1>0, 
tr T = 1, and T regular have the interesting property that 
their measurement, i.e., the expectation values < W, T ... X C7 ) 

for (TeX, determine the density matrix W completely. The 
following example, which generalizes the coherent states, 
shows that such trace-class operators T exist. 

A trivial consequence of the existence of a regular 
TEfIl: is that the set fIl: ... fIl: ::J T ... fIl: is dense in fIl b. Note, 
however, that by Lemma 3.4(6) the inclusion fIl: ... fIl: e fIl b 
is strict, in contrast to the equalities YI b ... fIl; = fIl;, which 
can be proven by means of Ref. 20, 32.50. 

Example 3.6: Gaussians: With the notations of Sec. II, 
let h (x) = h (p,q): = ~ ~f = 1 (pi + qi). (By choice of a suit
able symplectic coordinate system, every positive quadratic 
form h (x) = ~! x, jx I for some jEG, l = - 1 can be written 
in this form). Let H = !~f = 1 (p~ + Q ~) be the Hamiltonian 
operator of the corresponding quantum oscillator. For ZEC, 
Re z > 0, define a Gaussian functiong(z): = exp( - zh ) and a 
Gaussian operator G (z) = exp( - zH). Then 

(5'0 g(z))(x) = z - N.exp( - (l/z)h (x)) 

and 
(Y1G(z))(x) = (2sinh(z/2))-N 

.exp( - ! coth(z/2).h (x)) . 

In particular, all Gaussians are regular in the sense of 
Proposition 3.5. 

Proof By considering tensor products, the proof is re
duced to the case N = ! dim X = 1. Let 
t/Jn (S) = v nHn (S) exp( - ! t 2) be the nth eigenfunction of H 
and R n = I t/J n > < t/J n I the corresponding eigenprojection. If 
gEG leaves h invariant, then f3g Rn = Rn; hence (Y1R n )(x) 
depends only on h (x) by Proposition 3.3(2). Thus it suffices to 
compute (Y1Rn)(p,0). By Ref. 21, 22.13.20, 

(Y1Rn)(p,0) 

=v,/ f dse-S'Hn(t)2cos(PS) 

= Ln(!p2).exp( _ ap2) 

= Ln(h (p,O)) exp( -!h (p,O)). 

Using the generating function of the Laguerre polynomials 
Ln (Ref. 21, 22.9.15) with; = e - z, we obtain 

(Y1G(z)) = n~o exp ( - z(n + ~)) Y1R n 

= ; 1/2 exp ( - ~ h) f ; nLn (h ) 
2 n=O 

For small z (Gaussians oflarge dispersion) Y1G (z) and 
Yo g(z) are asymptotically equal. For z--+ 00 along the real 
axis, zN·Yo g(z) __ I, so that the normalized Gaussian zNg(z) 
tends to a l5 function. In the same limit (tr(G (z)) -IG (z) tends 
to the coherent state Ro. On on other hand, 
limz __ i ,,- 2N (Y IG (z))(x) = 1, so that the operator 2NG (hr) has 
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formally the same transform as thel5 function. G (hr) = U _ is 
the unitary operator of phase space inversion.22 

IV. CORRESPONDENCE OF INVARIANT SUBSPACES 

In Proposition 3.2(5) we proved the relations 
fIl: ... fIl rfefll rand fIl: ... fIl refll t. With the help of Propos i
tion 3.5, it is easy to prove that both inclusions are dense, so 
that each of the spaces YI f "determines" the other. In this 
section this relationship will be extended to more general 
pairs of spaces of classical and quantum observables. 

Definition: Let 1 <p< 00 and 9 e fIl p a linear subspace. 
Then 9 is called a pair if it is of the form 9 = 9 0 EI1 9 I 
with 9 i e fIl f and fIl: ... 9 e 9. In this case 9 0 and 9 I are 
called corresponding spaces. A pair 9 e fIl '" is called contin
uous if 9 e CCf. (Recall that CCf was defined as the space of 
strongly continuous elements for a.) 

Since fIl: ... 9 0 e 9 1 and fIl: ... 9 I e 9 0 , each of the 
spaces 9 i is stable under convolutions with YI: ... fIl: ,which 
is a dense subset of fIl b. Thus both spaces come close to being 
a-invariant. For the closed pairs in which we will be mostly 
interested, a invariance and the relation fIl I ... 9 e 9 are a 
consequence of the above defintion, so that for the purposes 
of this section we may replace the condition fIl: ... 9 e 9 by 
these two stronger conditions. 

Our main result concerning corresponding spaces is the 
following: 

Theorem 4.1: Let 9J e fIl '" be a pair and 
§ = § 0 EI1 g 1 its 11·11 oc -closure. Then 
(1) § is a pair. 
(2) Let i = 0, I and TEfIl: be regular. Then T ... 9 i is 
11·lloc -dense in 9 i + 1 nCCf. 
(3) Let i,j = 0,1, TEfIl; regular, andAECCfj' Then 
T*AE9 i + j implies AEgj • 

(4) For any 11·1100 -closed a-invariant subspace f&' i e CCf i 
there is a unique corresponding closed invariant sub
space f&' i + 1 e C(; i + 1 . 
( 5) For 1 <p < 00, this theorem remains true, when in 
hypotheses and conclusions 11·11", is replaced by IHI p 

and fIl 00 and CCf are both replaced by fIl P • 

Proof Let 1 <p< 00. 

(1) IIT*A IIp<IITIIIIIA lip' Hence An--AEg i implies 
T ... A =limnT*A nEg i + I • 

(2) T *9J i e 9 i + 1 by correspondence and T ... 9 i e CCf 
by Proposition 3.2(4) . Let AE9 i + I nCCf. Since A is strongly 
continuous, there is an JEfIlb with Ilf*A - A lip <cI' Since T 
is regular, there is an SEfIl: such that II J - T *S 111 <c2' 
HencellA - T*(S ... A )llp<cI + IIA Ilpc2andS ... AE9; by cor
respondence. 

(3) For i = 1 pick JEYlb andSEfIl: as in (2). Then 
IIA - S*(T*A )llp <candS*T*AES*9J i + j e9Jj' Fori = ° 
we may use the same argument, choosing Sin the 11·11 I-dense 
set fIl: *fIl: efllb, so that 
S ... T*AES*9J o+ j efll: ... fIl: ... 9Jj efll: ... 9Jj+ 1 e9Jj • 

(4) For AECCf and TEfIlb, T ... A can be approximated in 
norm by linear combinations of translates of A. Hence 
fIl b • f&' i e f&' i' Define the two spaces f&' i~ 1 : = lin fIl: ... f&' i 
and f&' i~ 1 : = IAECCf i + 1 IfIl: .AEf&' i)' f&' i: 1 is closed as the 
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intersection of closed subs paces and some space 
~ i + I C ~ i + I corresponds to ~ i iff ~ i~ I C ~ i + I C ~ i~ I . 
Since~: *~i~ I Clin~: *~: *~i Clin ~b*~i C ~i> 
~i~ I satisfy this condition. Applying (3) to the pair 
~ i> ~ i~ I and AE~ i~ I' we conclude that ~ i~ I is dense in 

~i~I' 0 
The next corollary serves to emphasize the result 

Theorem 4.1(4): 
Corollary 4.2: For i = 0,1, and 1 <p < 00 (resp. p = 00) 

let g f (resp. g~) denote the set of 11·\\ P -closed a-invariant 
subspaces of ~ f (resp. ~ i ) and g P (resp. gC) the set of 
closed pairs g = go G1 g I with g ,Eg f' (resp. g~). Then: 

( 1) Correspondence is a lattice isomorphism between 
the complete lattices g t,g j, and g P 

(resp. g~,g~ ,gC). 
(2) Let 1 < p,q< 00 and p-I + q-I = 1. For g cg P 

define g 1: = I AE~ql 'If BEIZ' tr AB = 0 j. Then g 1Eg q and 
l:g P---..gq is a lattice anti-isomorphism. 

Proof (1) by Theorem 4.1(4) correspondence is a bijec
tive relation and g i may be identified with g. Let I g L j LEI 

be a family of pairs. Then nLEIgo and n,El g ; are corre
sponding. Similarly, ~'EIg' is a pair, and by Theorem 4.1(1) 
the closure of this space, which is the lattice union of the g', 
is also a pair. 

(2) Since ~ p and ~q are duals, 1 is an anti-isomorphism 
for the lattices of all norm closed subs paces, so that we only 
have to prove that gi is a pair. Clearly, gi = g6 G1 g~ 

and TE~:, AEg\ BEg imply tr(T*A )B-
=trA(p_T*B)=Osince P_T*!iJCg. 0 

The lattice g2 will be computed in Example 5.4. 
Especially interesting for applications in physics are the 

order unit subspaces (closed self-adjoint subspaces contain-
ing 1) of ~ ~ and ~ 1 , since these are eligible as spaces of 
classical and quantum observables. 7 Theorem 4.1 shows that 
the spaces on whch a is strongly continuous are in one-to
one correspondence. The following corollary describes some 
properties which are preserved by this correspondence. 

Corollary 4.3: Let goc ~ o and g I C ~ I be closed cor
responding spaces and i = 0,1. Suppose that g i is: self-ad
joint; an order unit subspace; separable; containing Ei (x) for 
some xEX; pointwise fixed under ax for some xEX; invariant 
under a subgroup Go C G; strongly continuous for a sub
group Go C G; generated by translates of a single element; 
generated by translates of elements invariant under a com
pact subgroup Go C G; u(~;' ,~i i-dense in ~;'. Then g, + I 
has the same property. (Different properties are separated by 
";". ) 

Proof By Theorem 4.1 (2) g i + I is the norm closure of 
T *g i> where Tis some regular element of ~: . Taking T to 
be the average of a Gaussian with positive Fourier transform 
over a compact subgroup Go, we may assume T to be Go-
invariant. Recall that 13 is strongly continuous on ~ 1 and 
T*Ei(x) = Ei+ I (x)'(YIT)( - x). The last statement is con
tained in 4.4. 0 

The relationship between the order properties of go 
and g I is a much more complicated problem: we have made 
essential use of the fact that TI*T2 with TI,T2E~: can be 
chosen "close to a D function." However, this is no longer 
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true, when T I ,T2 are required to be positive. It would be 
particularly interesting with what qualifications (if any) "a 
C *-algebra" can be added to the above list. 

The following result describes the correspondence the-
ory for weah-closed subs paces. 

Corollary 4.4: (1) The map 1 defined in Corollary 4.2 is 
an anti-isomorphism between the lattice g I and the 
lattice goo of u(~oo ,~I)-closed pairs. The 
u(~ oc ,~I i-closure of any pair g C ~ oc is g 11 • 

(2) Theorem 4.1 (1)-(4) remains valid when the norm 
topology is replaced by the u(~oo ,~I) topology and 
condition "A E~;" in Theorem 4.1 (3) is replaced by 
AE~/". 
(3) For any pair g: (gn~)ll = gll. 
(4) For any pair g, the four sets 
Sij: = IxEX I(TE~i!\ 'If AEffi, (p_T)*A = 0) 
~(YiT)(x) = OJ coincide. This set is closed and is 
called the spectrum of g, denoted by sp(g). Moreover, 
sp(!iJ) = IxEXIEi(x)EiiJtIj fori = 0,1. 
(5) If g is a u(~oc ,~I)-closed pair, then iiJo is a C*
algebra (and hence a W *-algebra) iff g I is iffsp(g) is a 
closed subgroup of X. For every closed subgroupXcX 
there is a unique u-closed pair with spectrum X. 
Proof (1) is proven as in Corollary 4.2. 
(2),(3) Theorem 4.2(1) and (4) are immediate conse

quences of (1). If Tis regular (T*gy 
= ISE~:+ II (p_T*S,g) = OJ = IS I p_T*SEgn 
= g t + I by Theorem 4.1 (3) with p = 1. Hence T *g i is u
dense in g t~ I . On the other hand, T *g i C g i + I n~. This 
also proves (3). Now let TE~: be regular. Then by Theorem 
4.1(2) (p = 1) 13 _ T *g t + j is II·III-dense in iiJ f. Hence 
T*AEg,+j impliesAE(p_T*g7+j)1 = g~l. 

(4) Leti,j,k,IEI 0, lj and suppose xESij' TE~L and, 
'If AEg /,13- T *A = O. Pick regular elements TIE~: + k and 
T2E~~+ /. Then, for AEg/,p_TI*P_T*T2*A = 0 and, by 
the u(~ 00 ,~I i-continuity of convolutions and the density of 
T2*g / in gJIciiJj , p_(TI*T)*B = 0 for BEgj' Since 
xESij' Yi(TI*T)(x) = 0 = (Yi + k Tt!(x)(Y k T)(x). Hence 
(Y k T)(x) = Oby the regularity ofTI. The spectrum is closed 
as the intersection of zero sets of continuous functions and 
Sjj = {xEXITEgt~<T,Ei(x) =01. 

(5) If g k (k = 0,1) is a *-algebra and X,YESp( iiJ), then 
Edx + y) = exp((ik /2)!x,yj)Edx)EdY)Eg k and 
Edx)* = Ek ( - X)Eg k' Hence sp(!iJ) is a subgroup. On the 
other hand, let X CX be a closed subgroup. Then the linear 
span g; k of( Edx)lxEX j is a *-algebra and § = § 0 G1 g; I 
is a pair. Hence §ill is a W*-algebra and sp§ = X. It re
mains to be proven that there is only one u-closed pair with 
spectrum X, or equivalently there is only one closed transla
tion invariant subspace g6 c~b = ,2"1(X) whose Fourier 
transforms vanish precisely on X, or in the terminology of 
spectral synthesis that closed subgroups are spectral sets. 
This is shown in Ref. 20, 40.24. 0 

The investigation of the lattice gb (or equivalently the 
lattices g I and g oc ) is the main problem of "spectral syn
thesis." 23 The "failure of spectral synthesis in R2N

" (Ref. 20, 
42.19) is equivalent in our context to the statement that there 
are u(~ 1',~: i-closed a-invariant subspaces in 
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f/? 1 = t.B ($I which are not generated by the Weyl opera
tors they contain. 

v. EXAMPLES OF CORRESPONDING SPACES 

A.Compacts 

Let %0 be the set of continuous functions vanishing at 
infinity and % I the set of compact operators. Then 
% = %0 Gl % I is a pair: Since f/? ~ nJY 0 is 11·11 00 -dense in 
%0' the corresponding space of %0 is the 11·1100 -closure of 
f/?: *(f/?~nJYo). Clearly this space is 11·11 I-dense in f/?: and 
hence 11·1100 -dense in % I' Note that the uniqueness state
ment of Theorem 4.1 (4) applies only to subspaces of CrJ. For 
example, the space of all bounded measurable functions van
ishing at infinity is also a corresponding space for % I' For 
illustrative purposes it may be useful to state one of the typi
cal corollaries of the theory in Sec. IV in standard notation: 

Corollary 5.1: Let A be a bounded operator. Then the 
following are equivalent: (I) A is compact. (2) 
limx-.Q Ilax A - A II = 0, and, for some regular trace class 
operator T, Xl--+tr(T(ax A )) vanishes at infinity. (3) Condi
tion (2) holds for all trace-class operators T. (4) A can be 
approximated in norm by operators of the form 
Bf = Sdxf(x)EI(x) with fE2'I(X). 

Proof The equivalences (l)q(2)q(3) are a restatement 
of Theorem 4.1. To prove the last equivalence, note that 
liJ i: = I Sdxf(x)Ei(x)lfE2'I(X)J are corresponding 
spaces. Since the algebra of Fourier transforms of 2'1 func
tions separates points, §J 0 = %0; hence §J 1 = % I by uni
queness of corresponding spaces. 0 

By restricting the support of fin Corollary 5.1(4) to 
some closed subset of X, we obtain corresponding proper 
subspaces of %0 and % I' However, %0 and % 1 are both 
minimal in the lattices of a-invariant C *-subalgebras of f/? 0' 
and f/?j. 

Proof (0) Suppose X I ,x2EX are not separated by trans
latesofsomefunction J, i.e., Vx f(x I - x) = f(x2 - x). Then 
ax. _ x, f = J, which is impossible for XI =l=x2 and fEY o' 

(I) If liJ I is ana-invariant proper C *-subalgebraof % I' 

liJ t =1= 10 J since f/?: is the dual of % I' Hence the 
oif/? 00 ,f/? 1 )-closure of liJ 1 is a proper subalgebra of f/? j . 
Thus the commutant liJ; of liJ I is a nontrivial a-invariant 
von Neumann algebra and by Corollary 4.4(5) contains a 
Weyl operator EI(x) with x =1=0. Hence liJ I is pointwise fixed 
under ax contradicting limn~oo tr T(a n.x A ) = 0 for 
AE%I' 0 

B. Differentiable elements 

For kEN let CrJ kCf/?oo be the space of elements whose 
derivatives up to order k exist and are strongly continuous. 
For k = 00 let CrJ 00 = nkEN CrJ k. For any finite set 
Y = I YI"'Yn J, Dy will denote the formal differentiation op
eratorDy = lim 1t,}-.Q TI7= 1 ti-I(I-at,y,)' ThusAECrJ k 
means that for any finite set Y with I Y I <k there is some 
A =Dy AECrJ such that 
lim1t,l-.Q II(TIi t i- 1(1 - at, y,))A - A 1100 = O. The semi
norms A~IIDy A II 00 define the locally convex topology of 
CrJ k. 
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Since ax(T*A) = T*(ax A) and IIT*A 1100 
< II T IIIIIA 1100' it is clear that f/? I*CrJ kC CrJ k and 
Dy(T*A) = T*DyA for IYI<k, TEf/?t,andAECrJ k. In par
ticular, the maps A~T*A are continuous in the CrJ k-topol
ogy. Thus we arrive at the following: 

Corollary 5.2: Let I <k< 00. Then Theorem 4.1 (1)-(4) 
remains valid for pairs liJ~CrJ \ when CrJ is replaced by CrJ k 
and topological notions are referred to the CrJ k-topology. 

Proof In the proof of Theorem 4.1 substitute II A II p by 
max IllDy A 1100 I YE'3I J = II A 11'31' where '31 is an arbitrary 
finite collection of finite sets Y with I Y I <k. If AECrJ \ 
I Dy A I YE'3I J is a finite subset of CrJ, so that we may find one 
fEf!lt ~ with II f *A - A II,}' <£1' With the obvious further 
substitutions the proof of Theorem 4.1 applies. 0 

A glance at the classical situation shows that in general 
the correspondence for spaces of test functions Gl test opera
tors cannot be defined by f!lt: *liJ c liJ. Instead, the space 
f!lt: should be replaced by some subspace, e.g., the space of 
Schwartz operators Y 1= IAEf!lt: I Y IAEY(X) J. Clearly 
Y I contains regular elements, so that the theory of Sec. IV 
remains unchanged. The usefulness of this correspondence 
depends on efficient intrinsic characterizations of Y I' 

C. Functions of position 

LetX = 8 Gl Ebe a decomposition of X into momentum 
and position space as described in Sec. II, so that 
JY' = 2'2(E). Then we can consider a function fE2' 00 (E) 
either as the classical observable 1T?; fEf!lt 0' with 
(1T?; f)(p,q): =f(q) or as the quantum observable 1T1' fEf!ltj 
with [(1T1' f)t/!] (q): = f(q)t/!(q). This map rrr takes 2' 00 (E) 
isomorphically onto a oif!lt t ,f!lt: )-closed a-invariant algebra 
liJ i C f!lt t, which can be characterized intrinsically as 
liJ i = IAEf!ltt IXEE=>ax A = A J. He~ce liJ = liJ 0 GlliJ I is 
the weah-closed pair with spectrum E. 

Since rrr is normal, it has a preadjoint 1Ti:f!lt :_2' I(E), 
which associates with each state TEf/?: its distribution of 
position 1Ti TE2' I(E). [Explicitly: (1T ~)(q) = (21T) - N 

XSdp g(p,q) and (1TIl:Ai I 'Pi ) (t/!i I)(q) = l:Ai 'Pi(q)t/!i(q). With 
the help ofthe relation (1Tia(p,QI T)(q') = (1Ti T)(q' - q) one 
easily proves that 1T = 1To + 1TI:f!ltI-2'(E) is a convolution 
homomorphism, i.e., 1T(TI *T2 ) = (1TT!l*(1TT2). When liJo 
and liJ t' are identified with L 00 (E) through the isomorphisms 
rrr, the mapA~ T *A for AEliJ i> TEf!lt J becomes convolution 
with 1TT, 

Let hE2' 1(8) such that (21T) - N Sdp h (p) = 1. Then the 
mapao:2'I(E)-f!ltb given by (a~)(p,q) = h (p)g(q) is norm
continuous and satisfies 1Toa o = id. This map has no quan
tum mechanical analog a I: If this map existed, 2' 1(£) would 
inherit the Radon-Nikodym property from f!lt: , which 
holds for 2' I(n~, Il) only if the measure space (n~, III is 
atomic. Equivalently, there are no normal projections from 
f!ltj onto liJ I' (Nonnormal projections are easily construct
ed from invariant means on 8.) 

D. The lattice 22 

Forany 11·112-closed pair liJ C f!lt2, let PIP be the orthog
onal projection from the Hilbert space Y1f!lti 2'2(X) to 
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its closed subspace YJiJ,. (The choice i = 0 or 1 is inessen
tial.) The condition of a-invariance for PlJ, is equivalent to 
[pg; ,Y,axY,-I] = O. The unitary operators 
(Y,axY'- 1 f)( y) = e - 'Ix,y~( y) generate a maximally abe
lian von Neumann algebra in '@(,2"2(X)) which is isomor
phicto,2"oo (X). (Compare with Example 5.3, replacingEby 
X.) Hence p g; can be identified with a projection in ,2" 00 (X) 
and the lattice g2 introduced in Corollary 4.2 is isomorphic 
to the projection lattice of ,2" 00 (X). Thus g2 is a Boolean 
algebra, whose orthocomplementation is given by the oper
ation 1 of 4.2 (apart from a twist by the antiunitary involu
tion A~A *). If only countable lattice operations are consid
ered, g2 can also be considered as the Borel algebra of X 
modulo null sets. 

E. Almost periodic functions and the CCR algebra 

For i = 0,1 let d, be the norm-closed linear hull of 
[E,(x)lxEX j. Since T*E,(x) = (YIT)( -x).E,+ I (x) for 
TE&?:, d = do (j) d ICC(! is a pair and, since products 
and adjoints of exponentials are exponentials, do and d 1 

are both C *-algebras. do is the space of continuous almost 
periodic functions on X and d 1 is the CCR algebra, one of 
the most thoroughly studied objects in mathematical phys
ics. (The case dim X < 00, which is studied here is considered 
trivial from the point of view offield theory.) I do not know 
whether (2) and (3) of the following proposition already exist 
in the literature. In any case, their proof is a nice application 
of the correspondence theory of Sec. IV. 

Proposition 5.5: (1) There is a unique a-invariant state 1', 

on d,. 1', is a trace and satisfieS'T, (~x a(x)E, (x)) = a(O). For 
TE&?J, 1',(T*A) = (YjT)(O)1"+j(A). 

(2) AEd, iff AEC(!, and {ax A IxEX j is norm-precom
pact. 

(3) For AEd" the normclosure of the convex set 
Cj(A): = [T*A ITE&?J+ j , T)O,tr T= 1j Cd, contains ex
actly one a-invariant element, namely, 1', (A ) Ij. 

Proof (1) For any invariant state 
1',(E,(x)) = 1',(ayE,(x)) = eil y,x l1',(E,(x)) = 0 for x#O and 
1',(E,(O)) = 1'i( 1,) = 1. This proves the formula for finite lin
ear combinations of exponentials. On this dense subset of 
d, the other relations are easily checked, including the posi
tivity of 1',. Hence 1', extends by normcontinuity to d, . 

(2) Let d, be the space of elements satisfying the second 
condition. Since T~T*A is norm-continuous, 
d = :;;0 (j) d 1 is a pair. It is easy to show that d I is norm
closed. do = do is a classical result; hence d I = d I by 
uniqueness of corresponding spaces. 

(3) The case i = j = 0 is a classical result.24 Now let 
T.E&? J be a state. Then T, *AEd 0 and there is a state T€E&? 6 
such that IIT€*T,*A -1'o(T,*A )1011 
= II T€*Ti*A - 1';(A )loll';;;;E. Hence fo~ any state TE&?: +j 

and with T€: = T*T,*T€*T,E&?:+j:IIT€*A -1'i(A )q';;;;E 
since T*T.* 10 = 1j . A similar argument shows that no other 
constant can be approximated. D 

The closed invariant subspaces of d i may be charac
terized in a very simple way: For any subset A CX, let d, (A ) 
denote the norm-closed linear hull of [Ei(X)lxEA j. Then 
d(A) = do(A) (j) dl(A ) is a pair. Using Proposition 5.5(3), 
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one can prove that every closed invariant subspace of d, is 
of the form d,(A ). (Compare Ref. 25, pp. 165.) Thus the 
sublattice {PlJEgc I PlJ Cd j is isomorphic to the power set 
of X. d,(A ) is separable iff A is countable, self-adjoint iff 
A = -A,andaC*-algebraiffA is a group. The spectrum of 
d (A ) is the closure of A. The commutant of d I (A ) in d I is 
d I(A )'nd 1 = d(A '), where A' is the closed subgroup 
A' =:{ yEX IxEA=>{x,yjE21TZj. 

An interesting special case occurs when A is a non de
generate point lattice in X, i.e., A = {~7~ I nixi In,EZI for 
some linear basis {x 1,,,x21 cx. Then A 'has the same proper
ty and dl(A) = fAEd i IxEA '=>ax A =A j. do(A) is just 
the space of A '-periodic continuous functions, so that the 
algebras d o(A ) are all isomorphic. On the other hand, the 
C *-algebrad I(A ) is generated by the 2NunitariesE (x, ) with 
the "discrete canonical commutation relations" 
E(x,)E(xj) = eilx"xjIE (xj)E (x,) and depends very sensitively 
on the matrix {x,.,xj J = :21TMij' For example, the center of 
dl(A ) is dl(AnA ') and AnA 'may be equal toA or to [OJ, 
depending on the existence of rational relations between the 
Mij' More complete invariants are provided by K theory, in 
particular, the image of the group Ko( d I (A )) by the trace 1'1' 

For N = 1, d I (A ) is known as the algebra of rotations by 
{X I,X2 J and that group is Z + (21T)-I[X I,X2 J'Z and a com
plete invariant. For higher dimensions N, Ko(d I(F)) has 
been calculated by Elliot. 26 
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A functional integral is considered as an integral on a locally noncom pact group with a 
generalized measure; the general method of integration on such groups is described, and 
conditions under which the integral exists are formulated. In particular, the action functional is 
determined by means of a group-theoretical method. The path integral for a quantum-mechanical 
motion of a nonrelativistic particle in the Euclidean space is considered from this point of view. 
The corresponding locally noncom pact group is the set of all alternative trajectories where the 
group operation is the pointwise addition. The internal group theoretical action functional 
present in the generalized measure is coinciding with the classical action functional. Thus a 
group-theoretical definition of the classical action functional is obtained. 

PACS numbers: 03.65. - w, 02.20. + b 

INTRODUCTION 

Feynman put forth an extremely important and highly 
stimulating general principle: the transition probability am
plitude for any quantum mechanical system is the sum of 
functionals exp[ill1) S (y)] over all paths y. This was the foun
dation underlying the method offunctional integrals in theo
retical physics which has become one of its main tools. 

The first questions one would ask in trying to under
stand the method are what do we mean by definition of the 
integral over all paths, what are the rules for handling it, and 
how can we calculate it. The well-known approach proposed 
by Feynman is to begin with a multiple (finite) integral over a 
time lattice and to calculate the limit of this integral as the 
step of the lattice is going down to zero. Actually, this pre
scription, if operable, leads to correct results. This is, how
ever, an approach essentially different from the original 
principle, since before the limit of vanishing time step is tak
en the functional exp[(ill1) S (y)] must be integrated over the 
polygonal trajectories the segments of which are either 
straight or elements of the classical trajectories, but not over 
all possible paths. Even in the limit Li t --+ 0 the contradiction 
is not removed, as though any continuous trajectory can be 
approximated with polygonal lines, the variation of S (y) for 
an arbitrarily close vicinity of the path remains infinite. 

A specific difficulty inherent in the definition of the 
functional integral on the basis of Feynman's formulation is 
that the path integral is being contributed by the paths for 
which Lix is proportional to (Lit )1/2. For such paths (il 
11) S (y) = i 00 (note that it is - 00 for the diffusion equation), 
so that the conclusion we draw is that the functional exp(iS I 
11) is devoid of meaning (respectively, vanishes for the diffu
sion equation) on the paths which, in fact, do determine the 
value of the integral. 

We would like to attribute the general Feynman princi
ple with an actual meaning and to define the functional inte
gral in the space of alternative paths.2 Such a definition may 
be useful in such complicated matters as quantum field the
ory and the theory of gauge fields only if it is sufficiently 
general and clear. Therefore, we feel it important that the 
functional integral is defined in this paper almost literally as 

an improper integral on the infinite axis; the difference being 
that the role of the line element dx is performed by a general
ized measure endowed with a clear physical meaning. 

It is appropriate to look at the problem from a more 
general point of view, as is often helpful, and to consider the 
integration on a locally noncompact group, abelian or nona
belian. For such groups there is no measure, invariant under 
the group transformations, and we have no theory of the 
integration in general. However, under certain conditions 
which are quite natural for physics, it is possible to construct 
a general method of integration on the groups, as it is shown 
in Sec. I. 

The main condition involved is the existence of a basis 
system of vicinities in the group G, which are called channels 
in this paper, and a possibility to determine a completely 
additive function on this system, J-l, and we shall call it the 
generalized rough measure. Then the functional integral for 
the group G is defined in an almost standard manner, in 
terms of the integral sums, and it is written as 

Sa q; ( g) dJ-l( g). (0.1) 

In the cases of actual interest there exists such a subgroup G I, 
which is dense everywhere in G, that for any g' E G I there is a 
limit 

dJ-l(g') = lim {J-l[ g'V(I)] } 
dJ-l(I) J-l[ V(I)] 

as the channel VII) is contracted to the group identity ele
ment I. The notation used for the limiting value is exp[(il 
11) S (g/)], this is an internal group-theoretical definition of 
the action functional on the group G. Moreover, the intro
duction of the action functional enables one to introduce a 
generalized measure invariant under the group transforma
tions, 

du( g/) = exp [(ill1) S ( g/)] dJ-l( g'l, 

and to write down the functional integral in the form specific 
for the Feynman path integral, 

L q; ( g) exp [ ~ S ( g)] dcr( g). (0.2) 
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The form ofEq. (0.1) is more adequate than that of(0.2), 
as is argued in Sec. I. The main advantage of the latter is the 
formal applicability of some rules of the standard integral 
calculus. It is remarkable that the action functional, which is 
determined from the group-theoretical arguments, is the 
same as the classical action functional. In other words, we 
have got an internal group-theoretical definition of the clas
sical action functional. 

The group G, and the generalized rough measurell, are 
defined in a natural way to fit the quantity that is represented 
by means of the functional integral. In the present work we 
deal with the path integral representation of the evolution 
kernel K (x.t;t flH I Xi, t i), X ERn, for the n-dimensional 
Schrodinger equation 

_ .!i. ar/! = Hr/!, 
i at 

describing the motion of a nonrelativistic particle of mass m. 
In this case the group G is the group of all continuous curves 
connecting the initial point (Xi, t i) with the final point 

(x.t; t f), Y = x(t). The notation used for the group is G ~:", f. 
The group operation is 

_ -f -/I -Ii 
Yl ®Y2 - Yi + (Yl - Yi) + (Y2 - Yi)' 

where y(is the segment of the straight line connecting the 
initial and the final points. The generalized rough measure is 
induced by the Schrodinger equation; it is determined in Sec. 
II. The approach to the functional integral treating it as the 
integral with the generalized measure on a locally noncom
pact group is revealed essentially even in this simple case. 

The subject of Sec. III is the rule for the change of varia
bles induced by group transformations in the group of paths. 
It is proved that the action functional derived by the internal 
group-theoretical method coincides with the classical ac
tion. The present approach to the path integral is illustrated 
with some simple problems. 

Section IV presents a modification of the integral on the 
time lattice, basing on the proposed approach, and a general 
proof is given that the integral on the lattice is converging to 
the functional integral as Lit --+ O. 

The main part of the matter presented in this paper was 
given in the author's reports' delivered to International Ses
sions of the Moscow Seminar on Collective Phenomena, in 
1977 and 1981. 

The multidimensional Schrodinger equation is con
cerned only in the aspects where the method exposed for the 
one-dimensional case needs a modification. 

Comprehensive reviews of various approaches to path 
integrals, and extensive bibliography, are given in Refs. 2-5. 
In Ref. 3 it was indicated, in particular, that the concept of 
measure needs a modification if the path integral is consid
ered. 

I. INTEGRATION ON LOCALLY NONCOMPACT 
GROUPS: A GENERAL APPROACH 

(1 ) We shall treat the functional integration as an inte
gration on topologically noncom pact groups, and so it is rea
sonable to start from a description of the general scheme for 
integration on groups ofthis class. Unlike compact groups 
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and locally compact groups, in the case in view we have no 
invariant measure, and the theory of integration is not at 
hand. Nevertheless, we will propose now an outline of the 
integration method to work with, which is applicable under 
some restrictions that are fulfilled in physical problems. 

Let G be a topological locally noncompact group; it can 
be abelian or nonabelian. To make the subsequent formula
tions simpler, we suppose that G is a metric space and that 
for any three group elements g" g 2' g, the distance functionp 
satisfies the following condition: p( gg" ggz) < Cp( gl' gz), 
where C is a constant independent of the group elements. 

Let [ Va 1 be a system of vicinities in G, which includes 
the group G itself, is invariant under the left multiplications, 
and is closed with respect to the operation of intersection, 
i.e., for any pair of the vicinities belonging to the system their 
intersection also belongs to the set ! Va J . Elements of such a 
set will be called channels. Any set of channels which are 
mutually exclusive is called as set of independent channels. 

We call a set! Va J the left basis system if the following 
conditions hold. 

1. There is a completely additive function Il on the set 
[ Va J which is finite for every channel Vand vanishes on 
boundaries of the channels, a Va' In particular, 11l( G ) I < 00. 

2. The group G can be subdivided into a countable (or 
finite) set of independent channels, the diameters of which 
being less than an arbitrary positive quantity {) > 0, up to the 
channel boundaries, 

(1.1) 

(Here and below in the paper, ~ stands for a set of group 
elements which belong to the channel boundaries.) 

It follows from (1.1) that every channel in the system 
[ Va J can also be subdivided into a finite or countable set of 
independent channels, the diameter of which is less than a 
fixed quantity {) > 0: 

u= U Va+~' Il(U) = IIl(Va)' (1.2) 
lal lal 

Any subsystem ! Va J in the decomposition (1.1) for the 
group G will be called a complete system of independent 
channels, and any subsystem (1.2) will be called complete 
with respect to the channel U. The function Il introduced 
here will be called a generalized rough measure. 

It is suitable to mark the channels belonging to a system 
of independent channels by means of arbitrarily chosen ele
ments of the channels. Thus the decompositions in (1.1), (1.2) 
can be written down as follows: 

G= u V(g)+~, Il(G) = LIl[V(g)], (1.3) 
I~ I~ 

U= u V(g)+~, 1l(U)= IIl[V(g)]. (1.4) 
Igi Ig) 

The index ( g) here means that the sum is taken over the 
corresponding complete system of independent channels. 

The quantity 

I IIl(Va)1 = Var[ll; G;(a)] (1.5) 
la) 
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is called the (a )-variation of the rough measure,u, taken for 
the (a)-decomposition (1.1). Respectively, Varf,u; U;(a)] 
means the sum of the channel measures for the decomposi
tion (1.2). 

Condition 2 holds only ifVar f,u; G;(a)] < 00, as the sum 
of an absolutely convergent series is independent ofthe order 
of its terms. IfVarf,u; G;(a)] = 00, one should be careful, as 
in the operations with improper integrals. 

We suppose that Varf,u; U;(a)] is finite for any finite 
channel U (recall that G is a metric space). Let [ Un J be a 
family exhausting the group G, i.e., 

Ul C U2 C U3 • .. , (1.6) 

and any group element belongs to some channel Un. An ad
ditional requirement to be imposed upon the rough measure 
,u is 

lim ,u( Un) = ,u(G). (1.7) 
n-____>o ct::: 

Thus iffor an (a)-decomposition (1) of the group G one has 
Varf,u; G;(a)] = 00, one should consider instead the decom
positions for the set exhausting the group G, 

Un = U V(gn)+9C, ,u(Un) = L,u[V(gn)]' (1.8) 
I gn) I gn) 

In this case we shall call the group decomposition of this 
type, for the sake of brevity, " a big box decomposition." 

There is a quite simple, but very useful, example of a 
locally compact group. The real axis is a group with respect 
to the usual addition; the intervals (x_, x+) can be consid
ered as channels in the sense explained above, and the rough 
measure can be defined as the integral 

,u[x _, x +)] = S; ~ exp(ix2
) dx. The variation of,u taken over 

the decomposition of the real axis into the intervals + (..;mi, 
~(n + 1) 1T), n = 0,1,2, .. ·, is infinite. Actually, to get the cor
rect magnitude for the measure of the group, 

,u(G) = f-+ == exp(ix2
) dx, 

one has to sum up the channel measures 

,u[ +(..;mi,~(n + 1)1T)] by means of the big box rule. 
The example considered is also useful to explain why we 

have applied the term "generalized rough measure." One 
does not need a generalized measure for sophisticated sets; 
the sets of our present interest are those where one has an 
interference effect. 

A difficulty specific for the integration with a strongly 
oscillating generalized rough measure,u is that the meaure 
for a subchannel may be much greater, by its absolute value, 
than the measure for the channel itself, and the contributions 
to the integral sum, q; ( g) ,u[ V ( g)] and };Ia,)q;( g'),u [ V ( ga') ] , 
where V ( g) = Ula') V ( ga' ), are substantially different. A nec
essary condition for a functional to be integrable with the 
generalized measure,u is that the oscillation of the functional 
must be small as compared with the oscillation of the gener
alized rough measure for the channels in the subdivisions of 
which the oscillation of the rough measure is strong. If this is 
true, one has 

L q; (ga'),u [V( ga')] ~q; (g),u[ V(g)], 
la') 
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(2) The decompositions of any fixed channel U, includ
ing the group G itself, into the complete systems of indepen
dent channels can be partially ordered; a decomposition (a") 
follows another decomposition (a'), if for every channel in 
the (a')-decomposition there exists in the (a")-decomposi
tion a system of channels which is complete with respect to 
it. For any two decompositions (a') and (a") there exists a 
decomposition which follows them both, namely, the (a'a")
decomposition made up of all the intersections of channels 
belonging to (a') and (a"). Thus the totality of all the decom
positions is a partially ordered set, and it forms the so-called 
directedness, The limit along the directedness is defined in 
the same manner as the limit for a usual sequence: a quantity 
I(a) determined on elements of the (a)-decomposition haslas 
its limit if for any fixed t> 0 there is such a decomposition 
(a). that 1 1-l(a)1 < t for any decomposition which follows 
(a)., The familiar Cauchy criterion indicating whether a lim
it does exist is applicable here as well, 

Now we are in position to define the integral on any 
channel U (including the group G itself), for which the mag
nitude ofVarf,u; U;(a)] is finite for all the (a)-decomposi
tions, 

Let us take a complex-valued function q;( g) on the 
group G, and write down the integral sum for (a)-decomposi
tions of the channel U, 

L = Lq;(g),u[V(g)], gE V(g). (1.9) 
la) Ig) 

If a limit along the directedness of the (a)-decompositions 
exists for the integral sums, the limit is called the integral of 
the function q; ( g) on the channel U over the left rough mea
sure, 

lim L q; (g),u [V( g)] = f q; (g) d,u( g). (1.10) 
~ Ig) 

The conventional proof of the integrability is applicable to 
the integral over the rough measure,u for any uniformly 
continuous function q; on the channel U. 

If for some (a)-decompositions Varf,u; G;(a)] is infinite, 
then the integral upon the group G is defined as the limit of 
integrals upon channels Un which are members of a family 
exhausting the group G, provided that the limit does exist, 

f q; ( g) d,u( g) = }~m= In q; ( g) d,u( g). (1.11) 

It is easily seen that if there are limits for two different ex
hausting families, they must coincide. It is sufficient to have 
a single family for which the limit in Eq. (1.11) is existing. 
The integral upon the whole group G will be written down 
with no indication of the integration domain. Sometimes we 
use the notation (q;,,u) for this overall integraL 

The space offunctions integrable upon the group Gover 
the rough measure,u will be denoted by 0 (G, ,u). The topo
logical structure in the space 0 (G,,u) is introduced as the 
mean convergence with the measure,u; the sequenceq;n( g) is 
converging to q; (g) if(lq; - q;n I,,u) --+ O. 

(3) Let us assume that there is a subgroup G' which is 
dense everywhere in G; it plays a role of importance in the 
following and will be called the normalizing subgroup. It is 
of a particular significance as for any pair of its elements, g; 
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and g;, the ratio of the generalized rough measure, 
IL [ g; Vc5 (I)] IlL [g; V,dI)] , converges uniformly to a limit 
1;. ( g; )If" ( g; ) which is finite and nonzero, as the diameter 0 
of the channel Vc5 (I), containing the group identity element, 
tends to zero. 

There are some clear reasons, to be explained below, to 
write down this limiting value as exp[(illi) S/l- (g;) 
- lilli) S" ( g; I], and to call the quantity S" ( g') the action 

functional of the group element g'. An additional require
ment to be imposed on the generalized rough measure is that 
the normalizing subgroup G ' must exist for which the differ
ence S ( g;) - S ( g; ) is determined: 

lim IL[ g; V,dI)] = exp[!.-s,,(g;) - !.-S,,(gil] (1.12) 
c5 ~ 0 IL [g; Vc5 (I) ] Ii Ii 

(prime stands to indicate that the element belongs to the 
subgroup G 'I. 

Equation (1.12) is a proper group definition of the ac
tion functional S" ( g'l for the normalizing subgroup G I. The 
magnitude of S" (I) can be taken at will. 

For the cases of real interest the normalizing subgroup 
G ' can be chosen in such a way that the difference of the 
action functionals, S" (g2) - s" (gl)' is determined not only 
for any pair of the subgroup elements, but also for any two 
elements lying in the same coset in the quotient GIG I. That is 
to say, the following relation holds: 

. IL[g2 V,dI)] [i i] hm = exp -S/l-(g2) - -S/l-(gtl , 
IL [ g I VI) (I) ] Ii Ii 

g2gl- l =g;g;-I, G=G'+uG'ga • (1.13) 
a 

For any g E G I the action functional is defined by 

!.-S ( ) = lim In IL [gVI)(I)] 
Ii "g IL [ VI) (I) ] , 

(1.14) 

where it is assumed that such a limit does exist and is either 
finite or infinite. Then Eq. (1.13) means that for all elements 
belonging to the same coset the action functional is either a 
finite quantity, or becomes finite after subtraction of a com
mon infinite component. 

The generalized rough measure can be written in terms 
of the action functional, 

IL[ V( g)] = exp [(illi) S( g'l - (illi) S (g~) 

+ lilli) E] IL [g~ g,-IV(g)], (1.15) 

where g~ is an arbitrary fixed element, g' E [V ( g) n G ']; E de
pends on the channel V ( g), on the elements g' and g~, and 
approaches zero, as the diameter of the channel V ( g) vanish
es. Then it follows that 

r if ( g) dIL( g) = lim I if ( g) Ju ~ Ig) 

i 
X exp Ii [S" ( g'l s" ( g~) ] 

X IL[ g~ g'-IV(g)] (1.16) 

for any channel U for which the magnitude ofVarfJL; U;(a)] 
is finite on every decomposition (a). 
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It is suitable to introduce the notation 

u[ V( g); g'; g~] = exp[ - (illi) S( g~)] IL [g~ g'-I V( g)] 
(1.17) 

so the integral over the channel U is written down as follows 

L if ( g) dIL( g) = l~ I if ( g) 

xexp[~ S/l-(g')] u[V(g);g';g~]. 
(1.18) 

In view of the condition (1.12), for infinitely small channels 
the quantity u[ V( g); g'; g~] is independent of the choice of 
the basis element g~; that is to say, the following notation is 
adequate: 

u[ V( g); g'; g~] = doi g; g'l, IL [V( g)] = dg, (1.19) 

so that one has 

L if (g) dIL(g) = L if (g) exp[ ~ S/l-(gl)] doig; g'l· 

(1.20) 

The integral over the group on the whole equals the limit of 
integrals over channels which are members of an exhausting 
family, 

J if (g) dIL( g) = lim r if (g) exp[!.-~, (gl)] doi g; g'l . 
n~ 00 Ju. Ii 

(1.21) 

For the cases of actual interest the variation of the exponent 
is infinite for arbitrarily narrow channels, as is the oscillation 
of the ratio doi g; g; )I doi g; g; ) induced by the variation of 
g; and g; within the channel V ( g). Nevertheless, the limit in 
the integral sum in Eq. (1.18) does not depend on the choice 
of the element g' in the channel V (g). This results from the 
correlation between oi g; g') and S" ( g'l, and so the concept 
of the rough measure justifies the conventional notation for 
the integral in (1.18): 

L if ( g) dIL( g) = L if ( g) exp [ ~ S /l- ( g)] doi g). 

(1.22) 

It should be emphasized, however, that this expression must 
not be considered as a result of summing up of 
if ( g) exp [(illi) S" ( g)] over elements of the channel U. The 
exact meaning of the thing is revealed in fact, only in Eqs. 
(1.l7) and (1.18). 

A basis system of channels { VK J generates a continuum 
of the systems u [ V ( g); g' , g~ ] , since the choice of the ele
ments g' and g~ is not restricted, but all the systems deter
mine the same linear operation in the space 0 (G, IL) because 
of Eqs. (1.18) and (1.19); in other words, one gets a unique 
generalized measure u. 

The generalized measure u is invariant under the left 
multiplications. Actually, for any gl E G one has 

u( gl V( g); gl g'; g~) 

=exp [ - ~ S,,(g~)]IL[g~(glg/)-lgIV(g)], 
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i.e., 

O'(gIV(g);gl g'; go) = O'(V( g);g';g~). (1.23) 

So for every channel U one has 

L ({! (g) exp [ ~ SI' (g)] dO'( g) 

= f ({!(gl-I g) exp[~SI'(gl-1 g)] dO'(g). (1.24) Jg , u fz 

In particular, the integral over the whole group is invariant, 

f ({! (g) exp [ ~ SI' (g)] dO'( g) 

= f ({! (gl-I g) exp[~ SI'( gl- I g)] dO'( g). (1.25) 

The conventional notation (1.22) is quite convenient also be
cause the inherent formalism is simple, 

dO'( g) = exp [ - (ilfz) SI' (g)] dJL( g), dO'( g2) = dO'( g d, 
(1.26) 

while the exact meaning of the symbols used has been eluci
dated above. 

The integral f ({! ( g) dJL( g) can be represented in terms of 
the integral sums with the elements belonging to any coset 
G 'go of the normalizing subgroup G " 

f ({! (g) dJL( g) = lim L ({! (g) exp[~ SI' (g) - ~ SI' (go)] Ju - fz fz 

XJL[ gog-I V( g)] g E [V( g) n G 'go], 
(1.27) 

as well as by means of the sums of Eq. (1.18). If SI' (go) is 
infinite, the difference SI' (g) - SI' (go) can not be decom
posed to provide us with an exponential factor present in the 
definition of 0' [ V ( g); g'; g~ ] ; yet the integral in Eq. (27) is 
performed, in fact, with an invariant measure. The expres
sion on the rhs is independent of the choice of the element go, 
andJL[ got gl g)-I gl V( g)] = JL[ gog-I V( g)],sothatthemea
sure defined in Eq. (22) can be used to rewrite the integral in 
Eq. (27): 

L ({! ( g) dJL( g) 

= f ({! (g) exp [ ~ SI' (g) - ~ SI' (go)] dO'I( g), 

dO'I(g) =JL[ gog-IV(g)]. (1.28) 

Correspondingly, the expressions in Eq. (1.26) are replaced 
by 

dO'l ( g) = exp [ - ~ SI' (g) + ~ SI' (go)] dJL( g), 

dO'I(gd=dO'I(g2)' (1.29) 

while the difference [SI' (g) - SI' (go)] can be considered as a 
finite component of the action functional on the coset G 'go' 

II. CONTINUAL INTEGRALS FOR THE 
NONRELA TIVISTIC SCHRODINGER EQUATION 

(1) The method of integration on topological locally 
noncompact groups, which was presented in the preceding 
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section, enables one to get a unified description of various 
quantities concerned in quantum mechanics and quantum 
field theory, writing them down as the path integrals. In 
every case, the group G where the integration is established 
and the appropriate rough measure on the group are defined 
in a way which is natural for the problem considered; and the 
action functional defined by Eq. (1.12), which has an internal 
meaning, is coinciding with the classical action. In other 
words, this is a way to get an internal group-theoretical de
finition of the conventional action functional. 

We begin with a detailed consideration of the one-di
mensional motion of a nonrelativistic quantum particle of 
mass m in an arbitrary potential field. The system is de
scribed in terms ofthe Schrodinger equation with the Hamil
tonian operator6 H, 

_ !!.- at/! = H.I, 
i at ,/" 

fz 2 a2 fz a 
H= - -- - -;-A (x,t)- + V(x,t). 

2m ax2 
I ax (2.1) 

The final state wave function of the particle at a time mo
ment t I is the convolution of the initial state wave function 
at a time moment t i with the evolution kernel (Green's func
tion) K (xl, t IIH I xi,t i) of Eq. (2.1). The evolution kernel is 
the probability amplitude to find the particle at a point xl for 
the moment t I, once it was observed at a point Xi for a time 
moment t i. Thus, if one has to find out the time evolution of 
the system, it is sufficient to get a path integral representa
tion for the evolution kernel. It is well known that the latter 
satisfies the differential equation 

(a i) . . - + -H K=8(t-t')8(x-x'). at fz 
(2.2) 

Let G ~:,', f be the set of all paths starting at the point Xi at the 

time moment t i and getting to xl at the time moment t I, and 

G:: be the set of all the paths starting at t i from some point 

and finishing at an arbitrary point at the time moment t I. 

The time arguments will be omitted in all the cases where we 
do not expect a confusion, and the sets of paths are denoted 

as G :' and G ;; respectively; elements of the sets arex or x(t). 
Evidently, the sets in view are metric spaces, and the distance 
between two elements is given by 

P(XI' x2) = suplx2(t) - xl(t )1, t i<,t<, t f: 
The set G {is an abelian group with respect to the 

pointwise addition (x \ + x 2 )(t ) = x \ (t) + x 2(t ). As to the set 

G < it is an abelian group only for the case where both paths 
x 

are closed, and Xi = xl = 0, but the group structure can be 
introduced in the following general way. 

Let G be a group and Go its subgroup; then 

G = u Goga 

is a decomposition of G into co sets relevant to the subgroup 
Go. The mapping g ~ gga' g E Go, is a isomorphism which 
determines the group operation in the coset G a = Gga , 

g\gog2g=(g\g2)gu' g\,g2 EGO' 

If we turn back to the sets G {and G ~J, we see that the latter 
x 

is a coset with respect to the subgroup G :'~~oo. The simplest 
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choice of the element ga fixing the coset is the path corre
sponding to the motion with a constant velocity, namely, 

x{(t) = Xi + (xl - Xi)(t - t i)(t - t V(t 1_ t i). (2.3) 

Thus the set G ~1 is an abelian group where the group addi-
x 

tion is 

xl(t) EIlX2(t) = [Xl(t) - x{(t)] + [X2(t) - x/lt)] + x{(t) 
(2.4) 

and the group identity element is the uniform trajectory 
x/lt ). Of course, any path with the fixed end points may be 
taken as the identity element, and then this path must be 
implied in the definition (2.4). 

Let x _ (t ) andx + (t ) be limiting functions for continuous 
functions on the interval t i<:J<J lin the pointwise topology, 
and x _ (t ) < x + (t ) for any t in the interval considered. The 
subset of paths in G f, satisfying the condition 

x_(t)<x(t)<x+(t), ti<t<:tl, (2.5) 

will be called the channel in the group G (. The channel di
ameter is defined by 

(2.6) 

The channel boundary, a { x _, x + 1 f, is the set of all paths for 
which one of the inequalities in (2.5) becomes the equality at 
some time moments. We define the channels {x _, x + l;,1 as 

intersections of channels {x_, x+ 1 {with the set G ;,1. The 

appropriate system of vicinities in the group G ;,1, as that 
mentioned in Sec. I, { Va l, is the system of all the channels 
(x_, x+ l;,1. 

1 1 
In analogy to G ;, , one can define the groups G ;i

t
, and 

G t~/t I. The former contains all the paths which start from a 
fixed point, and the latter is the set of all paths which finish at 
a fixed point. The channels in these groups are defined as the 
intersections of these groups with channels belonging to 
G ,',1. The identity elements for the groups in view are 
x(t) = Xi and x(t) xl, respectively. The group operations 

are those translated from the vector spaces G ~t~ and G?i I, 
respectively, for instance, in the case of G t

;, we have 
xt 

xl(t) EIlXz(t) = Xi + [xl(t) - Xi] + [x2(t) - Xi]. (2.4') 

Suppose the functions x_(t) and x+(t) are finite (not 
equal to - ao and + ao, respectively) only for a discrete set 
of time moments, tlO) = ti, t(!), ... ,t lk ) = t I; the channel de
fined by (2.5) in this case will be called a beam, and its nota
tion is B Ik) [ Xl~ ,xlJ ]. The beam opening is, by definition, 

max [xlJ - xl:':l ], j = O,l, ... ,k. (2.7) 

The beams in the group G ~j are called the sets defined as 
x 

B X/1k)[XU) xU)] = B Ik) [xU) xU)] n G xl 
Xl -'+ -'+ x'· 

It is suitable sometimes to lift the construction de
scribed into the (x,t ) space, i.e., to consider the (x(t ),t ) graphs 
instead of just the paths x(t ) on the x axis. We retain the 
terminology in describing such an extended picture, supply
ing the symbols with the time argument (t), if necessary. So, 
e.g., G {(t ) is the group of all graphs having the starting point 
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upon the line t = t i, and the end point up on the line t = t I; 
the channel (x _, x + l/l t ) should not be confused with the 
band (x _, x + JIlt ) in the (x,t ) plane, the boundaries ofthe 
band being the curves x_(t). 

For the beams B Ik) [xl~ , xlJ ] (t), unlike arbitrary 
channels {x _, x + 1 {(t), there is a very simple proof that the 
whole path space G ((t) is decomposed into a complete sys
tem of independent beams, the openings of which are arbi
trarily small. It is sufficient to divide the straight lines t = t J, 

j = 0, l, ... ,k, into systems of nonoverlap ping intervals which 
are sufficiently small. All possible systems of such intervals, 
one interval on every line, constitute a complete system of 
independent beams. The intersection of the system of beams 

with the group G f(t ) is a complete system of beams for this 
group. Replacing the graphs (x(t ),t ) by the corresponding 
paths, one gets the decomposition of the group G ;,1 over the 

complete system of independent beams B flk I [ xl~ , xlJ ]. 
Such a decomposition of the group can be taken as a 

basis for the following consideration; the sequence of beams 
B Ik) with all values of k, while for every given k all possible 
beams are involved, can be used as the system of vicinities 
{ V

K 
l. In Sec. IV we shall be concerned with this point, in 

view of modification of the constructive definition of the 
Feynman path integral. We prefer, however, to take as the 
starting point the statement, which is proved in the Appen
dix, namely, that the groups G t and G ;, I, as well as any fixed 
channel in each group, can be represented as a union of a 
denumerable set of arbitrarily narrow channels, up to their 
boundaries. In other words, the systems of vicinities { Va 1 in 
the groups G { and G ; are the systems of channels 

{ x _, x + 1 { and {x _, x + 1 ;,1, respectively, and the conditions 
(1.1) and (1.2) are supposed to hold. 

(2) The main assumption is that every channel 

(x _, x + 1 f has its proper partial amplitude, the notation we 

use is IlH({ x_, x + 1 ;;) for the probability of the particle tran
sition from (Xi, t i) to (xl, t I) along the paths belonging to the 
channel, and that the total probability amplitude 
K (xlt IIH I xit i) is a superposition of the partial amplitUdes 
for any complete system of independent channels, 

(2.8) 

The decomposition of the group G ;/over a complete system 
of independent channels takes place only up to the channel 
boundaries, so Eq. (2.8) includes implicitly the requirement 
that the probability amplitude for transition along the chan
nel boundary is vanishing. The partial amplitude, as a func
tion of xl and t I, satisfies the same equation, (2.2), as the 
total amplitude K (x It IIH I xit i), since the differential equa
tion tests only local properties of the function. 

With Eq. (2.8) one can understand why it is the partial 
amplitude of the channel that is chosen as the rough mea
sure. As the partial amplitude for the channel boundary is 
zero, and the differential equation (2.2) is satisfied, one has 
the following statement on the generalized rough measure. 

Statement: A generalized rough measure 

IlH(!X-, x+ If ofa channel {x_m x+ l; is the solution of 

N. N. Meiman 1417 



                                                                                                                                    

the following mixed problem: 

(
a i) . . 
at + -,;H t/t = 8(t - t') 8(x - x'), 

t/t[x± (t)] =0, ti<,t<,t f (2.9) 

upon the curvilinear band (x_(t), x+(t)), taken at the point 
(x.t; tf). 

Let the curves x_(t) and x+(t) be fixed and xf, t fbe 
considered as variables (x,t ). Then the rough measure for the 
given band (x _, x +) is a function Ii(X,t ). 

f. 
The rough measureliH(G ;. ) for the whole group corre-

sponds to the infinite band with x l' (t) = ± 00, t i<,t<,t .t; 
that is to say, 

IiH(G f) = K (xft flH I xit i), (2.10) 

because K (xt IH I Xi t i) is vanishing, as a distribution, for 
x -- ± 00, and it is the solution ofthe problem (2.9) for the 
infinite band. 

The zero boundary conditions in the mixed problem 
(2.9) result from the superposition principle for the partial 
amplitudes, and the value of the Green's function at the 
boundary curves x ± (t) is determined by contributions from 
a denumerable set of other channels, inside which are the 
points. 

The decomposition of the whole set of paths, G f, over 
the complete systems of independent channels and the con
cept of the channel partial amplitudes is, seemingly, a more 
accurate definition of Feynman's path integral representing 
the kernel K (xft f IH I xit i) as a sum of amplitudes contribut
ed by the paths. As to a single path amplitude, it is unreason
able to define such a thing, just as it is unreasonable to intro
duce a length for a single point on a line. 

The rough measure of a beam B xf(k) [x(j) x(j)] is ex-
'Xl -, + ' 

pressed directly in terms of the (k - 1 I-fold convolution of 
Green's functions, 

I/. (Bxf(k)[XU] xU]]) 
r-H x' -, + 

x(k- If xO) 

= r + r + K(xflH I X(k-I)) dX(k-l) 
Jx(~ - I) Jx(~ 

XK (X(k - I)IH I X(k - 2)) ••• dx(l)K (x(IIIH I Xi), (2.11) 

where we have omitted the arguments t U] for brevity. 
There is the last point relevant to the construction ex

posed in Sec. I, which has not been mentioned until now, 
namely, the normalizing subgroup. Actually, it will be deter
mined below (Sec. III) in such a way that the condition (1.12) 
is satisfied. 

The group of closed paths, G ;':'/, is especially impor
tant. If we have the motion in the infinite axis, or in an un
bounded flat space, all the closed paths can be deformed 
continuously to the identity element of the group, i.e., that 
describing the point at rest, x(t ) = Xi; that is to say, the funda

mental group of G ;.' is trivial. In general, the fundamental 
group plays a very important role in the definition of the path 
integral. 

(3) A fundamental property of the path integral for the 
Schr6dinger equation is that the generalized rough measures 
dli HI and dli H

2
' corresponding to different Hamiltonians, HI 
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and H 2 , for a fixed particle mass m are related in a clear way. 
In fact, it is sufficient to express the rough measure for the 
general Hamiltonian Ii H' in terms of Ii Ho' where 
Ho = - (Ii 212m) ~/ax2 is the free particle Hamiltonian. 
To this end, we will find an approximation for 
IiHOX-, x+ til, the solution of the mixed problem (2.9), 
which is related to the free particle solution, 

where 

UJ = f(x,t ) dx + rp (x,t ) dt (2.13) 

is an as-yet unknown differential form, y is a certain fixed 
path within the channel I x _, x + 1 xi' Y is an arbitrary path 

within the channellx_, x+ l:" 8 is the ~egment connecting 
the points (x, t f) and (x, t f), and (y8- ly-l) is the two-di
mensional simplex, the boundary of which is the closed 
curve y8- IY-I. Let y' and y be some paths lying inside the 
channellx_, x+ l;'. In view of the Stokes formula, i.e., 

LO'r_,)dUJ- Lo-'r-')dUJ = i. UJ - i UJ, (2.14) 

the exponential factor in Eq. (2.12) depends only on the point 
(x,t) for fixed y, and is independent on the curve y. The sim
plest choice of the latter is y = Y + 8; then the two-dimen
sional simplex (y8 -Iy-I) degenerates to a curvilinear seg
ment. The expression in Eq. (2.12) satisfies the equation 

(i. + ~ H) v(x,t) 
at Ii 

= exp[~ ( UJ] {(i. + ~Ho)IiHO 
Ii Jr+o at Ii 

(
f )aIiHO i[ A Lxaf d + - - A -- + - rp (x,t) + - x 
m ax Ii x at 

- L + ~ af + v] IiH } . 
2m 2im ax 0 

(2.15) 

The I-form UJ should be chosen in such a way that the coeffi
cient at the term ali H/ ax in Eq. (2.15) equals zero and the 
coefficient at Ii Ho vanishes at x = x. The result is 

f(x,t) = mA (x,t ), 

aA LX af rp (x,t) = !mA 2(X,t) + ~ iii - - V(x,t) - - dx, 
ax x at 

UJ = mA (x,t ) dx + [~ mA 2(X,t ) + ~ (Ii ~~) 

- V(x,t) - f m( ~~) dX] dt. (2.16) 

With this choice of the form UJ, the function v(x,t ) is the 
solution of the following mixed problem: 

(i. + ~ H + ~ [rp (x,t) - rp (x,t )])V(x,t) 
at Ii Ii 

= 8(t - t i) 8(x - Xi), v(x ± (t)) = 0, (2.17) 

for the curvilinear band [x_(t), x+(t I]. SO it is the solution of 
the same problem as that for IiH' but with the difference 
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({J (x,t ) - ({J (x,t ) added to the potential. When the band 
(x _, x +) is contracted to the segment y, this correction to the 
potential V(x,t) goes to zero; thus 

lim[v(x,t)lPH(x,t)] = 1, (2.18) 

and 

I· (PH(X,t)) ( i i L) 1m = exp - OJ , 
PHo(X,t) fz r 

(2.19) 

where OJL = lim OJ, i.e., 

OJL = mA (x,t) dx 

+ [ _ V(x,t) + ~mA 2(X,t) + ! ifz aA ~;,t) ] dt. (2.20) 

For two different Hamiltonians, HI and H 2, 
H2 - HI = - (fz/i)(A2 -AI)a/ax + V2 - VI> we get from 
Eq. (2.19) 

. [fLH 2 (X,t)] [ i f L L] hm = exp - (OJ2 - OJ I) , 
PH, (x,t) fz r 

(2.21) 

where OJt and OJ~ are the I-forms corresponding to HI and 

H 2 • 

The Hamiltonian H is Hermitian, and so the form OJL is 
real, ifIm V(x,t) = !fz aA (x,t )lax; in this case 

OJL=mA(x,t)ax+ [-Re V(x,t) 

aA 
+ !mA 2(X,t)] dt, 1m V = !fz - . (2.22) 

ax 

In particular, when the forces are potential, one has 

H v = Ho + V(x,t), OJL = - V(x,t) dt. (2.23) 

In the following we shall suppose that the Hamiltonians we 
deal with are Hermitian. 

Equations (2.19), (2.23), and (2.21) lead to the following 
relations between the generalized rough measures: 

dpH(Y) = exp [ ~ i OJL ] dpH.,(Y)' 

dfLHv(Y) = exp [ - ~ i V(x,t) dt ] dpH,,(Y), (2.24) 

dpH, (y) = exp [ ~ i (OJt - OJt)] dfLH, (Y), 

where dp H (y) is the measure for an infinitely narrow channel 
the limit of which is the path y. Respectively, one has inte
gral relations between the measures for an arbitrary channel 

\x_,x+ l:', for instance, 

PH, (\x_,x+ l:') = ( fexp [~ f (OJ~ - OJt)] dpH, (y). 
J1x_.x .1, r 

(2.25) 

The integral over the whole group G:' is 

K (xft f lH2 lxit i) = f exp [ ~ i (OJi - OJt)] dpH, (Y), (2.26) 

K(xftfIHvlxit i) = f exp [ - ~ i V(X,t)dt] dpH.,{Y)· 

(2.27) 
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The latter equality is the famous Kac-Feynman formula 
which is written down in terms of the generalized rough 
measure. 

If the differential form is a total differential, OJ~ - OJt 
=dF(x,t), 

K (x It IIH21xit i) 

= exp [(i/fz)]F(x.t;t I) - F(Xi,ti)jK(xlt IIHllxit i). 
(2.28) 

The above relations hold also in the case of non-Hermitian 
Hamiltonians. 

Equations (2.21)-(2.28) are relations between the inte
grals over the rough measures corresponding to different 
Hamiltonians for the same particle mass m; given the opera
tors HI and H 2, the differential forms OJt, OJ~, and their dif
ference, OJ~I = OJ~ - OJt, are determined. Inversely, suppose 
we have an operator HI and an arbitrary differential form 
OJ~I ; then the Hamiltonian H2 can be found unambiguously 
from the differential form OJ~ = OJt + OJ~I . For any Hamil
tonian H 2 which is describing the motion of the mass m par
ticle, the corresponding rough measure fL H, is determined as 
well as the integral over this measure. So one has a proof that 
the functional exp [(i/fz)S rOJ~1 ] is integrable with the rough 
measure fL H for an arbitrary differential form OJ~I . 

1 

(4) The above derivation ofEq. (2.19), and, consequent-
ly, the subsequent reasoning, has a defect. Namely, it is only 
for rectifiable curves that the integral S rOJ is meaningful for 
A (x,t) #0, and the Stokes formula is proved for such curves 
only. Meanwhile, the paths contributing substantially to the 
continual integral are not rectifiable, i.e., they have infinite 
length. The simplest way to see that this statement is true is 
as follows. 

The following expression is known for the integral ker
nel in the free particle case (see also the next section where we 
present a group-theoretical derivation): 

Ko(xlt flxit i) = [21Tifz(t 1_ tVm] -1/2 

[ 
im (xl - Xi)2 ] 

Xexp - .' 
2fz t 1_ t I 

(2.29) 

Therefore, the integral 

f Ko(x' + I,t k + Ilx",t') dxk + I = (1Ti) -1/2 f exp(iy2) dy, 

y = [2fz(t k+ 1_ t k)lm] -1/2(Xk + 1_ Xk) (2.30) 

is contributed mainly by the region 11M < Iyl <M, where 
M> 1. In terms of the physical variables, the essential do
main is (2hJt km-I)1/2M -I <LlXk < (2Mt km-I)1I2M, 
where Llt k = t k + I _ t" and LlXk = Xk + I - Xk. In other 
words, the path integral is contributed by the curves where 
Llx -(2fzm -1)1I2(Llt )1/2. For any fixed E> 0 and 2Mt /m-o 
one has for such curves 

(2.31) 

In view of these relations, the curvilinear integral 
S r f(x,t ) dx must be defined as the limit of integral sums, the 
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errors in which are no higher than of the order of Llx' + € at 
every step. So the trapezium method must be used to evalu
ate the integral, 

ff(x,t) dx = lim I H f(x\t k) + f(x k + 1,t k + l)]Llx\ 
Y r 

(2.32) 
or, equivalently, 

i f(x,t) dx = lim {If(x k + l,t k + l)Llxk 
r r 

- ~ ~f~(x\tk)(LlXk)2}. (2.33) 

Let (y n I be a sequence of polygonal lines refined into the 
curve y, and all (Llt k)n go to zero uniformly, as n--+oo; then 
Eq. (2.32) leads to 

i 0) = lim i 0), 0) = f(x,t) dx + q; (x,t) dt. (2.34) 
y n-oo YI1 

Hence we conclude that the Stokes formula, Eq. (2.14), is 
valid for the curves of the type considered, provided that the 
integral S r f(x,t) dx is calculated by means ofEqs. (2.32) and 
(2.33). With this refinement, the derivation given in Eqs. 
(2.4)-(2.28) is correct. In the following we shall concern only 
curves satisfying the conditions ofEq. (2.31), unless indicat
ed otherwise. 

Discarding the terms - (Llx k )3, and higher-order terms, 
one has 

( 1 + ~ mA k + 1 Llxk ) 

= exp [ ;11 m(Ak + Ak+ I)] 
[(

m2 2 im,) k2] Xexp 2112 A k+ I + l-i A k (Llx) , (2.35) 

where Ak = A (xk,t k), A k = aA (x\t k )/ax, so 

lim Ntf (1 + ~ mAk+ lLlxk) 
k ~ 0 fz 

= exp [ ~ i mA (x,t ) dX] 

[

N- 1 ( 2 .)] . m 2 1m, k 2 
X hm exp I -2 A k + I + - A k (Llx) . 

hO 211 2fz 

(2.36) 
This relation proves the existence of a limit on the lhs. Note 
that Ak + 1 cannot be replaced by Ak in the product. 

Let us consider the average of (x k + I - Xk )2 taken with 
the measure J.l Ho' 

«(xk+ 1 -xkf) = J (x k + I _Xk)2Ko 

X (xk + 1 ,t k + llx\t k ) dxk 

= _ -!!- (tk+ 1 _ t k ). (2.37) 
1m 

Substituting the average value for (LlXk)2 in the rhs of Eq. 
(2.36), we get 

exp [ ~ J mA (x,t ) dx 

+ ~ (mA 2(X,t) + ifz aA ~=,t)) dt ], (2.38) 
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and Eq. (2.19) is transformed to 

dJ.l H (y) N - I (1 ) --- = lim II 1 + -mAk+ lLlxk 
dJ.lH,,(Y) k ~ 0 fz 

Xexp [ - ~ i V(x,t)dt]. (2.39) 

It has been assumed here that (Llxk f in the rhs ofEq. (2.36) is 
replaced by the average values «(Llxk )2), and the points 
(x\t k ) are vertices of the polygonal line rectified into the 
curve y. 

(5) All the definitions and results are extended naturally 
to the multidimensional case where the particle motion pro
ceeds in Rn, x = (xl,. .. ,x,,) E lRn • The Hamiltonian describ
ing the particle motion in the n-dimensional Euclidean space 
is 

fz2 fz 
H= - _V2_ -A(xt)V+ V(xt) (2.40) 

2m i' , , 

and the corresponding Green function satisfies the equation 

(
a i) .. - + -H K=o(t-t')O(x-x'). 
at fz 

(2.41) 

The group G :~, and all the other groups, considered above, 

consist now of paths in lRn and the group G ::,(t ), etc., con
tain graphs of the paths in the extended space (lR" ,t). The 
space of the vector functions is the direct produce of the 
spaces of functions, so the channels in the group for the n
dimensional case are defined as direct products of the one
dimensional channels. To be more exact, let 
x =t= (t) = (Xl+ (t ), ... ,x;o (t)) and Xk_ (t) <x"t. (t) for any t, 
t i<J<tf, and k = 1, ... ,n; then the channel! x_,x+ I {in the 
group G{ is called the direct product of n channels 
(Xk_ ,Xk+ I {, and the band (x _,x +) is the direct product of the 
corresponding two-dimensional bands. The channels 

(x_,x+ I ' and 5 x_,x+ IX;for the groups Gt~ i and G~ are 
x ~ x xl x 

intersections of these groups with the channels (x _,x + I (. 
The channel diameter is defined by 

d [x_(t),x+(t)] = supllx+( - t) -x-(tlll, ti<t<t ( 
(2.42) 

Decompositions of the groups of paths in the one-dimen
sional spaces over the complete systems of independent 
channels induce the decomposition of the group of paths in 
the n-dimensional space over a complete system of in de pen
dent channels, every channel being a direct product of n 
independent one-dimensional channels. 

The partial amplitude contributed by a channel 

I x _,x + I;: is defined just as in the one-dimensional case. 
Equation (2.8) holds because of the same reasons as in the 
one-dimensional case, and the partial amplitude is taken as 
the generalized rough measure; it equals the solution of the 
mixed problem in the n-dimensional band (x_,x +)(t) for Eq. 
(2.41) with zero boundary conditions at the boundary 
a (x _,x +)(t), taken at the point (xf,t f). 

(6) Let HI and H2 be Hamiltonians describing motions 
of the particle with a mass m under different forces, and 

11 
H2 - HI = - --:- [A 2(x,t) -AI(x,t)]V + V2(x,t) - V1(x,t). 

I 

(2.43) 
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It is found that in the multidimensional case the ratio of the 
corresponding generalized rough measures for any channel 

f I x -,x + J~, as the channel is contracted to a path y, tends to a 
limit which is given by the multidimensional analog of that 
given in Eq. (2.19), 

dJiH,(Y) [ i 1 (L L)] = exp - {J)2 - {J)I , 

dJiH, (y) fl y 
(2.44) 

{J)f = mAjdx + [ - V; + ~mA J + ~iflVAj] dt, j = 1,2. 

Moreover, all the formulas Eqs. (2.19)-(2.28) have their re
spective counterparts, to be obtained substitutingJ, A, aA I 
ax by the vectors f, A, and VA. In the multidimensional case, 
however, the derivation of Eq. (2.44) meets an additional 
obstacle. To elucidate the matter, we shall consider the 
three-dimensional case with HI = Ho and an arbitrary 
H2=H. 

Let us suppose, first, that the curl of A(x,t ) is zero. As in 
the one-dimensional case, the rough measure for a channel 
which is the solution of the mixed problem for the operator 
a I at + (ilfl)H in the band (x _ ,x + )(t ) is approximated with 
the expression 

v(x,t)=exp [~r {J)- ~ r d{J)]JiH,,(!X_'X+I~'). 
fl Jy fl J(yO- 'y- 'I 

(2.45) 

Here y is an arbitrary path in the channel I x _ ,x + 1 ~" Y is a 

fixed curve in the channel I x _ ,x + 1 :;f" with the end point at 
(x ft f), 0 is an arbitrary curve in the 'cross section of the 

channellx_,x+ l:;', by the hyperplane t = t f, which con
nects the points;;J and x, (yo -11'-1) is an arbitrary two
dimensional simplex, the boundary of which is the closed 
loop yo -11'- I, and {J) = f(x,t ) dx + r:p(x,t ) dt is a differential 
form, as yet unknown. The simplex (yo -11'-1) is oriented in 
such a way that the Stokes formula is 

r {J) - r d{J) = r {J) + r {J). 
Jy J(y.s '1' 'I Jr Jo 

(2.46) 

If the curl offis zero and l' is fixed, both parts in Eq. (2.46) 
depend on the point (x,tf) only, and are independent of the 
curves y and o. In this case 

(!.... + ~ H) v(x,t) 
at fl 

= exp [~ r {J) - ~ I d{J)] 
fl Jy fl (yo-'r-'I 

X {(a a + ~HO)Jill + (- A + m-If)VIIH t Ii 0 r"o 

+ ~ [r:p (x,t f) + r at dx 
fl Jo at 

- (2m)-lf2 + fl + v] Jill} . (2.47) 
(2im)Vf " 

The requirements that the coefficient at V Ji Ho and the coeffi
cient at Ji Ho for x = x f must vanish identically determine 
the form {J), 
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f(x,t ) = mA(x,t ), 

r:p (x,t) = ~mA2(x,t + ~iflVA(x,t) - V(x,t) - r aj dx, 
Jo at 

(2.48) 

so that the vector field f(x,t ) has, in fact, zero curl. Further we 
can repeat exactly the derivation presented for Eq. (2.19). 
Thus assuming that curl A(x,t ) = 0 we have proved that 

dI"H(y) = exp (~ r {J)L), 
dl"lI(y) fl Jy 

(2.49) 
{J)L = mA(x,t )dx + [ - V (x,t ) + ~mA 2(X,t ) + FflV A] dt. 

If curl A (x,t ) oF 0, the method we propose is as follows. 

Let us subdivide the group G :;" into arbitrarily narrow 
channels; in every channel we chose a fixed path l' and ap
proximate the field A(x,t ) in every curvilinear band 
(x_,x+)(t) with the field A(x,t) which is linear in x for any t 
and tangential to the fieldA (x,t ) atthe points belonging to the 
path 1'. The Hamiltonian with the modified field is denoted 
by n. Now curl A = 0, so that Eq. (2.49) for the ratio of the 
rough measures corresponding to the Hamiltonians nand 
Ho is true. On the other hand, if the channels are infinitely 
narrow, one has, evidently, 

lim [JiH(! x _,x+ l~, )IJiHU X _,x + l~, l] = 1. (2.50) 

In the Hermitian case 1m V(x,t) = !flVA (x,t), and 

{J)L = mA dx + ( - Re V(x,t) + ~mA 2) dt. (2.51) 

If we require that the approximation with A does not 
spoil the Hermitian property, we should modify also the 
imaginary part of the potential to preserve the identity 
1m V = !flVA. The meaning of the integral S yA(x,t ) dx was 
actually explained in the subsection (4); The extension to the 
multidimensional case is trivial. 

III. PARALLEL TRANSLATION ON THE GROUP G~. THE 
ACTION FUNCTIONAL AND THE GENERALIZED 
INVARIANT MEASURE 

In operations with the functional integrals one needs 
some rules to perform the change of variables, as one needs 
such rules in the usual integral calculus. For theWiener inte
gral the change of variables was considered in early works by 
Cameron and Martin. 7 We shall discuss here the change of 
variables induced by the parallel translations; more general 
cases are concerned in Sec. IV. 

Suppose we have a rough measure Jill I and the func
tional integral, defined for a locally noncompact group G (I), 

according to the method of Sec. I, 

(3.1) 

Let G (21 be another locally noncom pact group with a rough 
measure Jim, and we assume that there is a one-to-one con
tinuous correspondence between the group elements, given 
in terms of an operator T, which performs a channel-to
channel mapping, U (2) = TU (I), where U( Jl is a channelin the 
group Gill ,j = 1,2. Suppose the functional is determined in 
the channel U (2), 
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df1(4)(T~li2)) = lim f1(4)(T~IVa) 
df1(2)(g(2)) f1(2)(Va) , 

(3.2) 

as a subchannel Va in the channel U(2) is contracted to a 
group element g(2). We assume that the limit exists and is 
uniform in U(2). Under the above conditions, the change of 
variables is 

(jJ (g) df1(\)(g) = (jJ (T ~ Ig) f1 2 g df1(2)(g). I 1 d (l)(T~1 ) 

v'" TV'" df1( JIg) 
(3.3) 

Presented in such a general form, the change of varia
bles for the functional integrals looks exactly like that for the 
usual integrals. It is of interest, however, to understand the 
general formula for the case where besides the generalized 
rough measuredf1(2) another measure exists in the group G (2), 

which is of the same type as df1(I), and it is possible to express 
df1(2) in terms of df1(\). 

Let us consider a simple but very important transfor
mation, 

T: (y,t) = (x + yo(t ),t), T~I: (x,t) = (y - yo(t ),t), (3.4) 

where yo(t ) is a fixed function. This is a parallel translation in 
G I for which any group G xl is transformed to G xl + Yo(tf) l' x' x' + yo(t I) , 

and the Hamiltonian Ho in the x-space is transformed to 

fz2 cJ2 fz. J 
HI = - - - + ---:- yo(t) - (3.5) 

2m Jy2 I Jy 

in the y-space. We shall use the following notations: the 
paths x = x(t ),y = y(t ),y =yo(t) are denoted by Yx' YY' YYn' 
respectively; the corresponding integrals are 
Sx(t) dx = SYx dyx, etc. The transformation we are dealing 
with is written as T: Yy = Yx + YYo ' The measure f1Ho for 

any channel! x ~ ,x + J ~,I is equal to the measure f1 H, of the 
image of this channel, 

f1Ho ([ x~,x+ J~:) = f1H, (T! x~,x+ J~:) , 
df1H,,(Yx) = df1H, (yy). 

In particular, 

Ko(xl,t I Ixi,t i) = K (y~t I IHII /,t i) . 

(3.6) 

(3.7) 

This is true because both the measures are solutions of the 
same mixed problem (2.9) in the variables (x,t) and (y,t). Be
cause of Eqs. (2.19)~(2.20) we have 

df1H, (yy) = exp [ ~ L (1JL ] df1H,,{YY) , 

(1JL = - myo dy + ! my~ dt . 

From Eqs. (3.6) and (3.7) one gets the following rule for the 
change of variables corresponding to the parallel translation: 

Ix .x, J:{(jJ (y) df1H,,{Y) 

= exp [~It I ~ mfo dt] f (jJ (y - Yo) 
Ii (' 2 J,x .xt-lx'+Yo 

Xexp [ - ~ m irodY] dH,,{y). (3.8) 

In this case df1 Ho plays the role of the rough measure in the 

group G ~:. df1 H, is the rough measure in the group TG ~:, 
and it is expressed via the measure df1 Ho in the latter group. 
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This rule enables one to get the explicit expression for 
the evolution kernel Ko(xl,t Ilxi,t i) in the case of a free parti
cle based on the group-theoretical arguments only. The par
allel translation to be performed is Y~Y + x((t), wherex((t) 
= (xl _ Xi)(t _ t i)/(t 1_ t i) + Xi. So one has G x't f~G xi 

, x't l x" 

dy = dx + xr(t ) dt, and 

~ f (xllt W dt - f xllt) [dx xr(t) dt ] = 
2 Jy Jy 

(Xl _ Xi)2 

2(t 1_ t I) , 
(3.9) 

so that 

K (Xi t I Ixi t i) = /I (G x't I) 
0' , r'Ho xft' 

(3.10) 

Besides, 

(3.11) 

as the time derivative of the integral is zero because of the 
Schrodinger equation. From Eqs. (3.10) and (3.14) one gets 

I/. (Gx'tl)=(21TifzTlm)~1/2 T=tl_t i , 
r~ ~I , 

(Gxf) = (Gxit l ) ex [im(X
I 
-xY] 

f1Ho x' f1Ho x't' p 2fzT . 

Equation (3.10) is valid for any channel ! x ~,x + J ~:. 

f1Ho([X~,X+ J~:) 

[ 
im(xl - Xi)l] xl Ii 

=exp . f1H([X~,X+Ji-Xi(t)). 
2fz(t I _ t ') 0 x 

(3.12) 

(3.13) 

Note also the change of variables for the general local 
transformation: 

T: (y,t)=(/T(X,t),t), T~I: (x,t) = (/1:- I(y,t),t), 

which is an automorphism of the infinite band t i<,t<,t J. This 
mapping transforms the wave functions tP(x,t ), satisfying the 
Schrodinger Eq. (2.1) into the wave functions tPI( y,t) 
= tP[x( y,t ),t] (JxIJy)I/2, that satisfy the Schrodinger equa
tionin thevariables(y,t), - (fzli){JIJt )tPI( y,t) = HltPl( y,t). 
Hence one gets 

K(y-l,tIIHII/,t i)= ~ K(xl,tIIHlxi,t i) ~ (J ~I/2 (J i)1/2 
Jyl Jy' 

In this particular case Eq. (3.3) acquires the form 

xLlx.x, 1:{(jJ (T ~ Iy) dDf1H, (y) . 

(2) Equation (3.6) is a symbolic form of the relations 

(3.14) 
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as the channel I x -,x + J:; is contracted to the curve r x' The 
derivative yo(t) is independent of y, so in accordance with 
subsection (4) of Sec. II, the integral S yy yo(t) dy does exist, 
and the integral S yy wL exists if the function y~ (t ) is integra
ble on the segment (t i,t f). So the limit 
dPHJrx + rO)/dpHJrx) exists if the parallel translation is 
given by a curve with a square-integrable derivative. Hence 

we conclude that the normalizing subgroup G ' in G:; [cf. 
Eqs. (1.12)-(1.13)] can be taken as the subgroup of all paths 
with square-integrable derivatives. If fx is integrable, the 
function r; = (Yx + YO)2 is also integrable, and 

. ., I . ,I 1 iLl I 1 ;;2 d 1 I 1 ;;2 d - - w =- . -mry y-- -mrx t. 
fz yy fz, ' 2 fz , i 2 

(3.15) 

The action functional S Ho (r x ) on the curve r x C G ' is ob
tained from Eqs. (3.14) and (1.12), 

I
'I 

SHJrx)= ,i fxdt+F(T), T=tf_ti, (3.16) 

where F (T) is an arbitrary term depending on the total mo
tion time. 

Since the integral S y, wL is converging, for any two 
curves rl and r2' belonging to the same coset ofthe group 
G x; by the normalizing subgroup G " we have 

x 

I'I I'I SH,,(r2) - SHJrtl = . mY21 dr2 - !m(Y21)2 dt , 
(' t ' 

r21=r2-rl' (3.17) 

and this difference is finite. Ifrl,r2E G', 

SHJr2)-SHJrl)=+m rl(Y2dr2-Yldrl), (3.18) 

so it is reasonable to write down Eq. (3.17) always in the form 
of(3.18). If, however, rl and r2 do not belong to G " Eq. (3.17) 
is more adequate. 

The subgroups of paths with square-integrable deriva
tives within the group G (, or within any group of this type 
we consider now, will be also denoted by G " a confusion 
would hardly arise. For any two paths rl,r2 belonging to the 
same coset of G (by G " we have 

exp [- ~ SH,,(r2)] dpH,,(r2) 

= exp [- ~ SH,,(rl)] dpHJrtl· (3.19) 

The action functional SHIrl for a general Hamiltonian H, 
Eq. (2.1), is obtained from S Ho (r) by means of the identity 

dpH(r2) dpH(r2)/dpH,,(r2) dpH,,(r2) 
--= . (3.20) 
dpH(rtl dpH(rl)/dpH,,(rtl dpHo(rtl 

and Eqs. (2.19)-(2.20). So we get 

SH(r2) - SH(rtl 

= [SHJr2) + lwL
] - [SHJrtl+ i,wL

] , 

r2 - rlE G' , (3.21) 
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and for rEG', 

SHIrl = SHJr) + L w
L 

• (3.22) 

It follows from Eqs. (3.21) and (2.19) that Eq. (3.19) is also 
true for the Hamiltonian H, 

exp [ - ~ S H(r2)] dI'H(r2) 

= exp [- ~ SH(rtl] dpH(rtl, (r2 - rtl E G I. (3.23) 

The term F (T) is present in S H due to S Ho' and so it is inde
pendent of H. 

(3) The action functional S H (r) enables one to apply the 

method of Sec. I to the group G:; and to determine a general
ized measure on the group which is invariant under the par
allel translations, 

daH = exp [ - ~ SHIrl] dpH(r), 

(3.24) 

The generalized invariant measure is independent of the 
lower-order terms in the Hamiltonian, 

exp [ - ~ SH,(r)] dpH,(r) 

=exp [ - ~SH,(r)]dpH,(r), daH,(r)=daH,(r), 

(3.25) 

it is determined by a single parameter, 

K= [fz(t f -tVm]1/2, 

which is present in daHu!r) = daK(r). 
The integral over the generalized rough measurepH, 

defined in the framework of the general theory of Sec. I, can 
be written with the generalized invariant measure, 

PH(G () = f exp [~ SHIrl] daK(r), 

(q;,PH) = f q;(r)exp [~ sHIrl] daK(r), (3.26) 

iL'X+ I;:q; (r) dpH(r) = f q; (r)exp [~ sHIrl] daK(r)· 

The results discussed above are valid for Hermitian and non
Hermitian Hamiltonians. Besides, in the Hermitian case, 
two following equalities hold for the limits of the rough mea
sures of c!}annels, as they are contracted to a trajectory, 
Ix-,x+ J>-~r. 

lim I PH(T I x_,x+ J:;) I = 1, lim I PH!lX_,x+ J:;) I, 
PH!! x_,x+ J:;) PH,,!lX_,x+ J:;) 

(3.27) 

where T is the parallel translation by a curve I(t ) E G '. In 
other words, the contributions from different paths to the 
transition amplitude are different in the phase shifts only; 
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Eqs. (3.27) are a more accurate formulation of this well
known statement. 

(4) The generalized rough measure,uH for a channel 

I x _,x + J x; belonging to the group G x' = G :~; is determined 

in terms of the rough measure of the group G ~;, 

IlH(!X_,X+ J) = i~/c fLH (!x_,x+ J~:) dxJ; 

XIlH(G) = f: 00 fLH(G~;) dxi. (3.28) 

Hence we see that the action functional for the group G ::" 

coincides with the action S H (y) for the group G x;, so it is the 
x 

same as the classical action functional. The method of Sec. I 

is working in the group G :~;, as well as in the group G~;, but 
the generalized invariant measure dO-K contains an extra fac
tor dxf, 

do-K(y) = exp [ - ~ SH(Y)] dfiH(Y)' 

do-K(y) = duK(y) dxf. (3.29) 

Equation (3.29) results from the fact that the group G
x

; is a 

direct integral of the groups G x; over the x faxis. 
x 

Similarly, the generalized rough measure fL H on the 

channels I x _,x + J < which are elements of the group G xl 

= G ;;' I, is given by the integral of the rough measure for the 
f 

channels I x _,x + J~; over dXi, 

L
xI 

fLH(!X_,X+ r/) = . fLm(!X_,X+ J~:) dxi, 
x' 

fLH(G{) = f: 00 fLH(G~;) dXi, (3.30) 

and the generalized invariant measure duH(y) depends on 
the same single parameter K; it is given by 

dqK(Y) = exp [ - ~ SH(Y)] dILH(Y)' 

dq _ K(Y) = duK(y) dXi. (3.31) 

The rule (3.20) for the change of variables at the parallel 
translation, and Eqs. (3.26), are valid also for the groups G

x
' 

and G < It is sufficient to take d,u and dO- (respectively, dy 
and dq) instead of dfL and duo 

(5) The action functional SIf(Y) has been found here in 
the internal group-theoretical manner, using Eqs. (1.12)
(1.13) and being based upon the generalized rough measure 
fL If' induced by the Schr6dinger equation with the Hamil
tonian H. We have shown that the result coincides with the 
conventional action functional for the paths belonging to the 
subgroup G " for which the classical action is determined. It 
has been shown as well that the difference of two action 
functional for the group elements belonging to the same co
set with respect to the subgroup G ' is finite. 

Suppose now that the group-theoretical action func
tional is known, and we try to get the rough measure dfL If (y), 
and, consequently, the generalized invariant measure, and 

the path integrals for the groups G~; and G
x

;' It follows from 
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Eqs. (3.23) and (3.25) that 

dfLH(Y) [ i S () i S ( )] 
d () = exp {; H Y - {; H" Yo , Y-YoEG'. 

fLH" Yo 
(3.32) 

This relation determines the measure dfLH(Y) for various 
Hamiltonians H in terms of the action functional, up to a 
constant factor. The normalization is fixed by Eq. (3.13), 

( dfLHjy) = [21Till(t f _ t i)/m] -1/2exp [im(X
f 

- Xi)2]. 
JG~ 211(t f - t ') 

(3.33) 

Let us rewrite the general formulas (1.17) and (1.18) for 

the particular case of the group G;'. The appropriate choice 
of the element g~ is the segment Yo connecting the points 
(Oi) and (O,t f), so 

UK [Ix __ ,x+ J;,;yl,yo] 

=exp [ - ~SH,,(Yo)]fLHo[lx-,x+J;'-Y']' (3.34) 

where y' is an arbitrary path belonging to G 'nl x_,x+ J;', 
SH,,(YO) = F(t f - til is an arbitrary function present in 
SIf(Y), and 

f cp (y) exp [~ SH(Y)] duK(y) 

= lim L cp(y) exp [~ SH(y')] UK [(x_,x+ J;' - y']. 

(3.35) 

In particular, 

K (x~tfIH Ixi,t i) 

= lim L exp [~ SH(y')] UK [!x_,x+ J;' - Y'] .(3.36) 

(6) The representation of the evolution kernelK in terms 
of the path integral enables one to verify in a simple and 
direct way the unitarity relation, 

f ¢*(x,t )¢(x,t ) dx = const, 

and the relations of the type 

(3.37) 

f K *(X2,t2,X; ,tl)K (X2,t2,X I,t l ) dX2 = c5(x; - xd (3.38) 

and 

f K *(X3,t3 ,X2,t2 ) dX3 K (X3,t3,x l,td = K (X2,t2 ,X I,t l )· 

(3.39) 

It is sufficient to use the reality of the Lagrangian, the prop
erty which is equivalent to the self-conjugate structure of the 
Hamiltonian operator that is used in the standard derivation 
of Eqs. (3.37)-(3.39). 

If the time is inversed, the path Y connecting the point 
(XI,t 1) to (X2,t2 ) goes to the path y- I ofthe inverse direction, 
and the action functional gets inverse sign, 
SIf(y- 1

) = - SH(Y)' so according to Eq. (3.32), 
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dIlH(r-
l
) [ dIlH(r) ]* 

dIlH.,(r- l ) - dIlH.,(r) . 
(3.40) 

The normalization condition (3.33) is also replaced by the 
conjugate condition, 

= [21rifz(t l - t2) ] -1/2 exp [ im(xI - X2)2 ]. (3.41) 
m 2fz(t 1_ t 2) 

This stems from the fact that the derivation of the analytical 
expression for the evolution kernel Ko(xf,tI Ixi,t i) is valid for 
tf;;.ti. From Eqs. (3.40) and (3.41) we get, so 

KI(xl,tIIH Ix2,t2 ) = K *(X2,t2 IH Ixl,ttl, t l '5t2 , (3.42) 

and the wave functions tf;(x,t) satisfy the relations 

tf;(X2,t2 ) = f tf;(xl,tl)K (X2,t2 IH Ixl,t l ) dx l, 

(3.43) 

tf;(XI,t l ) = f tf;(X2,t2)K *(X2,t2IH Ixl,t l ) dx2· 

Equation (3.38) is obtained from the general relation (3.43) 
with tf;(x,t) = K (x,t IH Ix; ,t I)' Substituting Eq. (3.38) into 
the identity 

f tf;*(x,t )tf;(x,t )dx = f tf;*(x I,t I)K *(x,t Ix I,t I) dx I 

X tf;(x; ,tl)K (x,t Ix; ,tl) dx; dx, 

we get the unitarity relation, 

f tf;*(x,t)tf;(x,t)dx= f tf;*(xl,ttltf;(xl,ttldx l · 

Because ofEq. (3.42), the identity (3.39) holds not only for 
t I < t2 < t3 , but for any mutual positions of t l,t2,t3 • 

The definition of the evolution kernel K (X2,t~ I,tl), giv
en in Ref. 2, implies that it vanish for t2 < t I' This is suitable 
sometimes, but such a definition makes it impossible to use 
the fact that the motion is reversible. 

(7) In the case of a quadratic action functional S H (r), 
where the Lagrangian is a second-order polynomial in x and 
x, and the Hamiltonian is 

fz2 a2 fz a 
H = -----:-[a(t)x+.B(t)]-

2m ax2 
I ax 

+ [a(t)x2+b(t)x+c(t)] , (3.44) 

the evolution kernel K (xI,t IIH Ixi,t i) is calculated explicit
ly, as is well known. Let us consider the calculation by means 
of the path integral. 

Let r = rei + 0 be the mapping of the group G ~/ to the 

group G ~/ ::~. The classical trajectories rei are stationary 
curves of the action functional, so that 

SH(YeI + 0) = SH(YeI) + SHt (0), 

fz2 a2 fz a 
HI = -----a(t)x-+a(t)x2. 

2m ax2 i ax 
(3.45) 

As the generalized invariant measure is independent of the 
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lower-order terms in the Hamiltonian, we have 

dIlH(Y) = exp [ ~ SH(Ycl)]dIlHt (0). (3.46) 

Integrating the integral of the lhs over the group G ~/ and the 

rhs over the group G ~/ ::~, we obtain 

K (x.t;t IIH Ixi,t i) = K (O,t IIHIIO,t i)exp [(ilfz)SH(YeI)] . 
(3.47) 

To calculate the time-dependent factor K (O,t IIHIIO,t i), let 
us calculate the integral over XI' 

one can choose XiI here in the most suitable way. As the 
kernel satisfies the Schrodinger equation, 

d I·· fz f a2 
I .. -/(t ,t',X'I)=-.- -2K(X,t IHllx'l,t')dx 

dt i 12m ax 

+ a(t I) f x ~ K (x,tIIHllx; ,t i) dx 
ax 

- ~ a(tI) f x 2K(x,t I lHllxi
l ,ti) dx . 

(3.49) 

The first term and the second term on the r.h.s. vanish, while 
the third term is reduced to the form g(t I)J (t I,t ',x; ) by 
means of the integration by parts, where the functiong(t I) is 
determined by SH(YeI)' Thus we have obtained the differen
tial equation 

~/(t I,ti,x;) =g(t I)J(t .t;ti,X;) , 
dt 

(3.50) 

and the corresponding initial condition is I (t i,t i,X; ) = 1, so 

(3.51) 
K(O,t IIHIIO,ti) 

= I(t I,t i,X;) (f exp [ ~ SH(YeI)xi = X;)] dx I ) - I 

Example: Harmonical oscillator, the Lagrangian 
L = ~m(x2 - u/x2). Here we have H = HI' and with the no
tation T = t I - t i, the result is 

xcdt) = [xl sin w(t - t i) + Xi sin(t 1_ t)] Isin wT, 

SH(Ycl)= ~w [COSWT(XI2+Xi')-2xiXI] , 
2 sm wT 

SH(Ycdx't ~o = !mw cot(wT)xI2 , (3.52) 

f [~S ( )] d 1_ [21rifzSinwT]I12 exp H Yel X - • 
fz mw cos w T 

The potential is V = !mw 2x 2
, and we have finally 
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~J 
dt f 

= - _1_' mUJ2K(0,t fIO,ti) fX2 exp[~S(Ycd i _ ] dx 
2-1l -Il x,-o 

i 2 -Il f . . 
=-mUJ .--tanUJT·J(t t',x' =0). (3.53) 

2-1l imUJ ' I 

So 

g(t) = ~UJ tan(t - t i), J (t i',t i,X; = 0) = (COS UJT)-1/2 , 

K (O,t fiB 10,t i) = [ . m~ ] 1/2 , (3.54) 
21Tl-ll sm UJ T 

KH(xi',t fiB Ixi,ti) = [ . m~ ]112 exp[~SH(YeI)]' 
21Tl-ll sm UJ T -Il 

(8) Let E and ME be two positive numbers, related by the 
formula 

2 -. e'Y dy = E • 

1

1 100 ·2 I 

21Tl M, 
(3.55) 

The domain U(ME) in the space of paths, where the evolu
tion kernel KO(xi,t flxi,t i) gets the dominating contribution, 
with the relative accuracy of E, is determined by the inequal
ities 

Ix - xil<.ME [2-1l(t - tVm] 1/2, ti<.t<'W i + t f), 
(3.56) 

Ix - xil<.ME [2-1l(t f - t)lm] 1/2, W f + ti)<.t<.t f. 

The boundaries of the domain are two parabolas 

(x - xif = M;2-1l(t - t i)lm , 

(x - Xi)2 = M;2-1l(t f - t)lm. 

The partial transition amplitude which is due to this domain 
will be denoted by Ko( U (ME))' and the domain itself will be 
called the lense. For any time moment r in the interval 
(t i,t f), the cross section of the lense by the straight line t = r 
plays the role of a "big box," and 

i f i i Ko(x,t Ix,t)=(I+r)Ko(U(ME)), Irl<E. (3.57) 

In other words, the paths along which the evolution kernel 
gets the dominating contribution, with the relative accuracy 
of E, deviate from the classical trajectory of the particle at 
rest, x(t ) = Xi, no farther than by MEK, where 
K= [-Il(t fti)lm] 1/2. 

For the general case where the free particle is moving to 
xf =1= Xi, the contribution from the trajectory with a constant 
velocity must be added, so the lense U(ME) is to be replaced 
by the deformed lense U Cy(,ME ), where the segment y, con
necting the points (xi',t f) and (xi,t t is the axis of the lense, 
and 

f fl i i -f Ko(x ,t x,t )=(1 + r)KO(U(Yi,ME)) , Irl<E. (3.58) 

Formally, Eq. (3.58) is obtained from (3.57) by means of the 
mapping 

Y = Yel + 0, Yel = Xi + (xf - Xi)(t - t i)l(t f - t i) , 

which was considered in subsection (2). Because of this map
ping, d ftHo(Y) differs from d ftHo(o) by the same factor 
exp [im(x - xif 12-1l(t f - t i)] as that relating Ko(xf,t flxi,t i) 
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to KO(xi,t flxi,t l Thus for K-+O the quantal motion of the 
free particle tends to the classical limit. 

This conclusion is true also if the motion is influenced 
by a potential V (x,t ), if the potentialis smooth enough. Let us 
use once more the transformation Y - Yel = 0, Yel = x(t ), 
o = 7](t). The result is 

Sv(Y) = SV(YeI) +Sv,(O) , 

VI(7],t) = V[x(t)+7],tj- V[x,tj-7]V'[x(t),tj. 
(3.59) 

The measure is transformed as follows: 

d ftv(Y) = exp [ ~ SV(Ycd]d ftv, (0), 

dftv, (0) = exp [ - ~ iVI(7],t) dt ] dftH"(O), 

K v(xi',t flxi,t i) = K v" (O,t flo,t i) exp[ ~ S v(YeI)] . (3.60) 

If the parameter K is small, the amplitude Ko(O,t flo,t i) is 
contributed mainly by the paths in the lense U (ME)' the di
ameter of which is KMo and neglecting the terms of order E, 

one can discard the paths which go out of the lense. If the 
variation ofthe functional exp[(ilt)1 VI(7],t) dt] is not too 
large, the contribution toK v(O,t flO,t i) from paths lying out
side the lense U(ME) is negligible for E<l. 

Let us suppose that the potential is so smooth that, 
within the lense U(ME ), VI can be replaced by three higher 
terms, 

VI (7],t ) = iV" [x(t ),t j7]2 + iV" [x(t ),t j7]3 

+ (1I4!)/(7],t )7]4, (3.61) 

where/(7],t) is a bounded function; all the x derivatives are 
taken at the classical trajectory. So for the paths lying in the 
lense we have 

- 1 i V" 2T i VIII 3T - -- 7] -- 7] 
2-1l 6-Il 

__ 1_' ar,4T __ 1_ (V" 2)2T2 
4!-Il J" 8-1l2 7] , (3.62) 

where V" 7]2, VIII 7]3, and/7]4 are values taken at some interme
diate points of the curve O. The term with the odd power of 7] 
can be discarded as dft( - 0) = dft(o), so that such terms can
cel in the sum 

exp[ - ~ f VI(7],t) dt] dftH ( - 0) 
-Il -0 " 

+ exp [ - ~ iVI(7],t)dt] dftH"(O). 

Within thelense U(ME)wehave7]-~-IlT 1M by the order of 
magnitude, so that 

lV"7]2T- V"T2Im, (lI-1l)/7]4T-1ifT 3Im2, 

((lI-1l)V"7]2Tf- V"2(T2Im)2. (3.63) 

and the only terms to be retained in Eq. (3.61) are 

1 - (iI2-1l)V"T7]2 - ~(V")2T27]4I-1l2. 
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Thus it is sufficient to retain only the quadratic term 
~ V" [x,t ]1]2 in Eq. (3.62). Now the calculation of 
K v, (O,t flO,t i) is reduced to that for a quadratic Hamilton
ian; this is the well-known WKB approximation. The rela
tive error inK v, (O,t flO,t i) is given by V IV(I!T Im)(T2Im) by 
the order of magnitude. We must assume that the potential 
V(x,t) is smooth in the neighborhood of the classical trajec
tory, and increases slower than x 2 for x_ ± 00. 

The dominating role of the classical trajectory for K_O 
is equivalent to the statement that the measure dflHv con-

tains a 0 function on the group G ~~. Suppose tp( y) is a func
tional which is integrable with the rough measure dflH(y,K) 
at K = K I' then tp (y) is integrable for all K < K I' and 

1
· ftp(y)dflHv(y,K) l' ftp(y)exp[(i/I!)S(y)]dO' 
1m = 1m :::....!....-'.!...!---'~~...:.....-'.!...!-==---

K--+O SdflHv(y,K) K--+O K v(xf,t flxi,t i) 

= tp(yc1) . (3.64) 

(9) Let us consider the system evolution for a time inter
val Lit k = t h + I - t k; this interval tends to zero as N-oo, 
for Lit = (t f - tV N. It follows from (3.60) and (3.62) that for 
a finite M the lense contribution is 

Kv(U(j:{+ I, M)) = exp[(ill!)Sv(Ycd] 

XKO(Xk+I,tk+llx\tk). (3.65) 

This formula has the accuracy of N -2, but we still need an 
estimate for the contribution to the transition amplitude 
from the paths lying outside the lense, so a more accurate 
calculation is expedient. 

The relative error r in Eq. (3.58) is of the order of 
f;}e iY' dy, where y = XIK, so that 

Ko(xk 
+ I,t k + Ilx\t k) = Ko(U(j:{ + I,M)) + 0 (J: e

iy1 
dY) 

X Ko(xk+ I,t k+ Ilx\t k). 

Now we calculate the average of this equality over the inter
val (M,M + f3 ) where f3 is determined by the condition 
(M + f3)2 = M2 + 21T. The result is 

Ko(xk + I ,t k + Ilx\t k) = Ko( U(I)(j:{ + I,M)) + 0 (M -3eiM') 

X Ko(xk+ I,t k+ Ilx\t k
), (3.66) 

where U m indicates that we have averaged over the lenses. 
Repeating the averaging I times, we obtain 

Ko(xk+ I,t k+ Ilx\t k
) 

= Ko( U(ll(j:{ + I,M)) 

+ O(M -121+ IleiM2)Ko(xk+ I,t k+ Ilxk,tk). (3.67) 

The averaging over the lenses, i.e., the transition from U to 
UII), means that the boundary conditions on the lense go to 
zero by the law M -121-1) exp(iM 2 ). Suppose M = NU; then 

KO(Xk+l,tk+llx\tk) = [I +O(N- 12/-I)u)] J dflHo(Y) 

X U(j:{+ I,M). (3.68) 

If the potential increase slower than x 2 at x_ ± 00, we get 
from (3.67) and (3.68) the following estimate: 
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K v(xk + I,t k + Ilx\t k) 

= [1+O(N-12/-lla)]exp[-~ ( Vdt] 
I! JJ{ + I 

X U(j:{ + I,N a) J exp [ - ~ i V dt 

+ ~ ( V dt]d flH (y) . (3.69) 
I! Jj{ + I 0 

The diameter of the deformed lense U(j:{ + I,N a) is equal to 
KN - 1/2 + a and vanishes for a < l' If the force is bounded 
within U, then 

exp [ - ~ f V dt + ~ ( V dt ] 
I! y I! JJ{ + I 

= 1 + O(KN -\3I2-a)). 

Ifwe take a = 3/21, then 

Kv(Xk+ I,t k+ Ilx\t k) 

= [I + O(N -3/211-111 1)] 

(3.70) 

xexp[-~ ( Vdt]Ko(Xk+l,tk+llx\tk). 
I! JJ{ + I 

(3.71) 
The number of the averagings I must be higher than 3; it can 
be arbitrarily large. 

The relation (3.71) for any time interval Lit k has been 
derived under the condition that the derivative av lax, i.e., 
the classical force, is limited uniformly throughout the infi
nite band t i < t < t f, - 00 < x < 00, but this condition can be 
softened. 

The integral f J{ f I V dt in Eq. (3.71) can be replaced by 

the integral along any curve y, belonging to the lense 
U(j:{+ I,NU). 

(10) It was proved in subsection (8) that the motion in a 
smooth potential is quasiclassical only in the case where K is 
small; that is to say, it is quasi classical if the observation time 
is small as compared with mil!; otherwise, quantum effects 
are substantial. This fact suggests a remark. 

Poincare8 proved a theorem, according to which any 
finite classical motion, i.e., motion bounded to a region in the 
phase space of coordinates and velocities, is almost-periodi
cal. One concludes, hence, for instance, that a gas that occu
pied a part of the volume of a closed vessel and that was freed 
subsequently will return after a certain time 1" to an arbitrar
ily close vicinity of the initial position, in a clear contradic
tion to the second principle of thermodynamics. This para
dox was discussed by a number of people, but its solution is 
beyond the framework of the classical mechanics. Actually, 
the "almost-period" 1" is too large, so the quantal effects are 
necessarily substantial, and the Poincare theorem is irrele
vant. 

IV. PATH INTEGRAL AS THE LIMIT OF MULTIPLE 
INTEGRAL ON A TIME LATTICE 

(I) The fundamental idea to represent the probability 
amplitude for a system transition as an integral of exp[(il 
I!)S (y)] over alternative system histories was realized by 
Feynman originally in the form of a multiple integral on a 
time lattice, which tends to a limit as the lattice step goes to 
zero. 
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In the particular case where the system considered in 
the one-dimensional motion of mass-m particle in a force 
potential V(x,t), the multiple integral representing the evolu
tion kernel is 

N 1 J J { i N - I [1 m(xk + I - Xk)2 J V = - .. , exp - I - ---'-----'-
A fI k~O 2 .M 

_~(Vk+ Vk+I)]dXI ... dX
N

-
I 

2 A A' 
(4.1) 

V k = V(x\t k
), N -+ 00, 

and the sum in the exponent was interpreted as the action 
functional along the polygonal line with vertices at the 
points (x\t k) (see in Ref. 2). 

Accurate proofs that the limit of J ~ for N - 00 is 
K v(x f,tflxi,t i) under certain conditions on the potential 
were given by a number of authors. The proofs are very com
plicated and special, and they cannot be extended to more 
difficult problems arising in quantum field theories. 

In fact, in Feynman's definition of the path integral as 
the limit of the expression in Eq. (4.1), there is an essential 
deviation from the original idea to sum up the functional 
exp[(ilfl)S (y)] over all possible paths, as only polygonal tra
jectories are taken into account. One would argue that both 
the definitions coincide in the limit of N -+ 00, because any 
continuous curve is approximated by polygonal lines, but 
this statement is applicable to the integral involving the po
tential only, since S r V(x,t) dt is a continuous functional, 
while the variation of S r! mx2(t) dt is infinite within any 
channel, arbitrarily narrow. 

In the case of a free particle, the definition of the path 
integral as the limit of the integral on the time lattice lacks its 
meaning to an extent, as in view of the integration over the 
intermediate states the evolution kernel is 
Ko(xf,tflxi,t i) = J~ for any N, and the problem of finding 
the evolution kernel for a small time interval, that is, 
Ko(x k + I ,t k + Ilx\t k), is no easier than calculating the evolu
tion kernel for arbitrary times. The known expression for the 
free particle evolution kernel, 

K ( f fl i i) _ [21Tifl(t f - ti)] -112 [im(X f - Xi)2] 
o X ,t x ,t - exp f . , 

m 2f1(t - t') 
(4.2) 

was derived in Sec. III as a result of the parallel translation in 
the group of paths, x(t) -+ x(t) + 'if In fact, (ilfl)SHo(r;) is 
present in the exponential, and the derivation ofEq. (4.2) 
indicates that the preexponential factor 
[21Tih (tf - t Vm] - ,n = KO(Xi,tflxi,t i) is influenced by the 
integration over alternative trajectories; and the reason why 
the integral S yX2(t ) dt appears in (4.2) is not at all that the 
contribution from 'if to the path integral is of a particular 
importance. Somewhat ironically, the form of(4.2) is in con
tradiction to the statement that the contribution to the ker
nel from all smooth curves, connecting the initial and final 
points, is zero. 
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There is also the following reason to try to understand 
what the real meaning of the path integral is and why Feyn
man's approach leads to correct results. We have mentioned 
numerous times that the path integral is contributed by the 
curves along which Lix has the order of magnitude of (Li t ) I /2, 

while on such pathsS (y) = 00 ,andexp[(i/fI)S (y)]acquiresno 
definite value. (The situation is even more paradoxical in the 
case of the diffusion equation where we have exp[(il 
fI)S (y)] = 0 on such paths.) Hence we conclude that the path 
integral cannot be considered as a sum of exp[(ilfl)S (y)] over 
trajectories. 

It was shown in Sec. II that the Schrodinger equation 
with a Hamiltonian H induces a generalized rough measure 
J-lH in the group of paths. Furthermore, in Sec. III we have 
shown that an action functional S H (y) is determined by pure
ly group-theoretical arguments, and it coincides with the 
classical action. Given the rough measure and the action 
functional, the method of Sec. I leads to a generalized invar
iant measure and enables one to write down the kernel K v in 
the spectacular form, 

Kv(xf,tflxi,ti) = J exp [ ~ SH(y)] duly). (4.3) 

The exact meaning of the symbols used is revealed in Eqs. 
(1.17) and (1.18). 

(2) The fundamental Feynman's principle is quite rea
sonable, but it cannot be interpreted literally; it needs some 
adequate mathematical concepts and formulations. The pur
pose of Sec. II and III was to produce such a mathematical 
framework. In the present section we are going to elucidate 
the meaning of the time lattice and present a general proof 
that the integral on the lattice is converging to the path inte
gral. The proof we give here is valid for the most complicated 
cases. 

We turn to the Dirac method9 representing the evolu
tion kernel by means of the multiple integral over the inter
mediate states, 

KV(Xf,tflxi,ti) = J Kv(xflxN
-

I) dXN
-

I ... dXIKv(Xllxi), 

(4.4) 

The problem we meet in calculation of the kernel K v for an x 
dependent potential V, 

f fl i i Jd Kv(x ,t x ,t ) = J-lv(Y), 

dJ-lv(Y) = exp [ - ~ i V(x,t) dt ]dJ-lHO(Y)' 

(4.5) 

is that only the integral of dJ-lHo(Y) over the whole group G:/ 

is known, namely, J-lHo(G :/) = Ko(x f,tflxi,t 'j, but not the 
elementary measure dJ-lHo(Y). Equation (4.4) with the time 
step Lit = (tf - t VN, i.e., the introduction of the time lat
tice, is useful just to avoid this difficulty, not to calculate 
approximately Sv(]1+ I) as one might imagine. 

Actually, according to subsection (9) of Sec. III, for 
N> 1 the kernel K v(xk + I,t k + Ilx\t k) is contributed predo
minantly by the paths in the lense U (]1 + I, N E), the diameter 
of which is N - 112 + E, and the variation of the functional 
S r V dt in this lense is of the order of N - 3/2 + E. Respective-
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ly, it follows from Eq. (3.71) that 

Kv{Xk+ I,t k+ Ilx\t k ) 

= [exp(-~ f Vdt) 
fI Jr.+ I 

+ r(xk + I,t k + Ilx\t k)] Ko{xk + Ilxk), (4.6) 

where r(xk + Ilxk ) - N - 3/2 + E, and its phase varies slowly; 
€ > ° is arbitrarily small. Using Eq. (4.6), we are in position to 
prove that the multiple integral on the time lattice, 
K ~(x f,t I Ixi,t i) 

XKO(X/lxN-I) dX N- I ... dx l 

X exp( - ~ L~ V dt )Ko(xIIX
i
), (4.7) 

converges to the evolution kernel K v(x I,tllxi,t i) as N -+ 00, 

and the convergence rate is N - 112 + E. 

Let us put the expression (4.6) into the identity (4.4). At 
the first step we have 

Kv(X/lxi) = f Kv(X/lxl)dXlexp( - ~ L~ Vdt)Ko(xIIXi) 

+ f Kv(x/lxl) dx l r(xllxi)Ko(Xllxl 

The second term on the rhs has the order of magnitude of 
N - 3/2 + E. After (N - 1) steps the result we arrive at is 

Kv{xltllxiti) = K~{xltllxi,t i) 

+ ~~II f K v(x Ilx' )dx' r(x' lx' - I) dx' - I 

X exp [ -~ C Vdt] 
fI J?,_ I 

X Ko(x' IX'-I)K'v-l(x'- Ilxi
). 

(4.8) 

The second term on the rhs has the order of magnitude of N . N - 3/2 + E = N - 112 + E. The above statement is proved under the 
assumption that the potential derivative modulus I a V / ax I is bounded uniformly in the infinite band t i < t < t I, - 00 < x < 00. 

(3) For every segment Yt + I we have 

exp [ _~ f Vdt]Ko(Xk+llxk) =exp[~SHv(Yt+I)]Ko(Xktk+llxktk), 
fI Jr. + I fI 

so the Nth approximation can be written as 

K~(x~tllxi,ti) = f exp [ ~ t5H)?o)] ddN)(:), 

where ?o are polygonal lines with the vertices at the points (xk,t k), and 
N-2 

ddN)(?o)=Ko(O,tIIO,tN-I) II KO(O,tk+IIO,tk)dxk+l. 
k~O 

(4.9) 

(4.10) 

Comparison of K ~ and J ~ with the expression (4.4) for K v shows that exp [ - (i/fI)S r. + I V dt ] Ko(xk + Ilxk) is an approxima

tion of K v(xk + Ilxk), the relative accuracy of which is N - 3/2 + E for any magnitude of the difference Xk + I - x\ while 
exp[ - (i/fI) ! (Vk + V k + l}L1t ] Ko(xk + Ilxk) does not approximateK v{xk+ Ilxk) forfinite~x, though it has the same order of 
magnitude. 

Thus we have seen that the integrals K ~ have K v(x Ilxi) as the limit, because the path integral for K v(x Ilxi) is the integral 
of the functional exp [ - (i/fI)S r V dt ] over the rough measure !LHo induced by the free-particle Schrodinger equation on the 

group G~:; it is not a normalized sum of exp [(i/fI)SHv(r)] over all possible paths. 
Actually, the situation here is similar to that for the usual integral of a continuous functionf(x) on a segment [a,b ], where 

one can choose any points t in the integral sums l: f(Si) ~x i' Likewise, one can integrate the potential V (x,t ) in the expression 
(4.8) for K ~ not over the straight segments Yt + I, or segments of classical trajectories, but over any curves within the lenses 
U(Yt + I, NE). The only difference as compared with the integral sums for the usual integral is that instead of the measure~x 
on the axis one should take the generalized rough measure d!LHo(r). 

We have assumed that all the time intervals~t k were identical, but it was only for the sake of brevity; it was sufficient in 
fact to assume that the time intervals are N - I by the order of magnitude. 

Note that an analogous limiting relation exists for any two Hamiltonians of the general form (2.1) with the same mass m, 
HI andH2, 

K(x~tIIH2Ixi,ti) = ~~ f···f exp[~ C (w~ - wf) K(x/IHllxN-I)dxN-1 ... dx l exp[~ C (w~ - wf)K(xIIHllxl 
fI JyN _ I fI JyO 

(4.11) 

It can be also written down in the form 

(4.12) 

Note that the equality 
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KV(X.t;tflxi,ti) = lim Kt:(xf,tflxi,t i) 
N--<:XJ 

can be used for an immediate derivation of the perturbative series. To this end one has to replace the factors 
exp( - (iHi)f rt + 1 V dt ) on the rhs by (1 - (i/12)f 11 + 1 V dt ), and to use the expansion 

NIY(l_~r Vdt)=l+(-~)Nfli Vdt+(_~)2 I ( Vdt( Vdt+···. 
k = 0 12 )J{ + 1 12 k ~ 0 11 < 1 12 l<,k, d,,,;,N _ I );;;~ + 1 );;;:1 1 

(4) The rough measure,uv( U(r;: -+ I, N')) is the amplitude of the probability density for transition of the particle from the 
point (x\t k) to another point (k k -+ I ,t k -+ I) along paths lying within the lense U (r;: + I, N'), so 

,uv[ U()1'; xo; Llxl"N- \ N'))= iX(\+.:lX
1 

... iX(~ 1 +.:lx

V 

1 Yf ,uv(U(yz-+ 1, NEll dx k + I, (4.13) 
xA - L1x I x;: I + LlxN -- I k = 0 

where U()1'; xo; Llxl, ... ,N - I; NE) is the domain covered by the lenses U(r;: -+ I, N') as the points Xk -+ I run on the intervals 
x~ -+ I - Llxk-+ I, x~ -+ I + LlxH I). According to subsection (9) of Sec. III, the measure,u v [ u (r;: -+ I, N E)] can be replaced by 
exp [ - (i/12)f;;~ ,I V dt ] X Ko(x k -+ Ilxk) with the relative error of N - 3/2 -+', so that it follows from Eq. (4.13) that 

where the relative error is of the order of N - lI2 + E. The same accuracy has the equality 

since,u v [ U (y, N ') 1 = K v(x k + Ilxk )( 1 + 0 (N - 3/2 + Ell. The expression on the rhs is the rough measure of the beam 

B X,i(XO - ~x, Xo + ~x), and with the relative accuracy of N - lI2 + , we have 
x 

(4.14) 

,uv [ U()1'; xo; ~x; N')] =,uv [ B ~:(xo - ~x; Xo + ~x)], (4.16) 

Equations (4.14) - (4.16) are true for,uH and SH with the general Hamiltonian of the type (2,1), 
The diameter of the channel U ()1'; xo; ~x; N E) is different from max Llxk + I by a quantity of the order of N - 112 +< only, 

and it goes to zero as N --+ 00 and LlXk + 1--+ 0, so that Eq, (4.16) means that the measure of beams with arbitrarily narrow 
openings.Llx can be approximated with channels having arbitrarily small diameters. This, in turn, enables one to define the 

integral over the generalized rough measure,u Ho or ,u H' based upon the evident divisions of the groups G ( and G ~,i into 
complete systems of independent beams of arbitrarily narrow openings. 

(5) The equality K v(x flxi) = lim K t:(x fl x i) means that the integral of the functional exp [ - (i/12)f y V(x,t ) dt ] over the 

generalized rough measure,u Ho on the group G~: is equal to the limit of the integral on the time lattice as the lattice spacing 
goes to zero, Llt --+0. This is true for any functional Q?(Y) satisfying the conditions which were used in the proof, namely: 

(i) The functional Q?(Y) is continuous and the rule of integration over the intermediate states for cfJ (x ftfl x it i) 
= f iQ? (y)d,uH (y) is true, that is, 

GX 0 
x' 

cfJ(xJrflxit i) = f cfJ(xflxN-I) dXN- 1 
••• dxlcfJ(xllxi) 

cfJ(Xk+ Ilxk) = cfJ(Xk-+ Itk-+ Ilxkt k ). 

(ii) For any two paths YI' Y2 E G~:t:ltk 11 we have 

IQ? (Y2) - Q? (YI)I < canst P(YI' Y2)Llt \ 

where the constant is independent of k. 
(iii) in the infinite band t i<,t<,t f , - 00 <x < 00, we have 

arg Q?(Y) < const p(Y, ~,i : ~). 
For a functional belonging to this class 

f 
Q?(Y) d,uHo(Y) = lim fQ? (Y-Z-I )KO(xNlxN- I) dXN- 1 

••• dx l Q? (ybK(XllxO), 
N~= 

or 

f Q? (y) d,uHo(Y) = ;i~ f Q? ()1') exp[~ SHo ()1')] da(1), 

Hence we conclude that for such functionals the following limit exists in sense of the theory of distributions: 
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lim dcr(rt; K) = dcr(y; K}, K = [Ii(t l - t Vm] 112. (4.19) 
N-oo 

This relation makes it possible to get the rule for the change of variables in the functional integral (4.17) in a simple and 
rigorous way for quite general transformations of the variables. 

Let fx and f1, be some curves x = x(1') andy = y(1'), t i<.1'<.t<.tl, and the transformation Tis defined as 

T: f1, =fx +A(fx;t), T- 1: fx =f1, +B(f1,;t), (4.20) 

where the functionals A and B depend on fx and f1" and are functions of t. It is supposed that the functional derivative of 
B (f1,;t) exists, 

DB (f1,;t) = J,: F(f1,;t;1') oy(1') dr, (4.21) 

and is continuous in its functional argument f1,. 
The transformations T and T -I induce the corresponding transformations on the time lattice. The above discussion 

suggests that in order to get the transformations Tand T -I as the limits of the induced transformations on the time lattice, it is 
sufficient that the relative error for every t \ as the transformations are considered on the lattice, must be a quantity of the 
order ofo(N -I). The same condition must hold also for the case where the time steps L1 t k are not identical. The only rule for the 
approximate calculation of the integral in Eq. (4.21), satisfying these requirements, is the trapezoid rule, so we get from Eqs. 
(4.20) and (4.21) 

dxk+ 1 = [I +! F(f1,k+ ';t k+ l;t k+ l)L1t k ] dyk + 1 + .... (4.22) 

So the transformation matrix is triangular. The transformation Jacobian is 

X( [1 +~F(f1,k+';tk+l;tk+l)L1tk] --+exp [! J,:f F(f1,;t;t)dt]. (4.23) 

and 

I Q? (Yx) exp [ ~ SHo(YX)] dcr(yxl == I Q? (T -1f1,f) exp [ ~ SHotT -1f1,f)] exp [ + J,:f F(f1,;t;t) dt ] dcr(yy). (4.24) 

Next we have to relate the action functionals. The result is 

Putting the expression for SHo into Eq. (4.24), we obtain 

Lxf Q? (r'!! df-l Ho (fxf) = Imxf Q? (T -1f1,f) . df-l Ho (f1,f) 
~ ~ 

{ im I d im I [ d ] 2 I I } X exp - -B(f1,; t)dy+- -B(f1,;t) dt+- F(f1,; t,t)dt . 
Ii Yy dt 21i dt 2 

(4.25) 

(4.26) 

The formula is applicable not only to the integrals over the groups in the whole, G x; and TG x;, but also to the integrals 

over any channels U = [x_, x+ l~; and TU. x x 

For the Volterra transformation, 

T- 1: fx = f1, + I' C(t,1')y; dr, 

" 
(4.27) 

the functional derivativeF = C (t,1') is independent of yy, and the factor exp B S;:C (t,t ) dt ] can be taken out of the integralin 
(4.26). 

V. CONCLUSION 

The specific features of the present approach to the 
functional integrals as integrals on a locally noncom pact 
group with a generalized measure has been revealed here for 
the path integrals of quantum mechanics. The next interest
ing subject to be studied is a realization of this concept in 
quantum field theory and, in particular, in the theory of 
gauge fields. The fact that the functional integral on a locally 
noncom pact group G, 
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I Q? (y) df-l(Y), 

is reduced to Feynman's integral, 

I Q?(y)exp [ ~S(Y)] dcr(y), 

only under the condition that an action functional, which is 
determined upon a purely internal group-theoretical basis, 
exists for the group G, suggests an idea that a group of this 
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x 

FIG. I. Step #0. 

type exists and the group-theoretical functional coincides 
with the classical action in all the cases where the Feynman 
integral appears. 
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APPENDIX: PROOF OF THE THEOREM ON CHANNEL 
SUBDIVISION 

Theorem: The space G ( of all continuous paths on the 
line with free start and finish. as well as any channel (see Sec. 
II) in this space. can be subdivided into a countable family of 
independent channels of arbitrarily small diameters. (The 
subdivision is modulo the channel boundaries.) 

For the sake of convenience. the paths (functions) will 
be represented here by their graphs. and the channels. by 
strips on the (x.t ) plane. lying between the graphs of the 
boundary functions. 

Note that if the entire space G (is subdivided into inde
pendent channels Ua • then any other channel Vis also subdi
vided into the channels VnUa . Thus it is sufficient to subdi
vide only the space G (itself. 

We shall put t i = O. t f = 1. 
Construction a/the channels: We present an explicit 

construction of the channels of diameter 3E covering the 
space G (. The idea is to approximate the functions by their 
values at dyadic rational points s/2" • s integer. The notation 
we use is L" = 10.1/2".2/2" •...• 1 J. At step #0 we approxi
mate the functions with their restrictions to Lo = 10.1 J . 
Looking at the plane (x.t ). we subdivide each of the lines 
t = 0 and t = 1 into segments of the length E. starting from 
x = O. and choose one of them on the first line. and one on 
the second line. With this at hand. we construct a channel. as 
it is shown in Fig. 1; its width is 3E everywhere. except at 

FIG. 2. Step # I. 
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FIG. 3. Construction of the 
step #2 channel from the 
step # I channel. 

t = 0 and t = 1. where it is E and the boundary functions 
have breaks. 

For any function in G ( we may find a channel among 
those containing the function graph in its strip at the points 
t = 0 and t = 1. However. there are functions which are not 
contained in these channels. At step # 1 we take 
L I = I 0.!.1 J. Given a function. its graph intersects the lines 
t = 0 and t = 1 at some points. and we already have a chan
nel covering these points. If the point where the graph inter
sects the line t = ! is covered by this channel. we have noth
ing to do; otherwise. we construct a family of new channels. 
This is done by subdividing the line t = ! into the segments of 
length E starting from the intersection of it with the bound
ary lines of the channel (see Fig. 2). Choosing any of them 
lying beyond the old channel. we construct a new one as is 
shown in Fig. 2. Its width is 3E everywhere. except at 
t = O.p. where it is E and the boundary functions have 
breaks. 

Now for any function we can find a channel whose strip 
covers at least three points of its graph. namely. the inter
cepts with the lines t = 0.!.1. We proceed further in a similar 
way. constructing at step #r the channels which cover (to
gether with those constructed previously) the intercepts of 
the function graph with the union of the lines T = s/2" • 
s = 0.1.2 ..... 2". To this end. we take a channel which was 
constructed at one of the preceding steps. say at step 
#k.O<h:;n. and cross it with all the lines t = s/2" • 
s = 0.1.2 .... 2" • subdivide every line into segments oflength 
E. starting from the intercepts with the boundary lines of the 
channel. and then we choose a segment on every line in such 
a way that we take a segment lying inside the channel on the 
lines with even s ( if k = n - 1 we have no choice at all; 
otherwise. we can choose among at most three segments on 
every line; see in Figs. 3 and 4). In the case of odd s we can 
choose among all the segments. but make sure that at least 
one of the chosen segments does not lie inside the old chan
nel. The channel is constructed in the same way as before (see 

FIG. 4. Construction of the 
step #2 channel from the 
step #0 channel. 
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Figs. 3 and 4); its width is 3€ everywhere, except at t = s/2n 
, 

where its width is € and the boundary functions have breaks. 
Details of the proof that this construction satisfies the 

conditions of the theorem are left up to the reader. 
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Construction of the tensor product for the lattices of properties of physical 
entities 
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We construct the tensor product for the property lattices of two entities. We give a physical 
interpretation for this tensor product. We show that the tensor product is never an 
orthocomplemented lattice if both entities are nontrivial. It also never satisfies the covering law. 
This is the reason why this tensor product does not exist in quantum mechanics and does not exist 
in quantum logic. We analyze the relation of the tensor product with the usual description of two 
entities in quantum mechanics. At the end, we give a mathematical way of constructing this tensor 
product. 

PACS numbers: 03.65.Bz, 03.65.Fd, 02.10. + w, 02.40. + m 

1. INTRODUCTION 

Suppose we want to study a phenomenon by means of 
its properties. Then we can never study the collection of all 
"possible" properties of the phenomenon. What we are in
terested in is to consider a well-defined set of properties of 
the phenomenon. The "thing" described by this set of prop
erties, and which if one wants can be considered as an ideal
ization of the phenomenon, we have called an "entity.,,}-3 

In principle, different entities can correspond to the 
same phenomenon, depending on what properties of the 
phenomenon we consider. Physical theories represent the 
entities and describe in this way the phenomenon. Therefore, 
this idealization is intrinsically connected to the choice of 
trying to understand reality by doing physics. Sometimes 
there are requirements, imposed by the physicist, which 
seem to imply an idealization at first sight. If one analyzes 
the situation more profoundly, one however sees that only 
when these requirements are attributed to the phenomenon, 
they imply perhaps an idealization. If one attributes the 
same requirements to an entity corresponding to the pheno
menon no idealization is implied. This is the case for the 
requirement of "separation." Separated phenomena exist 
perhaps only in an idealized sense, while separated entities 
exist without any further idealization.2 

We already studied, to some extent, the collection of 
properties and states of an entity in relation to the existing 
physical theories, classical mechanics, and quantum me
chanics. }-3 

This work is in a certain sense a continuation of work of 
Piron, that can be found in Refs. 4 and 5. In this paper we 
will construct the tensor product of property lattices. We 
will show that it is the solution of a universal problem and we 
will give a physical interpretation of this tensor product. 

Let us consider the following situation: we have two 
entities S} and S2 and the entity S consisting of these two 
entities. First of all we have to remark that this does not 
represent a unique situation. There are in principle many 
ways in which two entities S} and S2 can form an entity S. 
These many ways correspond to different interactions that 
are possible between S} and S2' In any of these situations we 
shall, however, say that the entity S is a "refinement" of both 

entities S} and S2' 
SupposeS} andS2 are described by property lattices!t') 

and !t' 2 and S is described by a property lattice !t'. The case 
where !t' is the tensor product of !t' } and !t' 2 has to corre
spond to the situation where S is the "smallest" refinement 
of S) and S2' Indeed if S' is an entity that is an arbitrary 
refinement of S} and S2' then S' must also be a refinement of 
S. This explains why the tensor product can be used for the 
description of all the entities that are refinements of S} and 

S2' 
Let us consider the situation in classical mechanics. If 

S}, S2' and S are classical entities described in state spaces r}, 
r 2' and r, then r = r} X r 2, and this does not depend on the 
kind of interaction between S} and S2' 

In quantum mechanics the situation is not so simple. If 
S}, S2' and S are described in Hilbert spaces HI' H 2, and H, 
then H = H} ® H 2. It is possible to show that HI ® H2 can
not describe all possible ways in which two quantum entities 
S} and S2 can form an entity S. It cannot describe for exam
ple the entity S if S} and S2 are two separated entities. 1.2 
Because in quantum mechanics there is no other way to de
scribe two entities, this product H} ® H2 is also used to de
scribe two separated entities. This wrong description gives 
rise to the well-known paradoxes of the theory. 6 The entity S 
that is correctly described by HI ® H2 consists always of two 
entities S) and S2 that are not separated in a very specific 
way. Hence the entity S is in this case a very specific refine
ment of S) and S2 and certainly not the smallest one. 

A classical entity is described in a state space r. The 
relations between different classical entities are expressed by 
functions between the state spaces. Hence we can say that 
the category corresponding to classical entities is the cate
gory of which the objects are sets (the state spaces) and the 
morphisms are functions. In this category of sets and func
tions, r} Xr2 represents the tensor product of r} and r 2• 

A quantum entity is described in a Hilbert space H. The 
relations between different quantum entities are expressed 
by linear or antilinear maps between their Hilbert spaces. 
Hence we can say that the category corresponding to quan
tum entities is the category of which the objects are Hilbert 
spaces and the morphisms are linear and antilinear maps. In 
the category of Hilbert spaces and linear maps, H} ® H2 rep-
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resents the tensor product of HI and H 2. 

In the category of Hilbert spaces and linear and antilin
ear maps there does not exist a tensor product for two Hil
bert spaces HI and H 2. The reason is that HI ® H2 and 
HI ® Ht are not isomorphic. 7

•
8 Both categories, the one cor

responding to classical entities, and the one corresponding to 
quantum entities, should be contained in the general cate
gory corresponding to entities in general. One of the conclu
sions of this paper is that while the category corresponding 
to classical entities is a "good" subcategory, the category 
corresponding to quantum entities is not. This is the reason 
why in this category there does not exist a tensor product. 
Quantum logic is a theory that has both classical mechanics 
and quantum mechanics as a special case. The objects of the 
category are orthocomplemented weakly modular posets or 
lattices, usually equipped with a probability measure. Some
times the lattice is supposed to be u-complete or complete. 
We shall also show here that there does not exist a tensor 
product. The axiom that is at the origin of this fact is the 
axiom that introduces an orthocomplementation of the lat
tice. 

Hence also the category corresponding to quantum log
ic is not a good subcategory, and therefore, there does not 
exist a tensor product for quantum logics. In Refs. 1 and 2 we 
show that quantum mechanics and also quantum logic can
not describe separated entities, and we give a description of 
separated entities. The axiom that is at the origin of this fact 
is the axiom that makes the lattice weakly modular. The 
entity S that consists ofthe two separated entitiesSI andS2 is 
certainly a refinement of both entities SI and S2' For some 
time we thought that S would perhaps be the smallest refine
ment of SI and S2' In this case the product constructed in 
Refs. 1 and 2, that we called the "separated product," would 
be the tensor product. It is mathematically very easy to see 
that this separated product is not a solution of the universal 
problem. This was very puzzling. Indeed, what could physi
cally be a more simple situation than the situation where SI 
and S2 are separated entities. But after some time it became 
clear that there does exist a more simple situation for two 
entitiesSI andS2. Indeed if two entitiesSI andS2 areseparat
ed, there is some interaction between them, the interaction 
that keeps the entities separated. This interaction will give 
rise to new properties for the entity S consisting of S1 and S2' 
This can be seen very well in the construction made in Refs. 1 
and 2. A situation which is more simple is the situation 
where we do not know the interaction between SI and S2' 
The entity S consisting of two entities SI and S2' such that we 
do not know anything about the interaction between SI and 
S2' will allow us to construct the tensor product. We think 
that this is the structure one ought to use to describe two 
entities. 

If the two entities are classical, described in state spaces 
r l and r2 , this tensor product is the Cartesian product 
r I X r 2 of the state spaces. If the two entities are nonclassical 
we find a completely new structure for the tensor product 
which is different from HI ® H2 in the case where SI is de
scribed in the Hilbert space HI' and S2 is described in the 
Hilbert space H 2, and which is also different from the sepa
rated product constructed in Refs. 1 and 2. 
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The reason why this tensor product could be found 
neither in quantum mechanics, nor in quantum logic is that 
the property lattice describing S will never be orthocomple
mented. The problem of the existence of a tensor product for 
quantum logic is an old one.9 1t has been investigated also in 
Refs. 7, 10, and 11. 

2. CONSTRUCTION OF THE TENSOR PRODUCT 

In this paper we will use the formalism as it is exposed in 
Ref. 2. This formalism is in a certain sense a quantum logic 
formalism, where the properties of the entity are not defined 
mathematically as some elements of a lattice, but physically 
as equivalence classes of questions. A question is a proposal 
of a test that can be performed on the phenomenon. If the 
test gives us the expected outcome, we will say that the an
swer of the test is "yes." If the test does not give us the 
expected outcome, we will say that the answer of the test is 
"no." 

On the set of questions Q two operations are defined. 
An operation which makes correspond to every question a 
its inverse question a-'a- corresponds to the same test 
where yes and no are interchanged. Another operation 
which makes correspond to every family a j of questions a 
product question 1Tj ·a j ·1Ti ·a j is the new test that consists of 
choosing an arbitrary question from the family a j and per
forming the corresponding test. Q is supposed to be closed 
for these two operations. A question is said to be true iff 
when we should decide to perform the experiment the an
swer "yes" would come out with certainty. We have also a 
relation on the set of questions. If we have the situation that 
whenever a question a is true then also the question,8is true, 
we denote a <,8, and we say "a is stronger than,8." This 
defines a preorder relation on Q. 

A property is represented by the equivalence class of 
questions testing this property. A property a is actual iff 
there is a question aEa that is true. The preorder relation on 
the set of questions introduces a partial order relation on the 
set of properties. Namely a < b iff whenever a is actual then 
also b is actual. It is possible to prove that the set of proper
ties, denoted by !f, is a complete lattice (Ref. 2, Sec. 3.6). 

The state is represented by the minimal element of the 
set of actual properties of the entity. The set of states ~ of the 
entity is full, which means that if a and b are properties such 
that for every state p < a we have p < b then a < b. ~ is also 
equipped with a natural orthogonality relation. Two states p 
and q are orthogonal iff there is a question a such that if the 
entity is in the state p, a is true and if the entity is in the state 
q, a- is true. The collection of questions that are never true 
we will denote by O. It is easy to see that 0E!f. A trivial 
question is a question that is always true. The property repre
sented by the equivalence class of all trivial questions will be 
denoted by f. Clearly for every property a we have 0 < a < f. 
A generating set of questions is a set of questions G such that 
Q = ! 1Tj a i lajEG J. If!f is the property lattice of an entityS, 
then we will say that aE!f is an atom of this lattice iff when
ever 0 < b < a we have b = 0 or b = a. 
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1. The set of questions 

We shall consider the following situation. We have two 
entities SI and S2 and we suppose that every question of SI is 
still defined when S2 is there and every question of S2 is still 
defined whenSI is there. The entity consisting ofSI andS2 in 
this situation, without knowing anything more about the in
teraction between S I and S2' we will call S. If Q I is the set of 
questions of SI and Q2 the set of questions of S2' we can 
construct the set Q of questions of S. Clearly QI C Q and 
Q2 C Q. The only new questions that are possible are the 
questions of the form a l·a2, where alEQI and a 2EQ2' 

Hence, 

Q = la l, a 2, a l·a2Ia IEQI' a 2EQ2}, 

and 

a)"a2 is true iff a l is true and a 2 is true. 

Since as explained in Ref. 2 the structure of the property 
lattice and the set of states are completely determined if we 
know the set of questions, we can now just derive these struc
tures. 

2. The property lattice 

Suppose.!!' I and.!!' 2 are the property lattices of SI and 
S2 and.!!' is the property lattice of S. If alEQI tests alE.!!' I 
and a 2EQ2 tests a2E.!!' 2' the property tested by a l·a2 will be 
denoted a I /\ a2• 

Theorem 1: .!!' = I a I /\ a21a IE.!!' I' a2E.!!' 2 J and a I /\ a2 
is actual iff a I is actual and a2 is actual. 

For the minimal element 0 of .!!' we have 

0= 0 1 /\a l = al /\02 

and for the maximal element I of .!!' we have 

I = II /\12, • 
3. The set of states 

Suppose C I and C2 are the collection of actual properties 
of SI and S2 and c is the collection of actual properties of S 
and suppose.I I and.I2 are the set of states of S I and S2 and.I 
is the set of states of S. 

Theorem 2: c = la l /\a2lalEcI' a2Ec2J· 
For every pE.I there is aplE.II andplE.I2 such that 

P =PI /\P2' Hence.I = [PI /\P2IPIE.II andp2 E.I2 J· 
We have 

PI /\P2 <at /\ a2 iff PI <al and P2 <a2· 

4. The partial order relation 

Theorem 3: If a I /\ a2, b I /\ b2E.!!' then 

a l /\a2 <bl /\b2 iff a1 <bl and a2 <b2. 
or a1 = 0 1 or a2 = O2 , 

• 

Proof Suppose al<tb l, then there is a statepl <a) such 
thatPI<tb l. Consider a statep2 <a2. If Sis in the statepl /\P2' 
then a I /\ a I is actual but b I /\ b2 is not actual. Hence 
al /\a2<tb l /\b2 • • 

5. The orthogonality relation 

1436 

Theorem 4: If PI /\P2' ql /\q2E.I, then 

PI /\P21ql /\q2 iff Pl1ql orp21q2' 
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Proof If PI /\P21ql /\ Q2' then there exists a question a 
such thatpI /\P2 <a and ql /\Q2 <a- . Now a is of the form 
a l,a2' or{3J32• Ifa is of the form at thenpi <al andql <a l 
such thatpllql' Ifa is of the forma2 thenp2 <a2andq2 <ai 
If a is of the form {31,{32 thenpI <{31 and ql <{31 andp2 <{32 
and q2 <{3 i· • 

6. The primitive questions 

In Refs. 1 and 2 we defined the concept of primitive 
questions. The idea behind this definition is that the ques
tions used to describe properly an entity should be only the 
products of such primitive questions. Hence the primitive 
questions should generate the property lattice of the entity. 
This demand is exposed in Axiom 1 of Refs. 1 and 2. 

Let us repeat this definition of a primitive question. 
Definition 1: If a is a question testing a property a such 

that a- tests the property b, then a is a primitive question iff 
whenever the entity is in a state orthogonal to a, then a- is 
true and whenever the entity is in a state orthogonal to b, 
then a is true. 

We can show now that the set of primitive questions of 
the entity S is just the union of the set of primitive questions 
of SI and the set of primitive questions of S2' This shows in a 
certain sense already that the property lattice of S will be the 
"smallest" one containing the property lattice of SI and the 
property lattice of S2' 

To be able to show this we have to remark on some 
properties of the property lattice. Suppose that we consider 
an entity. Any trivial question of the entity is also a primitive 
question. Hence the set of questions contains at least one 
primitive question. We can also remark that the set of states 
of an entity contains at least one state, since any trivial ques
tion defines the property I which is always actual. 

Theorem 5: If P is the set of primitive questions of S, 
then P = Plu P2, where PI is the set of primitive questions of 
SI' and P2 is the set of primitive questions of S2' 

Proof If atEPI then alEP and if a 2EP2 then a 2EP. Sup
pose that a I·az is a primitive question. If a2E£02 we can con
sider astatep2 ofS2 such thatp2 <a2. IfalEa t andplla l then 
PI /\P21a l /\a2 where a 2Ea2· But thenpt /\P2 <al,ai· As a 
consequence P2 < ai which is a contradiction. If a 2E02, then 
aiE£Oz if a 2 is a primitive question, so that we can make 
analogous reasoning for a; . • 

7. The axioms 

As we remarked already in the Introduction, we will 
show that the axioms that are usually supposed to be satis
fied in quantum logic are not satisfied if this tensor product 
exists. We shall use the axioms as defined in Refs. 1 and 2. 

Let us state the axioms as they can be found in Refs. 1 
and 2. 

Axiom 1: If S is an entity, then the primitive questions of 
S form a generating set of questions for the property lattice. 

Axiom 2: If S is an entity and P is a state of S then there 
exists a question that is true iff S is in a state orthogonal to p. 

If Axiom 1 and Axiom 2 are satisfied for the property 
lattice.!!' of the entity S, then.!!' is orthocomplemented as 
we have shown in theorem 7 of Ref. 2. 
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Axiom 3: The states of the entity are represented by 
atoms of the property lattice. As a consequence of this axi
om, the property lattice is an atomic lattice. 

Axiom 4: (weak modularity): If X' is the property lattice 
of an entity and a, bEX' such that a < b, then it is possible to 
find a property CEX' such that da and a V C = b. This axiom 
is rather of a technical nature and it is not easy to see what it 
means physically. It makes the property lattice weakly mo
dular which must be the case since all property lattices of 
quantum entities are weakly modular. 

Axiom 5: (covering law): If X' is the property lattice of 
an entity Sand aEX' and P is a state of S such that a 1\ P = 0, 
then a V p covers a. This- axiom is again of a technical nature 
but satisfied in quantum mechanics. Axioms 1,2,3,4 and 5 
are satisfied in quantum mechanics and also in classical me
chanics. In a certain sense also the inverse is true. These five 
axioms force our formalism equivalent to quantum mechan
ics with superselection rules. Hence we could say that they 
are the axioms of quantum mechanics. 

We shall show now that Axiom 2 and Axiom 5 are nev
er satisfied in the tensor product lattice of two property lat
tices. And this is the reason why this tensor product does not 
exist in quantum mechanics. 

Theorem 6: The property lattice X' of S satisfies axiom 
1 iff the property lattice X'I of SI and the property lattice 
X' z and Sz satisfy Axiom l. 

Proof Follows immediately from Theorem 5. So one of 
the axioms that leads to an orthocomplementation does not 
cause any problems. Also the atomicity does not cause any 
problems. 

Theorem 7: The property lattice X' of S satisfies Axiom 
3 iff the property lattice X'I of SI and the property lattice 
X' z and Sz satisfy Axiom 3. 

Proof Suppose X' satisfies Axiom 3. Consider a statepi 
of SI and 0 1 #a l <PI' If pz is a state of Sz then 
o #all\pz <PII\PZ' Hence PII\PZ < al l\P2 which shows 
that PI < al' So X'I satisfies Axiom 3. In a similar way we 
show that 2'2 satisfies Axiom 3. 

Suppose X'I and X' 2 satisfy Axiom 3. Consider 
al l\a2=1=O and a l l\a2 <PII\P2' Then 0 1 #a l <PI and 
02#a2 <P2' Hencepi = al andp2 = a2· • 

The second axiom that leads to an orthocomplementa
tion will, however, only be satisfied in some trivial physically 
noninteresting cases. 

Definition 8: We will say that an entity S is "trivial" iff 
for every question a of S we have aEO or a- EO. Hence a 
trivial entity is an entity that has no orthogonal states. The 
entities described by classical physics and the entities de
scribed by quantum physics are not trivial. 

Theorem 8: If the property lattice X' of the entity S 
satisfies Axiom 2, then SI or S2 is a trivial entity. 

Proof Suppose that neither SI nor S2 is a trivial entity. 
Then there exists two orthogonal states P Ilq I of S I and two 
orthogonal statesP2lq2 of S2' Consider the statepII\P2 of S. 
If Axiom 2 is satisfied, there exists a property al l\a2 such 
that a l 1\ a I is actual iff the entity S is in a state orthogonal to 
PII\P2' Suppose r2 is an arbitrary state of S2' Then 
ql 1\ r2lp11\P2' Hence qll\ r2 <all\ a2. As a consequence 
r2 < a2. This shows that az = 12, Suppose that r l is an arbi-
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trarystateofSI. Thenrl l\qllpll\P2' Hencerll\ql <al l\a2· 
So r l <al' As a consequence al = II' Hence all\a l = I. But 
thenpII\P2lpll\P2 which is a contradiction. • 

This theorem shows that the lattice X' will never be 
orthocomplemented if it is not the product of the lattice of a 
trivial entity with another one. It also shows that orthocom
plementation is not a good axiom for the category oflattices 
of properties of an entity. 

Let us compute now the supremum and the infimum of 
elements of X'. By doing this we solve the "word problem" 
of lattice theory for the lattice X'. 

Theorem 9: If a; 1\ a~ EX' such that a; 1\ a~ # 0 for ev
ery i then 

1\ (a; 1\ a~) = ( 1\ a'; ) 1\ ( 1\ a~ ), 
iii 

V (a; 1\ a~ ) = ( Va; ) 1\ ( V a~ ). 
iii 

Proof Suppose a; 1\ a~ < C I 1\ C2 for every i. Then a; < C I 

and a~ < C2 for every i. Hence Va; < C I and V a~ < C2. As a 
i i 

consequence ( Va; ) 1\ ( V a~) < C I 1\ C2· 
i i 

On the other hand ail 1\ a~ < ( V a; ) 1\ ( V a~ ) for every j. • 
I I 

We can ask whether Axiom 4 that introduces the prop-
erty of "weak modularity" is satisfied. Weak modularity is, 
however, usually only defined in an orthocomplemented lat
tice. In this case in the definition the orthocomplementation 
is needed. It is, however, possible to give a definition where 
the orthocomplementation is not required. This is the way 
we introduced weak modularity in Ref. 2 in Axiom 4. Intro
duced in this way weak modularity does not cause any trou
ble. The question, however, remains whether weak modular
ity without orthocomplementation is an interesting property 
for the lattice. 

Theorem 10: The property lattice X' of S satisfies Axi
om 4 (weak modularity) iff the property lattice X'I of SI and 
the property lattice X' 2 of S2 satisfy Axiom 4. 

Proof Suppose X'I and X' 2 satisfy Axiom 4. Consider 
al l\a2#0 and al l\a2 <bl l\b2. Then al <bl and a2 <b2. 
Hence there exists cila l andc2la2 such thata l V CI = bl and 
a2 V C2 = b2· As a consequence (a I 1\ a2) V (c I 1\ c2) = b I 1\ b2 
and C I 1\ c2la I 1\ a2. Suppose now that X' satisfies Axiom 4. 
Consider al #0 and al <bl' Then all\II <bI I\I2. So there 
exists cll\ c2la 11\ 12 and (all\ It! V (c i 1\ c2) = (a l V CI) 1\12 
= bll\Iz. But then cila l and al V CI = bl' Hence X'I satis
fies Axiom 4. In an analogous way we show that also X' 2 
satisfies Axiom 4. It makes more sense to verify whether 
Axiom 5 (the covering law) is satisfied in .!t', because the 
orthocomplementation is not really connected to this prop
erty. We can very easily see that Axiom 5 is in fact never 
satisfied in X'. 

Theorem 11: If the property lattice .!t' of S satisfies Axi
om 5 then one of the two entities SI or S2 has a property 
lattice containing only two elements 0 and 1. .!t' is then 
isomorphic to the property lattice of the other entity. 

Proof: Suppose Axiom 5 to be satisfied for .!t' and sup
pose that for example the entity SI has at least two different 
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states PI =/=ql' Consider two statesP2 and qz of the entity Sz· 
Thenpi Apz and ql Aqz are two different states of S. Since 
they are atoms (PI APz)V(ql Aqz) covers PI Apz. Now 

PI Ap2 < (PI V ql) Apz < (PI V qd A (pz V qz) 

= (PI Apz)V(ql Aq2)' 

As a consequence 

PI V ql = PI or pz = pz V q2' 

Since PI =/=ql we cannot have PI = PI V ql' Hence 
pz = P2 V qz· But then pz = qz. Since pz and q2 were arbitrary 
states of Sz, it follows that S2 has only one state. As a conse
quence !i" z = ! O2 , 1zl and !i" ~!i" I' • 

From this theorem also follows that the covering law is 
not a good property for the category of property lattices. 
This covering law was also not satisfied for the property lat
tice of two separated entities. 1.2 

It is the covering law which allows the lattice to be rep
resented by the set of closed subs paces of a vector space. So 
we cannot hope that our tensor product lattice will be repre
sentable by a vector space structure. So again, as in the case 
of two separated entities, the superposition principle will not 
be satisfied for the entity Seven whenSI andSz are described 
by quantum mechanics in Hilbert spaces HI and H 2. Since 
the property lattice !i" will be a tensor product of 9 (H I) and 
9 (H2) it will, however, be possible to find a morphism that 
maps!i" into 9(H\ <81 H2)' We shall now show that !i" is 
indeed the tensor product. To do this we have to introduce 
the concept of morphism. 

3. MORPHISMS AND A SOLUTION OF THE UNIVERSAL 
PROBLEM 

1. Morphisms and bimorphisms 

The concept that we will use to express relations 
between different entities i!' the concept of morphism. We 
will have the situation in mind where Sand S' are entities 
corresponding to the same phenomenon. As explained in 
Ref. 12, this is in fact the general situation. In Ref. 12 it is 
also shown that when QC Q', and theentityS' isarefinement 
of the entity S, then the morphisms are introduced in the 
following way: 

(1) If P represents the state of S and so is the minimum of 
all actual properties of S, and P' represents the state of S ' and 
so is the minimum of all actual properties of S ' we shall write 
P = g( p'). In this way we define a map 

g:~'-+~. 

(2) If aE!i" and a'E!i" , such that there is a question aEa 
such that aEa', then we shall write a' = J(a). 
In this way we define a map 

f !i" -+!i"'. 

Theorem 12: Ifa, b,a;E!i" andp',q'~' then the follow
ing holds: 

(i) a < b¢:? J(a) < J(b), henceJis injective; 

(ii)J( A a;) = A J(a;); 
i i 

(iii) P' < J(a)¢:?g( p') < a; 
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(iv)J(a) = V p<aJ(p); 

(v)p' <q'~g(p') <g(q') andg is surjective; 

(vi) alb~ J(a)lJ(b ). 

Proof (i) Follows immediately. 

(ii) Take a;Ea; such that a;E/(ai ). Then 'TT;a;E A ja; and 
'TT;a;E A; J(a;). 

(iii) Supposep' <J(a)andS' is instatep' while Sis in state 
g( p'). ThenJ(a) is actual. Hence also a is actual. So g( p') < a. 
Ifg(p') <a. Thenp' <J(g(p')) <J(a). 

(iv) Ifp' <J(a) theng(p') <a. Sinceg(p') <g(p') we have 
p' <J(g(p')).Sop' <J(p)forsomep<a.Hencep' < V p<J(p). 
AsaconsequenceJ(a) < V p<J(p).Clearly V p<J(p) <J(a). 

(v) We havep' <q' <J(g( q')). Henceg(p') <g(q'). 
(vi) Suppose p' <J(a) and q' <J(b ). Then g( p') < a and 

g(q') < b. So g( p')1g(q'). This means that there exists a ques
tion aEQ such thatg(p') <a andg(q') <a~ But since QCQ', 
we also have aEQ '. This shows thatJ(g(p'))lJ(g(q')). Since 
p' <J(g(p')) and q' <J(g(q')) we also havep'lq'. • 

To be able to define the universal problem for the tensor 
product we have to define the concept ofbimorphisms. Sup
pose we consider three entities SI' S2' and S with sets of 
questions QI' Q2' and Q, such that QI C Q and Q2 C Q. Hence 
S is a refinement of SI and of S2' 

We introduce bimorphisms in the following way: 
(1) Ifp represents the state of S, andpi represents the 

state of SI' and P2 represents that state of Sz, we shall write 
PI = vl(p) andp2 = v2(p). In this way we define two mor
phisms 

VI: ~-+~I and V 2: ~-+~2' 

(2) If aE!i", at E!i" I' and a2E!i" 2 such that there is a 
question alEa l and a question a 2Ea2 such that al·azEa we 
shall write a = ,u(a l , a2 ). In this way we define a bimorphism 

,u:!i" I X 2'" 2-+X, 

Theorem 13: If a IE!i" I' azE!i" 2' and p~ we have 
(i) p <,u(a l, az)¢:?vl( p) < al and vz(p) < a2; 
(ii) allb l or azlb2~,u(al' az)l,u(b l, bz); 
(iii),u( A ; a~ , A jfiz) = A ij,u(a~ , ~ ); 
(iv),u(a l, a2) = V p,<a,.p,<a,,u(PI,P2)· 
Proof (i) Supposep <,u (ai' az) andSis in statep whileSI 

is in state vl(p) and Sz is in state v2(p). Then,u(a l , a2) is 
actual. Hence al and a2 are actual. So vl(P) <a l and vz(p) 
<a2. If vl(p) < al and v2(p) <az, then p <,u(vJ!p), V2(P))· 
Hence p <,uta I' a2)· 

(ii) Suppose p <,uta l,a2) and q <,u(b l, b2). Then 
vl(p) <a l and v2(p) <az and vl(q) <bl and vz(q) <bz. Hence 
vI(P)lvIlq) or v2(p)lvz(q). Suppose vl(p)lvIlq). Then there 
exists a question alEQI such that vI(p) <a l and v\(q) <a l . 
Since QI CQ we have a\EQ. Then,u(vl(p), vz(p)) <a\ and 
,u(vIlq), V2(q)) < a l · As a consequence 

,u(vl(p), vz(p)) l,u(v\(q), vz(q))· 

But thenplq. • 
2. The universal problem 

Let us denote the property lattice X constructed in 2 
by X \ <81 !i" z. The set of questions ~ we will denote by 
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~ I ® ~2' The entity S considered in 2 we will denote by 

SI®S2' 
Theorem 14: The map 

T: .!t'1 X.!t' 2-.!t' I ® .!t' 2 

(aI' a2) ~I Aa2 

is a bimorphism. The two maps 

fl:~1 ®~2-~1 

PI Ap2t--+PI' 

f2:~1 ®~2-~2 

PI Ap2t--+P2' 

are morphisms. 
Proof Follows from the construction in 2. • 
Theorem 15: (T, .!t'l ®.!t' 2) and (f l , f 2, ~I ®~2) are solu

tions of a universal problem defined as follows: 
If we have an entity S with property lattice .!t' and 

states space ~ and a bimorphism 

p = .!t'l X.!t' 2-.!t', 

and a couple VI' V 2 ofmorphisms 

VI:~-~I' 

V2:~-~2' 

then there exists a morphism/, 

f .Y I ® .Y 2-.Y' 
and a morphism g, 

g:~-~I®~2' 

such thatp =loT, and VI = flog, and V 2 = f2og. 
Proof Let us define I and g as follows: 

I(a I A a2) = pta l,a2), 

and 

g(p) = v l (p)Av2(p)· 

Let us show that/andg are morphisms. 
There exist alEa I and a2Ea2 such that acaze,u(at> a2)' 

But then a l·a2Ea I A a2 and a l·a2E/(a I A a2). Suppose the en
tity Sis in statep. ThenS, is in state vI(p) andS2 is in state 
v 2( p). As a consequence S, ® S2 is in state 
v l ( p) A v2( p) = g( pl. • 

It is a general result of category theory that the solution 
of a universal product is unique up to an isomorphism. This 
theorem shows that the entity S considered in this paper in 2 
really represents the tensor product of the two entities S I and 
S2' Therefore, we can denote it by S 1 ® S2' We can also con
clude from this theorem that SI ® S2 is the smallest refine
ment of SI and S2' 

3. Example of a universal situation, the separated product 

Suppose that we consider an entity S composed of two 
separated entities SI and S2' If QI and Q2 are the sets of 
questions, .!t'l and .!t' 2 the property lattices, ~I and ~2 the 
state spaces of SI and S2' then we constructed in Refs. 1 and 2 
the set of questions QI® Q2' the property lattice .!t'1®.!t' 2 

and the state space ~ I ® ~2 of S. We called these structures 
the "separated" product. Let us introduce also for S the no
tation S,® S2' 
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Theorem 16: If we consider the maps 

p: .!t'l X.!t' 2-.!t'® .!t' 2 

(aI' a2) ~I Aa2, 

VI: ~1®~2-~1 

PI Ap2f--+PI' 

V 2: ~1®~2-~2 

p, AP2f--+P2' 

then p is a bimorphism and VI and V z are morphisms. 
Proof Wehavea l EaI, a 2Ea2, anda l·a2Ea I Aa2S I®S2 is 

in the state P I A P2 iff S I is in the state P I and S2 is in the state 

h • From Theorem 15 we can then conclude: 
Theorem 17: The maps 

f .!t'l ® .!t' 2-.!t' I® .!t' 2 

a, Aa2~1 Aa2, 

g:~I®~2-~1 ®~2 

PI Ap2f--+PI Ap2 

are morphisms. 

4. QUANTUM MECHANICS AND THE TENSOR 
PRODUCT 

We shall consider now two entities S I and S2 described 
by quantum mechanics in Hilbert spaces HI and H 2, and 
also the entity S consisting of S, and S2 and described in the 
Hilbert space HI ® H 2. Let us try to see if S is a refinement of 
SI andS2· Hence suppose that .!t'(HI), .!t'(H2), and .!t'(H) are 
the property lattices and ~ (Hd, ~ (H2), and ~ (H) the state 
spaces of SI' S2' and S. 

As we know for a quantum entity every property can be 
represented by a closed subspace of the Hilbert space de
scribing the quantum entity. To make the notation not too 
complex we will make no distinction between the property 
and the closed subspace. Every ray of the Hilbert space rep
resents a state of the quantum entity. Also here we will make 
no distinction between rays and states. We must remark that 
not every state must a priori correspond to a ray. There can 
be states corresponding to larger closed subspaces. We shall 
see that this is necessarily the case for S I and S2 if we want S 
to be a refinement of SI and S2' If S is a refinement of SI and 
S2 there must exist a bimorphism 

p: .!t'(Hd X .!t'(H2)-.!t'(H), 

and two morphisms 
vI:~(H)_~(HI)' 

V 2: ~ (H)_~ (H2). 

Theorem 18: If the quantum entity S described in the 
Hilbert space HI ® H2 is a refinement of the quantum entity 
SI described in the Hilbert space HI and the quantum entity 
S2 described in the Hilbert space H 2, then every property 
all=OI of SI represents also a state of SI and every property 
a21=02 of S2 represents also a state of S2' In other words: 
~(Hd = .!t'(Hd'\[Otl and~(Hz) = .!t'(H2)'\[02J. 

Proof Suppose that S is a refinement of SI and S2' Con
sider an arbitrary property a l of SI' Clearly p(al, 12) 
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= a l ® H 2. Suppose that (Xi I is an orthonormal basis of a l 
and (Yj I is an orthonormal basis of H 2. Consider the vector 

X = ~/jijXi ®Yj' 

x represents a state of the entity S. If S is in the state x, then 
a I ® H2 is actual. As a consequence the property a I is actual 
for the entity SI' We shall now show that a l represents the 
state of the entity SI' Suppose we have another property b I of 
SI such that bl <a l and bl #a l. Consider an orthonormal 
basis (Zk I of a l such that (Zk Ik<kll is a basis of bl' Suppose 
now that xEbl ® H 2. Then x = ~kj A kj Zk ®Yj such that 
Akj = Ofork>k l • SincexiEa I, we can find numbers,uik such 
that Xi = ~ k,u ikZ k' Since there is at least one Xi Ea I such that 
xi(£b l , we must have at least one ,uik #0 with k> k I' On the 
other hand we have 

~kjAkjZk ®Yj = ~ijkbij,uikZk ®Yj 

= ~kj,ujkZk ®Yj' 

From this follows that ,ujk = A kj for every j and every k. But 
then ,ujk = 0 for every k > k I, which is a contradiction. This 
shows that when S is in the state x, then a I is the smallest 
property of SI that is actual. Hence a l represents the state of 
SI' We show in an analogous way that every property a2 of S2 
represents a state of S2' • 

A consequence from this theorem is that, when S is a 
refinement of S I and of S2' then the states of S I and S2 are not 
atoms of the property lattices. Hence Axiom 3 of Ref. 2 is not 
satisfied for SI and S2' We want to remark also that when we 
say that the state of SI is represented by the property a l 
which is not an atom of the property lattice, this does not 
mean that the state of SI is represented by a mixture. Indeed 
a mixture would mean that S I is in one of the vector states X I 
withxIEa l , but we do not know which one. This is, however, 
not the case. If the entity S is in the state x, then all the 
properties XI of SI with xIEa l are potential properties. It is 

only when the entity S is in a state x I ® X 2 , that x I is an 
actual property for the entity SI' We can also derive an inter
esting physical clarification for Axiom 3. We could say that 
when an entity SI has states that are not atoms, this entity is 
not separated from another entity S2' When the entity S, 
consisting of SI and S2' is in a state that is a superposition of 
product states, then the entity SI will be in a nonatom state. 
Hence Axiom 3, that introduces the atomicity for the states, 
is an axiom that will only be satisfied for entities that are 
more or less separated from the rest of the universe. Let us 
remark that for classical entities, Axiom 3 is always satis
fied. I.3 

We can now use Theorem 15 to have immediately the 
following result. 

Theorem 19: If the quantum entity S described in the 
Hilbert space HI ® H2 is a refinement of the quantum entity 
SI described in the Hilbert space HI and the quantum entity 
S2 described in the Hilbert space H 2, then there exist mor
phisms 

f 2'(HI) ® 2'(H2)-2'(H) 
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where P I and P2 are constructed from the vector x as is shown 
in Theorem 18. From Theorem 18 follows thatpI andp2 are 
not always atoms. • 

5. MATHEMATICAL CONSTRUCTION OF THE TENSOR 
PRODUCT 

The construction that we make in Sec. 2 depends on our 
formalism of questions, properties, and states. Ifis, however, 
very easy to construct the same tensor product without rely
ing on the physical content of the formalism. Suppose we 
have two posets 2' I and 2'2 with minimal elements 0 1 and 
O2 , and maximal elements II and 12 , 

We construct the poset 2' 1 ® 2' 2 as follows: 

2' I ® 2'2 = ((a l ,a2)la IE2' Ha2E2' 2' and a l #0 1, 

and a d 0 2l u( 0 I, 
with the following partial order relation: 

(aI' a2) < (b l , b2)¢:?a 1 < b l and a2 < b2 

0< (ai, a2) for all (ai' a2)· 

If 2' I and 2' 2 are complete lattices we define least upper 
bounds and greatest lower bounds for 2' I ® 2' 2 as follows: 

1\ (a; ,a~) = (1\ a; , 1\ a~ ) 
i i j 

= 0 if 1\ ail = 0 or 1\ a~ = 0, 
i i 

V (a; ,a~ ) = ( Va; , V a~ ). 
iii 

Then also 2' I ® 2' 2 is a complete lattice. If 2' I and 2' 2 are 
equipped with an orthogonality relation, we define an 
orthogonality relation for 2' I ® 2' 2 as follows: 

(a l,a2)1(b l ,b2)¢:?aIlb l or a21b2· 

As shown already in the foregoing, 2' I ® 2' 2 cannot be 
equipped with an orthocomplementation compatible with 
this orthogonality relation, even when 2' I and 2'2 are 
equipped with an orthocomplemantation. 

6. CONCLUSION 

In Refs. 1 and 2 we constructed the property lattice 
2' I® 2' 2 for the entity S consisting of two separated entities 
SI and S2 with property lattices 2' I and 2'2' We showed 
that this separated product is never weakly modular when 
both SI and S2 are not classical systems. It also never satisfies 
the covering law. Since in quantum mechanics the property 
lattices are always weakly modular and always satisfy the 
covering law, separated entities cannot be described in quan
tum mechanics. 

In this paper we construct the property lattice 
2' I ® 2' 2 for the entity S consisting of two entitiesSI andS2 

without knowing the interaction between SI and S2' We 
show that 2' I ® 2' 2 is a tensor product and that it is never 
orthocomplemented when bothSI andS2 are nontrivial enti
ties.1t also never satisfies the covering law. Since in quantum 
mechanics the property lattices are always orthocomple
mented, this situation cannot be described in quantum me
chanics. For the same reason there does not exist a tensor 
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product in the category corresponding to quantum entities. 
Also in quantum logic it is not possible to construct a tensor 
product for the logics. This is because the logics in quantum 
logic are always supposed to be orthocomplemented. 
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We explicitly construct a complete set of states, useful in three-body problems, both in a boson 
operator realization and in terms of coordinates which are of interest to microscopic collective 
models. The states carry the angular momentum quantum number L and, for the classification 
scheme mentioned in the title, our expressions generalize to arbitrary L the results previously 
available only for L = 0 and 1. 

PACS numbers: 03.65.Ge, 02.20. + b, 

1. INTRODUCTION 

The three-body system is a classical problem of theo
retical physics. In particular we are interested in the three
nucleon system, in which the main goal is the construction of 
the wave function associated with the ground state of the 
bound system by a variational method. For this, one fre
quently uses sets oftranslationally invariant harmonic oscil
lator basis states. A convenient realization for these states 
can be given in terms of bosonic creation operators associat
ed with two relative Jacobi vectors of the system Xs and their 
canonically conjugate momenta Ps through the relation 

11s = (l/~)(Xs - IP.), s = 1,2. (Ll) 
In tum, the corresponding annihilation operators are 

defined as 

~s = (l/~)(Xs + IPs), s = 1,2 (1.2) 

and give zero when applied on the vacuum state. 
These operators satisfy the usual commutation relation, 

i.e., 

(1.3) 

where i,i' = 1,2,3 denote the components of the Jacobi vec
tors. 

The basis states mentioned above are homogeneous 
polynomials of degree N in 11s :PN(11s)IO), which are known 
to carry the fully symmetric irreducible representation [N 6] 
of the group U(6), I and, in order to further classify them, one 
could in principle make use of any chain of subgroups start
ing from U(6). However, for physical considerations it is con
venient that the states in the basis have the orbital angular 
momentum as a good quantum number, i.e., one wishes to 
include the three-dimensional rotation group 0(3) as a sub
group ofU(6). To fully characterize the states, one has then 
to introduce additional groups between the above two. In 
this respect the problem is very similar to the one related to 
the construction of basis states for symmetric irreducible re
presentations ofU(6) used in the interacting boson model 
(IBM) of the nucleus. 2

,3 In both cases we have the physical 
rotation group 0(3) as a subgroup ofU(6), the main differ
ence being that in the IBM case the six boson operators are 
assembled into two 0(3) irreducible tensors of rank 0 and 2, 
while in the present analysis one has the two vectors 111' 112' 
There is one additional complication in the latter case, name-

ly, that the states are required to have a definite behavior 
under permutations of the three objects, 

Several basis states for three-body problems are 
known, 1,4-6 and their application in the determination of dif
ferent physical observables, as, for example, the ground state 
wave function of a bound three-nucleon system, or a scatter
ing state that would appear in the collisions of neutrons with 
deuterons, has been reported in the literature. 7-9 

The purpose of this paper is to construct a complete set 
of states classified according to the chain of groups 

S6'(2) 

U(6):J0(6):J X (1.4) 
S"",(3):>SO(3), 

in terms of bosonic operators and to give an additional real
ization for the states associated with this chain in terms of a 
set of coordinates introduced by Zickendraht and by Dzub
lik et al., 10 which are currently receiving a great deal of atten
tion in problems connected with a microscopic theory of 
nuclear collective motions. 11,12 By using these realizations of 
the basis states, it is possible to make calculations on the 
shape of the three-nucleon system,13 which could improve 
our understanding of the microscopic collective theories 
mentioned above. 

In the next section we derive the generators and invar
iant operators associated to the chain (1.4). We also intro
duce [cf. Eq. (2.13)] "symmetry-adapted" boson operators4 

in terms of which the permutational symmetry requirement 
is best dealt with. Using these bosons, we give in Sec. 3 ana
lytic expressions for the basis states classified according to 
(1.4). In Sec. 4 we tum our attention to the form of the states 
in coordinate space, and finally in Sec. 5 we present some 
concluding remarks about our analysis, as well as a brief 
discussion of possible applications. 

2_ GENERATORS AND INVARIANT OPERATORS 

The Jacobi vectors are identified by means of an index s 
having the values 1,2 and their spherical components by an 
index m taking the values 1,0, - 1. In terms of the six cre
ation boson operators 11sm and their Hermitian conjugate 
annihilation operators Ssm = ( - )mSs _ m we can construct 
the 36 operators 

(2.1) 
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From (1.3) we can deduce that these operators have the fol
lowing commutation relations: 

[ ,ps'm' ,ps"'m-] ,ps"'m-r:.s'r:.m' U's'm' r:.s"'r:.m- (22) 
T!?sm,7:?s"m" =T9 sm U s"Um ,,-1?s"m"Us U m ' • 

which identify them5 as generators of a unitary group in six 
dimensions, U(6). 

Taking the antisymmetric part of the U(6) generators, 
we obtain the operators 

A ~:' = cr;~:' - ( - It + m'cr;~:.-=- r;:" 
= ( _ l)m + mA ~:,-=-r;:", (2.3) 

of which the 15 independent ones are generators of an 0(6) 
subgroup ofU(6). They have the following commutation re
lations: 

[A s'm',A s-m-] = A s"'m-8s' 8m' _ A s~m', 8s'" 8m-
sm s"m" sm s" m" s m s m 

+ ( - l)m' + m-A ~':'~ m- 8ss' 8;; m' 
_ ( _ l)m + m-A ~,-;;,:."8s's' 8,;;; m-. (2.4) 

This 0(6) group admits as subgroup S&(2) XS~(3), 
whose generators are, respectively, 

I 

Jf = - i I Ai;:: = - i(1h·~2 -112·~1), (2.5a) 
m= -1 

" L m , T;::' = Ai;::' - A ~;::' - jiJf 8;::', (2.5b) 

where 

Lo = IA ~:, LI = - IA~, L_I = IA~. (2.5c) 

Notice that, from (2.3), 

T;::' = ( - 1 t + m'T = ;::, , 
and, furthermore, 

I 

I T;::=O. 
m= -1 

(2.6a) 

(2.6b) 

Thus there are only five independent T's, which together 
with the threeL 's give the eight generators of S~(3). This is 
confirmed by the commutation relations 

[
" 1 Lm,Td 

= I!( -1)'Emm,_,T;;" - (-It'Emk_m,T~, J, (2.7a) 
m' 

[T;::',Tt] = If( - l)m'Ek_m'n8~ - (-I)/Em _'n 8;;" 
n 

+ ( _ l)k+ 1+ m'E _1_ m'n8,-;; k 

- ( - 1)IEmkn 8_tj( - WLn' (2.7b) 

and 

[Lm,Lm'] = I( - l)m'Emm'_m,Lm•. (2.7c) 
m' 

At the same time the latter result shows that S~(3) 
admits the subgroups SO(3):JSO(2) whose generators are 
given by (2.5c). 

In this way we have obtained the generators of the chain 
of groups 

St'(2) 

U(6):J0(6):J X (2.8) 
S~(3)~SO(3)~SO(2) 

which was originally introduced by Dragt. 14 
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We next give the expressions for the invariant operators 
of these groups. 

The linear invariant ofU(6) is given by 

" 2 -I 
N= I I cr;~;::. (2.9) 

5= 1 m= 1 

In the realization (2.1) of the U(6) generators all the higher
order invariants are polynomials in N and therefore n"t inde
pendent of (2.9). Thus the irreps ofU(6) occurring in our 
problem are of the completely symmetric type, i.e., [N,05]. 

For 0(6) the invariant operator is given by 
1 2 - I A 2 = - I I A s'mA s~ , 
2 s.s' = 1 m,m' = 1 sm sm' 

(2.10) 

Since this 0(6) group is embedded in U(6) and we know that 
in our problem the unitary group has only symmetric irreps, 
it follows that the same thing happens for 0(6), i.e., only 
irreps of type (..1,,0,0) can arise. 15 

Drage4 has shown the following relation between the 
~adratic and cubic invariant operator~C(2), C(3) ofS~(3), 
Jf ofS&(2), and the Casimir operator A 2 of (2.10): 

A2=2C(2)_j~2, (2.11a) 

C(3)=~[!C(2)_!~2+ 1]. (2.11b) 

These results indicate that there exists a complementarity 16 
relationship between the groups S&(2) and S~(3) within the 
irrep (..1,,0,0) of 0(6). As a consequence, the irrep labels of 
S~(3) are determined by that of 0(6), ..1" and by the integer 
label of the associated irrep ofS&(2), v. The irrep ofS~(3) is 
(..1,,(..1, - v)l2), v = ..1" A, - 2, ... , - A, + 2, - ..1" where we are 
specifying the irreps by Young patterns of two rows. 

Finally, the invariant operators ofSO(3)::J SO(2) are giv
en by 

(2.12) 

In the study of the behavior of three-particle wave func
tions under permutations, a great simplification is achieved 
by the introduction of new boson operators defined in terms 
of the Jacobi bosons used previously as 

(1 = (1/.,'2)( - i111 + 112)' 13 = (1/.,'2)(i111 + 112)' 
(2.13a) 

(1+ = (1/.,'2)(i~1 + ~2)' 13+ = (1/.,'2)( - i~1 + ~2)' 
(2,13b) 

which have commutation relations of the same type as the 
Jacobi ones, i.e., 

(2.14) 

with all other commutators equal to zero. 
Special importance in the analysis of permutational 

symmetry is attached to the eigenfunctions of the operator 
~ of(2.5a), i.e., 

~ = - i(11I,~2 -112·~1) = (1.(1+ - 13'/3+. (2.15) 

It is important to remark that, besides the chain studied, the 
operator (2.15) is invariant in other chains of subgroups for 
the three-body problem. Of special interest for physical ap
plications is the two oscillator basis,4 i.e., 
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U(6)::J U(l)(3) X U(2)(3)::J 0(1)(3) X 0(Z)(3) ::J0(3), (2.16) 

where (2.15) is diagonal provided we adopt a realization for 
the generators ofthe groups and of the states involved in 
terms of the "symmetry-adapted" boson operators (2.13). 

30 ANALYTIC EXPRESSIONS FOR THE BASIS STATES 
IN TERMS OF BOSON OPERATORS 

In this section we first obtain a basis classified accord
ing to the chain of groups 

S",(21 

U(6P X (3.1) 
0(3PO(21 

This basis is more conveniently expressed in terms of the 
boson operators a, (3, of (2.13a). States belonging to an irrep 
of 0(6) can then be obtained from the previous basis by re
placing the a, (3 bosons by "traceless bosons"I? defined as 

a = a - 2(ao(3)(2N + 6)-1(3+, 
(3.2) 

b = (3 - 2(ao(3)(2N + 6)-la+. 

The states constructed in this fashion have a classifica
tion according to (2.8), but their number of quanta is equal to 
4; states with N quanta are obtained by multiplying the pre
vious states by (a o(3)IN-AI/2. We shall now implement the 
steps described above. 

The basis states in the chain (3.1), to be denoted as 
P(a,(3)IO) and having the highest weight in 0(3), satisfy the 
equations 

(aoa+)PIO) = nIPIO), (3.3a) 

((3o(3+)PIO) = nzPIO), (3.3b) 

LoPIO) = (alat + (3J] t - a_Ia::: I 

- (3-J]::: dPIO) = L PIO), (3.3c) 

-LIPIO) = (alao+ +(31(30+ 

+ aoa:+: I + (3J3 :+: I )PIO) = O. (3.3d) 

Now, because of the commutation rules (2.14) obeyed by the 
boson operators, a';; P(a,(3) 10) is equivalent to 
[ap(a,(3)1aam ] 10) and similarly for (3 ';;; therefore, the po
lynomial P(a,(3) appearing in (3.3) must satisfy the partial 
differential equations 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

The theory of invariants of algebraic forms 18 enables us 
to assert that the system of equations (3.4) possess a funda
mental set of elementary solutions, i.e., an integrity basis, 
and that every polynomial solution of (3.4) is a monomial 
formed by a product of the elementary solutions raised to 
different powers. In fact, the fundamental set we are dealing 
with is that of the seminvariants l8 of two ground algebraic 
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forms, both binary quadratic, which can be written as 

fl(a;x,y) = /ialxZ + aoXY + ,fia_lyz, (3.5a) 

fz((3;x,y) = ,fi(3IXZ + (3OXY + ~2f3-1 yZ. (3.5b) 

The semi variants of these ground forms satisfy Eqs. (3.4), 
and an integrity basis for them contains the following six 
members l8: 

(3.6) 

where the dot means scalar product and the cross, vector 
product. Furthermore, there is one, and only one, algebraic 
relation (syzygy) connecting the six elementary solutions (3.6) 
namely, 
4[(aX(3)tl z + (ad2((30(3) + ((3dz(aoa) - 2aJ]l(a°(3) = O. 

(3.7) 

Thus a general polynomial solution of Eqs. (3.4) is 

P (a (3) = (a )L + 2q - Ik -- v)l2(f3 )Ik - vl/2 - 2q - < 
AvkqL.M~ L' I I 

X [(aX(3)I]«aoa)lk-L-<I12-q 

X ((3o(3)q(ao(3)(A - k )lz. (3.8) 

In (3.8) we have set n I =1(4 f v), n2 = ~(4 - v), with 4, v 

being the eigenvalues of N, Ji; and k, q are nonnegative 
integers which serve to distinguish among independent solu
tions having the same quantum numbers 4, v, L. The identity 
(3.7) is taken into account by restricting E in (3.8) to the val-
ues 

E = 0 if k - Leven, 
(3.9) 

E = 1 if k - L odd. 

We then come to the conclusion that a complete set of 
states classified according to the chain (3.1) and with highest 
weight in 0(3) is 

PAvkqL.M~L(am,(3m)IO> (3.10) 

with P given by (3.8), (3.9). Note that k, q are not good quan
tum numbers, and thus states differing only in these labels 
are not orthogonal. 

From the properties of the traceless bosons 17 it is known 
that if we make in (3.10) the replacements a-a, (3-b, the 
resulting state belongs to the irrep (4,0,0) of O( 6) and still 
maintains the quantum numbers associated with the orthog
onal subgroups in (3.1). From the discussion following Eq. 
(2.11) the state also carries the irrep label ofS%' (3); hence it is 
classified according to (2.8). In addition, we note that the 
irrep label of 0(6) coincides with the number of quanta of the 
state. 

Owing to the fact that 

aob = 4(ao(3)(2N + 6)-I(ao(3)(2N + 8)-I(a+o(3+), (3.11) 

one can see that the introduction of traceless bosons in (3.10) 
leads to nonvanishing results only when k = 4, the 0(6) basis 
states are thus given by 

14vqLL) = PAvk~..lqLL(a,b)IO) 
= (a I)L + 2q - 1,1. - vi/2(b l)IA - v)l2 - 2q - <[ (axb)l] < 

X (aoa)IA - L - <)12 - Q(bob)qIO). (3.12) 

We now express the states (3.12) that carry the irrep (4 ) 
of 0(6) in terms of the symmetry adapted bosons through Eq. 
(3.2). In the Appendix we show that 
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[(axblt] E(aoa)IA - L - E)/Z - q(bob)qIO) 

= [(aX(3)d E I C,(a·a)IA-L-E)/Z-q-, 

x ((3o(3)q - '(ao(3f'IO) (3.13) 

with 

(- 1)'((,1. - L + €)l2 - r)! C,= --~--~----~~----~--
r!{{A. - L - €)/2 - q - r)!(q - r)! 

(3.14) 

Thus the states (3.12) can be written as follows: 

lA.vqLL) = (al)L + Zq - IA - V)/Z(bdA - v)/Z - Zq - "[(aX(3)I]E 

X I C,(aoa)IA - L - E)/Z - q - '((3o(3)q - '(ao(3)Z'IO). 
, 

(3.15) 

In the Appendix we make the application of the powers of 
the traceless bosons ai' b l on the polynomial in am' 13m 
standing on the right of them in (3.15). After doing this, we 
get 

with 

".T 

C ~qL = __ ...:..( _-_2....:.)_"_+....:.T(A._+'-----I_-_u_-_7....:.)_! _ 
((A. - L - €)l2 - q - u)!(q - 7)! 

X I ( - 1)'((A. - L + €)/2 - r)! 
, 2z'r!(u - r)!(7 - r)! 

X [(A - L + € + 1 - 2r)!((A - v)l2 

- 2q - € - U + r)!(L - (A - v)l2 

+ 2q - 7 + r)!] - I. (3.17) 

These states can be generalized to arbitrary values of 
M =j:.L and can also be trivially extended to form a basis for 
the irrep [N,O] ofU(6) by writing them as 

".T 

X ['2'?I n+ H "-T(a)X'2'?IL- n-a+T((3)]t 
X (aoa)IA - L - E)/Z - q - "((3o(3)q - T 

x(a°(3)IN-A)/2+"+TIO), (3.18) 

where C!~qL is given in (3.17), and 

n = L - (A. - v)l2 + 2q. (3.19) 

In (3.18) '2'?I/m is a solid harmonic, and we use the notation 
[h, xg/

2 
] ~ for vector coupling of 0(3) irreducible tensors. 

Setting M = Land N = A in (3.18), we recover the expres
sion (3.16), thus proving the claim made above. 

It should be noted that (3.18) is a complete but nonorth
ogonal basis since states which differ only in the index q are 
non orthogonal. Furthermore, the states are not normalized. 

In the following section we discuss the realization of 
these basis states and those of the chain (2.16) in terms of the 
system of coordinates of Zickendraht and Dzublik et al. 10 
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4. EXPRESSION OF BASIS STATES IN TERMS OF 
COORDINATES 

The basis states discussed in the last section are six
dimensional harmonic oscillator functions, which in terms 
of coordinates can be given as a product of an hyperradial 
function RNA /P) with pZ = xi + x~, times an angular func
tion corresponding to a six-dimensional spherical harmonic 
YAvqLM(J1), where J1 is a set of five angles to be defined later. 

The hyperradial function RNA /P) is known from the 
quantum mechanical analysis of the harmonic oscillator in 
hyperspherical coordinates l9 and is given by 

R _ [ 2 [(N - A. )l2]! ] liZ 

NA/P) - r((N + L + 6)12) 

X e - p' /2 L A + 2 /pZ)PA IN-A)/Z , (4.1) 

where L: is a Laguerre polynomial ofthe indicated indices. 
The productpAYAVqLM(J1) is a homogeneous polyno

mial of degree A in XI' X2 and it is the six-dimensional analog 
of the usual three-dimensional solid harmonic. These poly
nomials can be obtained immediately from our results in Sec. 
3 by means of a theorem due to Dragt,14 according to which 
if in the basis states with N = A we replace 1) r--+XI' 1)r-+X2 

and suppress the vacuum state, 14 the resulting expression is a 
solid harmonic. By this procedure we deduce from (3.18) 

PAY (J1) = r?/22 -..tI2 " CAvqL(Z oz )q - T AvqLM ~ "T Z 2 
".T 

X (zlozdA - L - E)/2 - q - "(zlozz)"+ T 

where 

X ['2'?I n + H ,,- T(zdX '2'?1 L _ n- ,,+ T(Z2)]t, 
(4.2) 

Zl = (l/y'l)( - iXI + Xz), Z2 = (l/y'l)(ixi + Xz), (4.3) 

and the coefficient C is given by (3.17). 
We have not yet introduced any angles in (4.2), and in 

fact there are several ways of doing this. In the following we 
discuss the introduction of a set of angular coordinates 
which, as mentioned in the first section, are currently of in
terest in relation to a microscopic theory of nuclear collec
tive motions. 10-13 These coordinates, {f I' {f2' {f3' a, and y, are 
defined by 

2 

x: = I PkD ~;(tJj)D ~~s(a), s = 1,2, i = 1,2,3, (4.4a) 
k~1 

PI =P cos y, P2 =P sin y, 0.;;; y.;;;1T/2, (4.4b) 

where D 13(tJI,{f2,{f3) is a 3 X 3 rotation matrix, specifying, 
through the Euler angles {fl' {f2' {f3' the relative orientation 
of an intrinsic frame with respect to the Lab frame and 
D 12(a) is the matrix 

sin a) 
cos a 

(4.5) 

From the orthogonality of the rotation matrices D 13 

1 
and D 2 we can deduce from (4.4a) that 

(4.6) 
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As the functions (4.2) are bases for the irreps of SO(3) and 
S&(2), from angular momentum theory we can write 

Y,hqLM(ZI,Z2) = eiva I DtK*{tJ )YAvqLK(ZI,z2)' (4.7) 
K 

where ZI> Z2 are the vectors defined in (4.3) but in terms of 
Xs> s = 1,2. 

From (4.6) and (4.3) it is easy to see that the spherical 
components of the vectors zs' S = 1,2, are 

ZI. ± I = !ip( ± cos r - sin r), 
Z2. ± I = !ip( + cos r - sin r), (4.8) 

Zs.o = 0, S = 1,2, 

while the scalar factors appearing in (4.2) can be expressed as 

ZI"Zt = - 1p2 cos 2r, 

Z2"Z2 = -! p2 cos 2r, (4.9) 

ZI"Z2 = ip2. 
On the other hand, for the solid harmonics we have 

'?Y (z) = [ (21 + 1)(1 + m)!(/- m)! ]1/2 
1m s 2141T 

(Z )11 + m)l2(Z )(1- m)/2 

X ((~I+ m)12)!(('I-~ m)l2)! ' (4.10) 

with I; = II - n - E, where n was given in (3.19), and 

(2)217-1,(,1, + 1 + I; - 20')! 
B 1 = --------------

a, (q + I; _ O')!((,1, - L - E)l2 - q - O')! 

where I - m must be even as the polynomial is zero other
wise. 

Expressing all factors on the right-hand side of (4.7) in 
terms of the vectorszs by means of(4.9) and (4.10), we finally 
arrive at 
Y AvqLM (tJ t,tJ2,tJ 3,a,r) 

= eiva I'DtK*{tJltJ2tJ3) I G~1L(rlf;'VqL(cos 2r), 
K I, 

(4.11) 
where the prime means that the summation over K goes 
through two-unit steps in the interval [ - L + E, L - E) and 

G;'1L(r) = b I (/Im l'/2m2ILK )SI,m, (r)SI2m, ( - r) 
m l .m2 

(4.12a) 
with 12 = L + € -II, 

b = [( - 1)1'/41T]~(2/1 + 1)(2/2 + 1)12/,+1" 

Sim (r) = ( - 1)\1 + m)/2 ~(I + m)!(/- m)l 
21((1 + m)/2)!((/- m)/2)! 

X (cos r - sin r)(I + m)/2( cos r + sin r)11 - m)12, 
(4. 12b) 

f;,vqL(COS 2r) = I Ball (cos 2r)IA - L - '1/2 + I; - 217,(4.13) 
17 

X I (( - ,1,+ L - E - 1)/2), 

t t !(O' - I; - t )!(n + I; - 0' + t )!(O' - t )!(L - n - € - 0' + t)! 
(4.14) 

Notice that we have omitted an irrelevant multiplica
tive factor in (4.11). 

Thus, putting together (4.1) and (4.11), we get a com
plete set of basis states for three particles in terms of the 
Zickendraht-Dzublik coordinates. 

Now we turn our attention to the chain (2.16), whose 
basis states are a vector coupled product of harmonic oscilla
tor states, I i.e., 

Fn,l,n,I,LM(XI,X2) = ::Yt n,l, (rl)~ n21, (r2 ) 

Xrl-I'r2-12 ['?Y dxt\X '?Y I, (x2)] t. (4.15) 

Taking linear combinations of the states (4.15), it is pos

sible to obtain eigenfunctions of the Casimir operator 1 of 
S&(2), namely,4 

.JI<P = v<P, v = 2nt + II - 2n2 -/2' 

the explicit form of <P being 
J' n' + I' 

<Pn,l,n,I,LM(XI,X2 ) = I 1 I( - 1) I I 

nilj 

n2l2 

(4. 16a) 

(4. 16b) 

where the symbol ( I ) represents a standard transformation 
bracket4 for harmonic oscillator functions. 
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In this case instead of (4.4a) it is more convenient to 
adopt the following alternative as definition of "collective" 
coordinates: 

3 

x~ = I Pk_ID ~~(tJj)D ~2_I,S(a). (4.17) 
k=2 

Using again the orthogonality of both rotation matrices D I, 

and D I>, and the definition (4.6), we obtain from (4.17) 
3 

x~ = IPk-IOiJh-l.s' 
k=2 

i.e., 

(4.18) 

The states (4.16) are bases for irreps ofSO(3), SO(2), and 
S&(2); therefore, we have the relation 

Using (4.10) and 

YI,m2 (0,0) = [(2/2 + 1)1 41T] 1/2om2.0 

in (4.15), we can write 

F 'I' 'I'LK(X1,X2) = (- i)I;~n'I,V'Jtl~ n'I,V'J2)A ;-'~" 
nl ln2 2 1 I 2 2 I 2 
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with 

A LK 
1'1'= I 2 

<1;/~KOILK)![l + (_ )li+
K

] 

41d i((/; + K )/2)!((/; - K )/2)! 

X [(2/; + 1)(2/~ + 1)(1; +K)!(/; _K)!]1I2. 
(4.21) 

Introducing (4.20) in (4. 16b) and then this in (4.19), we obtain 
the two-oscillator wave functions <P expressed in terms ofZ
D coordinates, namely, 

=eiva L (-1)ni+li<n;l;n~/iLlnl/lni2L) 
"Ill 
nil i 

X ~ A~'~'~n'I,(Ptl~n'l'(P2)DtK·(t?i)' (4.22) ~ t 2 t I 22 

where v is given in (4. 16a) and A in (4.21). 

5. DISCUSSION 

We have constructed explicit realizations of the basis 
states classified according to the chain of groups (1.4) and 
(2.16) in terms of a set of coordinates which is especially 
suited to extract collective features from the dynamics of a 
system of particles. II Our result (4.11) for the states classified 
by 0(6) generalize the partial results known previouslyl4 for 
the cases L = 0 and L = 1. 

In regard to the analysis of Sec. 3 that led to the states 
(3.16) we want to stress the fact that the presence of the 
groups 0(6) and S&(2) in the classification scheme brings 
forth automatically the group S ~ (3) owing to the known 14,16 
complementarity ofS&(2)XS~(3) within the symmetric ir
rep (A.,O,O) of 0(6). One can avail of this property to construct 
basis states classified by a subgroup G ofS~(3), other than 
SOt 3) discussed here, in the chain 

S~(2) S&(2) 

0(6P X :J X (5.1) 
S"&(3) G 

by following the same procedure of the present paper to in
troduce 0(6), i.e., use of the traceless bosons (3.2). In fact, 
such a construction has been carried out in Ref. 20 for the 
case when G = SA(3), the group of diagonal S~(3) matrices, 
giving the nonorthogonal Weyl basis ofS~(3) expressed in 
terms of coordinates. 

A similar analysis could also be done for 
G = SU(2)XU(1), which eventually should give an ortho
normal basis in terms of coordinates classified according to 

0(6PS&(2)XS~(3PU(1)XSU(2PSO(2). (5.2) 

In this case, however, there is no need to actually do the 
analysis, since the corresponding results were given long 
time ago by Beg and Ruegg,21 who obtained six-dimensional 
solid harmonics, i.e., bases for symmetric irreps of 0(6), with 
the classification (5.2). It is a consequence of Dragt's 
theorem that the results of Ref. 21 should be the same as 
those obtained by an analysis along the sequence U(6):JS& 
(2) X G---+traceless bosons---+ordinary bosons---+coordinates, 
similar to that of our Secs. 3 and 4. We want to remark that, 
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while for the canonical scheme (5.2) an analytical approach 
turned out to be feasible, for the noncanonical chains dis
cussed both in this paper and in Ref. 20 the method of trace
less bosons is indispensable in order to reach at general 
closed analytic expressions for the 0(6) basis states. 

The present results can find its main aplication in the 
theoretical analysis of three-body problems. Although sever
al other bases were previously known,4-6 we would like to 
point out that often a particular basis can offer an advantage 
over the others for the study of a specific aspect of the three
body problem. For instance, it is frequently claimed22 that a 
calculation of the binding energy of the three-nucleon sys
tem in a hyperspherical basis, consisting of a hyperradial 
function times a six-dimensional spherical harmonic, con
verges faster than a similar calculation in a two-oscillator 
basis. The present analysis provides us with a set of hyper
spherical harmonics, which after multiplication by a suitable 
hyperradial part could be used as basis functions for a vari
ational calculation of the energy of the ground state of the 
three-nucleon system. These functions provide us with the 
means to study in a simple way the shape of the three-body 
system. In particular, they determine the collective probabil
ity density and all the relevant quantities associated with the 
quadrupole tensor of the mass distribution of the system. 
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APPENDIX: DERIVATION OF EQS. (3.13) AND (3.16) 

In the first part of this appendix we present some details 
of the analysis leading to Eq. (3.13). The state on the left
hand side of (3.13) has degree A. - L + E in boson operators, 
has angular momentum E, is an eigenstate of.ff with eigen
value A. - L - E - 4q, and, besides, is a part of a basis for an 
irrep of 0(6); thus it can be written as 

PE 10) = ([aX(3] Ir L Cn,n,r(a'a)n'((3'(3)"'(a'(3frIO), 

(AI) 

which has the required angular momentum but still has to 
satisfy 

(a·(3+)PE 10) = (A. - L + E)P
E 

10), (A2) 

.ffPE 10) = (A. - L - E - 4q)Pe 10), (A3) 

(a+·(3+)Pe 10) = O. (A4) 

Equations (A2) and (A3) determine nl ,n2, namely, 

n l = ~(A. - L - E) - q - r, n2 = q - r, (A5) 

and we are left in (AI) with a single summation over r with 
coefficients Cr' Equation (A4) then gives a recurrence rela
tion for Cr which enables one to determine these coefficients, 
apart from a mUltiplicative factor. When dealing with Eq. 
(A4), we recall that a: PE 10) = ( - 1nape/aa _ m)IO), and 
similarly for f3 : ; thus it is a matter of applying on P E the 
Laplacian operator 
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As V2[aXf311 = 0, we deduce from (AI) that 

where we have introduced the notation 

Mn"n"n, =(aoat'(f3of3r'(aof3t', 
Since 

V 2M z =4n n M n.,ff'2' r 1 2 n. - l,n 2 - 1.2r+ I 

(A6) 

(A7) 

(A8) 

+ 4r(n, + nz + 1 + r)Mn"n,,2r_ I' (A9) 

we have, using (AS) and making an appropriate shift of dum
my index, 

[PI +2(a'f3)(2N+6)-,_J_]/([aXf3],)£Mn n 2r Ja_
1 

,,2, 

l!n,!(2n, + 2nz + 4r + 1 + 2E)! 

{( 
J. - L - E ) 

X ~ 2 - q - r (q - r)Cr + (r + 1) 

X( J.-~+E -r)Cr + I }Mn ,_I,n,_1.2r+I' (AlO) 

Equation (A4) will be satisfied provided we choose Cr such 
that the curly bracket in (AlO) is equal to zero. The solution 
to this recurrence relation is the Cr given in (3.14). Having 
thus proved Eq. (3.13), we turn now to the derivation of Eq. 
(3.16). 

In this case we have to apply on P £ powers of the differ-
entials operators 

[a l + 2(aof3)(2N + 6)-1 _J_], (All) ap_, 

[PI + 2(aof3)(2N + 6)-1 _a_]. (AI2) 
Ja_ 1 

By the method of induction we can prove that 

(2n I + 2n2 + 2r + 1 + 2E)!(2n I + 2nz + 4r + 1 + 2E + I)! 

X ~ { (- 2)'(2n, + 2nz + 2r + 1 + 2E + 1- s)! ([a Il] )£(a )s(j3 )'-SM }. 
L 1(/- )I( _)1 XI-" I I I n,-s,n,.2r+s 
s~o s. s.nl s. 

(AB) 

By a similar procedure, applying powers of (AI2) on the previous polynomial, we have 

[a l + 2(aof3)(2N + 6)-1 J:_
I 

],,([aX 13] d£(ads(j3d /- sMn, -s.n"Zr+ s 

{'!n z!(2n , + 2n2 + 4r + 2E + 1 + /)! I' ( - 2)' 

(2n I + 2nz + 2r - s + 2E + 1 + I )!(2n I + 2n2 + 4r + 2E + 1 + I + I')! ,~o t l(/' - t )!(nz - t )! 

X(2nl + 2nz + 2r - s + 2E + 1 + {+ I' - t)!([aXf3] d£(ad/ 
+,- '(j3d /

-s+ 'Mn , -s.n, _ ,.2r+s-t. ,. (AI4) 

Equation (3.16) is obtained by introducing the results 
given in (AB), (A14) into Eq. (3.15), then making a change to 
new dummy indexes o==r + s, T = r + t, and giving to n l ,n2 

the values indicated in (AS) and to I, I' the values I = (J. - v)l 
2 - 2q - E, I' = L + 2q - (J. - v)l2. 
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Relations are found between scattering data and the spectrum for the two-dimensional 
Schrodinger operator Ll + V (x), where V is a local noncentral potential. In particular, a two
dimensional version of the Levinson theorem is obtained; this theorem gives the number of bound 
states in terms of the change in phase of the determinant of the scattering operator. 

PACS numbers: 03.6S.Nk 

INTRODUCTION 

In this paper we investigate the relation between scat
tering data and the spectrum for the two-dimensional Schro
dinger operator Ll + V(x), where Vis a local noncentral po
tential. The goal is to prove a generalized Levinson theorem, 
which gives a formula for the number of bound states in 
terms of the change in phase of the determinant of the scat
tering operator. This theorem, important to inverse scatter
ing because it allows determination of the number of bound 
states from the scattering data, is somewhat different from 
its three-dimensional counterpart l and has a proof that is 
substantially more intricate. 

In Sec. I we study the Lippmann-Schwinger equation 
corresponding to the two-dimensional Schrodinger equa
tion, and we extract the scattering amplitude from the large 
x behavior of the wave function (see the Appendix). Al
though the Lippmann-Schwinger Green's function has a 
logarithmic singularity at zero energy, this results in an op
erator singularity that is only of rank one; a few facts are 
proved about the well-behaved remainder. 

In Sec. 2 we consider the exceptional points and their 
relation to the Fredholm determinant. Because the two- and 
three-dimensional proofs are essentially the same, the bulk 
of this section is a short summary of the relevant results of 
Ref. 1. 

Section 3 contains the Levinson theorem and its proof, 
which is based on spectral theory together with the argu
ment principle and facts from Secs. 1 and 2. This version 
applies only to the case in which zero-energy exceptional 
points are absent; the case in which they are present is still 
under i~vestigation. 

1. PRELIMINARIES 

Two-particle scattering in the center of mass system is 
governed by the time-independent Schrodinger equation 

- Llt/l(k,x) + V(x)t/I(k,x) = k 2t/1(k,x). 

Here xER 2, the potential V (x) is real valued, and k is a posi
tive scalar. 

aJ This is based on the author's Ph.D. thesis, "Quantum Mechanical Scatter
ing and Inverse Scattering in Two Dimensions," Indiana University, 1982. 

Scattering solutions are defined by the Lippmann
Schwinger equation 

t/I(k,O,x) = exp(ikO.x) + f G(k,lx - yl)V(y)t/I(k,O,y)d 2y, 

(1.1) 

where 0 denotes a unit vector in R 2 and the function G is a 
fundamental solution of Ll + k 2. We take G to be 

G(k,r) = - (i/4)H~)(kr), 

where H o is the zero-order Hankel function and r = Ixl. 
In order to apply Fredholm theory, we multiply the 

Lippmann-Schwinger equation by I V(x)1 1I2 and make the 
following definitions: 

5 (k,e,x) = I V(x)11/2t/1(k,e,x), 

SO(k,e,x) = I V(X)11/2 exp(ikO·x), 

VI/2(y) = V(Y)/I V(y)11/2, 

K{klf(x) = fW(XlII/2G(k,IX - yllVI/2(ylf(y)d 2y. 

With this notation, the Lippmann-Schwinger equation be
comes 

5 (k,O,x) = 5°(k,O,x) + K (k)5 (k,e,x). (1.2l 

For k bounded away from zero, we prove the following 
result concerning the operator K (k ): 

Proposition 1-1: Suppose VEL 2 with HI V(x)V(y)llx 
- yl-I d 2X d 2y = M < 00. Then for each ko > 0, the esti

mate 11K (k lIIH.S. <ck -1/2 holds for k> ko, where c depends 
only on ko and on V. 

Proof We apply the definition2 of the Hilbert-Schmidt 
norm II IIH.S. to the operator K defined above; we write 
11K (k lIl~s. = II + 12, where II and 12 are pieces correspond
ing to regions of integration k Ix - yl < 1 and k Ix - yl > 1, 
respectively. Well-known estimates3 on the behavior of the 
Hankel function give us the following estimates: 

II<c f L-Y,d _,!V(x)V(y)lllogklx-yWd2xd2y, 

(1.3) 

I 2<c f L_YI>k_,!V(X)V(y)l(kIX-Yll-ld2Xd2y. 

In (1.3), we let z = x - y, interchange the order ofinte-
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gration, and apply the Schwarz inequality to obtain 

II<c I Ilogk IzW I lV(z+y)v(y)1 d 2yd 2z 
k -I 

<cllVlli f i IlogkrI 2dOrdr<ck- 2. Jo Sl 

12 is bounded by 11k XM, which was defined in the 
hypotheses. • 

Remark 1-2: A Sobolev inequality4 implies finiteness of 
the integral 

I I lV(x)V(y)l/lx-Yld 2xd 2y 

provided VEL 4/3. However, if Vbelongs to L InL 2, it then 
belongs to L 4/3. Henceforth we will usually assume that V 
belongs to L InL Z because this assumption allows us to apply 
Fredholm theory to (1.2); we obtain a unique solution 
S (k,O,x) provided the operator K does not have the eigenval
ue 1. Note that for k large enough, theoperatornormofK(k) 
is less than 1, which certainly implies that (1.2) is uniquely 
solvable (by iteration, in fact). 

Values of k for which K (k) has eigenvalue 1 are called 
exceptional points or exceptional values. It will be shown in 
Sec. 2 that there are no nonzero real exceptional points. For 
nonexceptional values of k, we have the following: 

Proposition 1-3: Let VEL ZwithSI V(x)llxI 4 dZx < 00 • Let 
k> 0, and let S = IV Il/zt/! solve (1.2). Then 

t/!(k,O,x) = exp(ikO.x) + exp( - 31TiI4)(81T)-tlZA (k,x,O) 

Xexp(ik Ixl)(k Ixll- tlZ + h (k,O,x), 

where 

and 

x=xllxl, 

A (k,O,O') = I exp( - ikO·x)V (x)t/!(k,O ',x) d Zx, (1.4) 

h (k,O,x)EL Z(x) uniformly in O. 

Proof The proof is given in the Appendix. • 
Remark: IfVisinL 2 withSI V(x)llxI 4 dZx < 00, then Vis 

also in L I. 

The last term can only be increased by inserting k Ix - yl in 
the integrand; this gives us 

ilL (k )IIH.s. <eM + ell VIII + ck IlZllog k I 

x( I I lV(x)v(y)IIx - Yld 2x d 2y)1I2 .• 

Proposition 1-5: Suppose Vbelongs to L 2 with 
SlxllV(x)ldzx< 00. Then we have 

(Vtlz,[I - L (k)rll VII/2) = ao + alk, 

where 
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The quantity A (k,O,O ') is called the scattering ampli
tude; it essentially gives us the large x behavior of the wave 
function. 

For nonexceptional k (i.e., for k > 0), application of the 
Schwarz inequality to (1.4) shows us that for VEL InL 2, the 
scattering amplitude is bounded: 

IA (k,O,O ')1 < II VII tlis (k 1I1z<II VIIi 11(1 - K )-111· 

We let the scattering amplitude act on L 2(S I) via 

(A (k if)(O) = i A (k,O ',0 if(O ')dO'. 
Sl 

For each k, the operator A (k ) is then bounded and linear on 
L 2(S I). We also define the scattering operator or S-matrix 
S (k ) on L 2(S I) by 

S (k) = I - i(41T)-I(sgn k)A (k). 

For the Levinson theorem, we will need to know about 
the small-k behavior of K (k ). For this we use the small-argu
ment behavior of the Hankel function to rewrite K in terms 
of the operators Land P defined as follows: 

L (k if(x) = - (iI4)I I V(x)11/2(Hbl)(k Ix - yl) - (2il1T)log k) 

X Vldyif(y)dZy, (1.5) 

Pf(x) = lV(x)11/2(21T)-I(VtlzJ), (1.6) 

where ( , ) denotes theL Z(R Z)innerproduct. With this nota
tion, we can write K (k ) as 

K (k if = (log k )Pf + L (k If 
We note that Pis of rank 1 andL (k) is well behavedatk = O. 

Lemma 1-4: Let VbelongtoL I withSI V(x)llxld 2X < 00 

and SS I V(x)V(y)llloglx - yl12 d 2x d~ = M < oo,andletko 
be positive. Then the operator L (k) defined by (1.5) is Hil
bert-Schmidt, and for k < ko the Hilbert-Schmidt norm sat
isfies 

ilL (k )IIH.S. <c, 

where c depends on V and ko, but not on k. 
Proof We apply the definition of the Hilbert-Schmidt 

norm to (1.5) and use standard estimates for H~): 

ao = (Vtl2,[I - L (0)] -II V 11/2 ), 

a l = (V1/2,(d Idk )[1 - L (k )]-Ilk = 0 IV 1112) + 8(k), 

and 8-0 as k-o. (Note that only ao is independent of k.) 
Proof This follows from the definition of derivative; 

differentiability of (I - L (k ))-1 with respect to k can be 
proved as follows. First one shows that L is itself differentia
blewith ilL '(k}II uniformlyboundednearO. (This can be done 
by considering difference quotients and estimating.) It is 
then a straightforward generalization of the proof in Ref. 2, 
p. 201 to show that (I - L )-1 is also differentiable. • 
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Remark: If V satisfies the hypotheses of Proposition 
1-5, then V also satisfies the hypotheses of Proposition 1-4. 

2. EXCEPTIONAL POINTS AND THE FREDHOLM 
DETERMINANT 

We now allow k to take on complex values; much of the 
foregoing theory is still valid for complex k. For example, we 
note that the operator GV is Hilbert-Schmidt in the open 
upper half k plane. 

Proposition 2-1: Let VEL 2. Then for 1m k> o the opera
tor G(k )V given by G(k)Vf(x) = - (iI4)IHo(k Ix - yl) 
X V(ylf(y)d 2y is Hilbert-Schmidt, and IIG (k )VIIH.S. 
<elk I-I. 

Proof We apply the definition of the Hilbert-Schmidt 
norm to GV: 

The change of variables z = x - y in the inner x integral 
allows us to carry out the y integration to obtain 

IIGVII~s = ell VII~ I IHo(k Iz l)2d 2z 

=ellVll~lkl-2 I IHo(ZllkllklWd2ZI 

<elk 1- 2
• • 

We recall from Sec. 1 that exceptional points are points 
in the complex k plane for which I - K (k ) is not invertible. 
Invertibility can be tested by calculating the modified Fred
holm determinant5 det2; examination of the Plemelj-Smith
ies formulas6 shows that for 1m k> 0, 

det2(I - K (k)) = det2(I - GV). 

We denote by D (k) either of the above determinants. 
By the analytic Fredholm theorem,7 D (k ) is therefore 

analytic in the upper half plane and approaches 1 as Ik I be
comes infinite. 

Analysis of the exceptional points now proceeds as in 
Ref. 1. Zeros of D (k ) in the upper half plane correspond to 
negative-energy bound states. The same hypotheses we have 
used in Lemma 1-4 in fact imply that these bound states are 
finite in number. 8

•
9 Furthermore, the degeneracy of a bound 

state eigenspace is equal to the multiplicity of the corre
sponding zero of D (k ). 

Real zeros of D (k), on the other hand, are of two types. 
Real exceptional points of the first kind correspond to posi
tive-energy bound states, whose existence we rule out with 
the assumption V (x) = 0 (Ix I-I) at infinity. 10 Nonzero ex
ceptional points of the second kind can also be ruled out; a 
two-dimensional version of the proof in Ref. 1 uses the as
sumptions VEL IIIL 2 and II V(x)llxI4 d 2X < OC). The proof 
rests on the unitarity of the scattering operator, a fact that 
was proved by Agmon, II and on the proposition proved in 
the Appendix concerning exceptional points. 

The upshot of this analysis is that we can apply the 
argument principle to D (k ) in order to calculate the number 
of bound states. Moreover, we may integrate along the real 
axis without trepidation provided we avoid the point k = O. 
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3. THE LEVINSON THEOREM 

We now know how D (k ) is related to the number of 
bound states; next we need a relation between D (k ) and 
det S(k). 

Proposition 3-1: Let VEL IIIL 2 with no positive-energy 
bound states. 12 Then for positive k, 

D (- k) = D(k )det S(k) eXP((i!2)I V(x) d 2x). 

Proof To prove such a relation we must find a factoriza
tion ofthe determinant. To do this, we begin by factoring 
I-K: 

D ( - k ) = det2(I - K ( - k )) 

= det2 !(I - K (k )) 

X[I - (I -K(k))-I(K( - k) -K(k))]J. (3.1) 

We recall5 that the modified Fredholm determinant satisfies 
the following identity: 

det2((I - A )(I - B )) = det2(I - A )det(I - B ) 

Xexp(Tr(I -A )B), (3.2) 

where we have assumed B to be a trace class operator. 
Since we shall show that B = (I - K (k ))-l(K ( - k) 

- K (k)) does have finite trace, Eq. (3.1) becomes 

D ( - k) = D (k )det(I - B )exp[Tr(I - K (k))B]. (3.3) 

We consider the last factor first. The product 
(I - K (k ))B is of course equal to K ( - k ) - K (k ), which in 
tum is given by 

-lim [1V1 1/2( -...1 - k 2 + iE)-1 
€--+O 

- ( - ...1 - k 2 - iE) - I ] VI / 2• 

These limits exist not only in the uniform operator topology 
ofB (L 2,s ,H2

, - S ),asresultsof Agmon 13 imply, but also in the 
Hilbert-Schmidt norm on L 2. Stone's formula, 14 moreover, 
tells us 

lim (21Ti)-1 ib 

(( _ ...1 _ k 12 - iE)-1 
€--+O k 

- ( - ...1 - k 12 + iE)-1)2k 1 dk' 

where P denotes the spectral projection corresponding to the 
self-adjoint operator - ...1 with domain H 2. We use Fourier 
inversion to represent the spectral projection as follows. For 
fEll 2 we write 

(P(k 2 .b 2()(X) 

= (21T)-2 ib i exp(ix.k '()) 
k s' 

xI exp( - ik '(}'ylf(y)d 2yd8 k' dk '. 

We eliminate the k 'integral by mUltiplying by lI(b - k ) and 
letting b approach k. Providing that the E and b limits can be 
interchanged, we have 
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(1Ti)~I(K( - k) - K(k )If(x) 

= (21T)~21V(X)11/2L, 5exP(ikB.(X - y))V(ylf(y)d 2y dB. 

(3.4) 

Since the integral on the right converges absolutely, we may 
interchange the order of integration, which makes it easy to 
compute the trace: 

Tr(K( - k) -K(k)) = (i/2)5 V(x)d 2x. 

Thus the last factor of (3.3) is exp((i/2)J V (x)d 2X). 
To complete our discussion of the last factor of (3.2), it 

remains to show the legitimacy of interchanging the above b 
and € limits. Our task is to show that the following expres
sion goes to 0 as b approaches k: 

I I lim I V11/2(b - k )~Ilb (( - Ll - k,2 + i€)~1 - (- Ll - k'2 - i€)~1)2k' dk' V 
n 1/2 '-v k 

- 2k lim I V11/2(( - Ll - k 2 + i€)~1 - (-Ll - k 2 - i€)~I)Vl/211 . 
• -..0 H.S. 

We consider only the + € term, the - € term being similar. 

II ~~IV 11/2(b - k)~ I lb ( - Ll - k,2 + i€)~ 12k' dk' Vl/ 2 - 2k ~~IV IIIZ( - Ll - k 2 + i€)~ 1 VI/211 

= ~~ (b - k )~I f 112k'1V1 1/2( - Ll - k'2 + i€)~IVI/Z - 2k IVII/Z( - Ll - k 2 + i€)Vl/zlldk' 

<lim 2 max IIIVII/Z( - Ll - k,2 + i€)~1 Vl/2 - 1V11/2( - Ll - k 2 + i€)~1 Vl/zil 
.-..0 (k,bl 

----+0. 

Next we consider the second factor of (3.3), det(I - B). We use Eq. (3.4) to represent B: 

BJ(x) = (I - K)-1(i/41T)IV(x)II/Z 5 L, exp(ikB.(x - y))dB VI/2(ylf(y)d Zy 

= (i/41T) 55 I V(x)11/Zif!(k,B,x) exp( - ikB·y)dfJ Vl/2(ylf(y)d Zy. 

We shall compare this operator to the operator ( - i/41T)A (k) defined by 

-(i/41T)(AJ)(B) = - _1_' i JexP(-ikB"X)V(X)if!(k,B,x)dZxJ(B')dB', 
41T s' 

Although these operators act on different spaces, it turns out 
that they have the same trace. In fact, for every integer m, we 
have Tr Am = Tr Dm , where D = - 41TiB. 

Use ofthe Plemelj-Smithies formulas l5 for the Fred
holm determinant now allows us to conclude that det(I - B ) 
= det(I - (i/41T)A ). Thus for positive k, (3.3) is 

D( - k) = D(k )detS(k )exP((i/2)5 V(X)dZx). • 

Remark: Proposition 3-1 uses only Definition (1.4) of 
the scattering amplitude; the relation between if! and A stated 
in Proposition 1-3 is not needed. 

We now turn to the Levinson theorem, which allows us 
to determine from scattering data the number of bound 
states. 

Theorem 3·2 (The Levinson Theorem): Let VEL 2 with 
Jlxl 4

1 V(x)ld 2X < 00. Assume that V has no positive-energy 
bound states, 12 and assume that (I - L (0)) -I exists. Denote 
by N the number of negative-energy bound states of 
- Ll + V (x). Then N satisfies 

21TiN = log det S (0) - log det S ( 00 ) - (il2) f V (x)d 2X. 

(3.5) 
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Proof We apply the argument principle toD (k ):weinte
grate the logarithmic derivative along a contour C (€,R ) 
which extends along the real axis from - R to + R, avoid
ing the origin by a small semicircle of radius € in the upper 
half plane, and which closes in the upper half plane with a 
large semicircle of radius R. 

Because in the large Ik I limit D (k) approaches I and 
thus has unchanging argument, the integral over the large 
semicircle approaches 0 for large R. In the integral from 
- R to - €, we use the preceding proposition: 

21TiN = ( d log D (k ) 
JC(.,o:>l 

= ( dlOgD(k)+1°O dlogD(k) 
J~~ • 
-1'" d log det S (k ) - 1'" d log D (k ) 

-100 

d((i/2)f V(X)d
2
x) 

= ( d log D(k) + log det S(€) -log det S( 00). 

In<l 
We must now evaluate the r(€) integral. To do this we 
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recall from Sec. 1 that K = L + P log k. We also use the 
Fredholm determinant multiplication formula (3.2) that ap
peared in the proof of the previous proposition: 

D(k) = det2(I - K(k)) 

= det2! (I - L (k))[I - (I - L (k ))-IPlog k]) 

= det2(I - L )det(I - (I - L ) - I P log k ) 

xexp(Tr Plog k). (3.6) 

f d log D (k ) = f d log det2(I - L (k )) Jl1£) JyjE) 

The last factor of (3.6) is easily calculated to be 
exp(Tr P log k ) = kf V(x)d 2x /(21T). 

The second factor, which is the determinant of identity 
plus a rank 1 operator, is 

det(I - (I - L )-IPlog k) 

= 1 - (log k )(21T)-I(V1/2,[I - L (k )]-IIV 11/2
). 

We can now write the y(E) integral as 

+ f dlogP-(logk)(21T)--I(Vl/z,[I-L(k)]-IIVI)J +(21T)-IIV(X)d Zx f k-Idk. (3.7) 
JyjE) JyjE) 

The last term of(3.7) is easily calculated to be - (i/2)S V(x)d 2X. In the limit as E goes toO, the first term of(3. 7) is zero because 
(I - L ) - I is assumed to be well behaved near O. 

Finally we consider the second term of (3.7), whose integrand is 

k -1(V1/2,[I - L (k)] -II V II/Z) - (log k )(VI/z,(d /dk)[I - L (k)] -II V11/2) 

21T - (log k )(Vl/z,[I - L (k)] -II VII/Z) 
(3.8) 

We recall from Sec. 1 that we can write 

(Vl/z,(I - L )-11 VI liZ) = ao + alk, 

where a l is a bounded function of k and ao is constant. 
With this notation, we write the first term of (3.8) as 

ao + alk 

21Tk - k (log k )(ao + alk) 

If ao is 0, this expression is bounded and thus its contribution 
to the y(E) integral is 0 in the limit as E goes to O. If ao is 
nonzero then this expression is bounded by e(k log k ) -I and 
the following computation gives its contribution to the r(E) 
integral: 

f ~ = log(l + i1T/log E)-G as E-G. Jl1£) k log k 

Next we consider the second term of (3.8). If ao is non
zero, this term is bounded and thus gives a zero contribution 
to the limiting y(E) integral. If ao is 0, the second term of(3.8) 
is bounded by e log k, which again integrates to 0 as E ap-
proaches O. • 

Remark 3-3: If Vbelongs to L I and satisfies 

I IIV(x)v(Y)IIIoglx - yW dZx dZy< 00, 

then L (0) is a Hilbert-Schmidt operator. Fredholm theory 
therefore applies to the operator I - L (0), and tells us that if 
(I - L (0)) - I does not exist, then the equation 

5=L(0)5 (3.9) 

has a nonzero solution. If we multiply this equation by 
I V II/Z, operate on it with the Laplacian, and recall that con
volution by log x is the inverse of the Laplacian, then we 
obtain the zero-k Schrodinger equation. This implies that 
the zero-k Schrodinger equation has a solution ¢ with 
5 = I V 11/2¢ belonging to L 2. If ¢ itself belongs to L 2, it is a 
bound state; otherwise it is a half-bound state. 

The assumption in Theorem 3-2 that (I - L ) -I exists at 
k = 0 is thus equivalent to assuming the absence of zero-
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j 
energy bound states and half-bound states. The work of 
Klaus and Simon 16 indicates that this assumption rules out 
consideration of A V for certain values of the coupling con
stant A; these values are thresholds in the sense that new 
eigenvalues are born from the continuous spectrum as the 
coupling constant increases to these threshold values. 

The assumption that there are no zero-energy bound or 
half-bound states could conceivably rule out consideration 
of other potentials as well; in fact, the conditions under 
which zero-energy bound and half-bound states are present 
and the implications of their presence have not yet been stud
ied in two dimensions. 

Note added in proof In a recent preprint, "sum rules for 
few-particle scattering in two dimensions," D. Bolle, C. 
Danneels, and T. A. Osborn announce results that include 
those of this paper. 
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APPENDIX: LARGE x BEHAVIOR OF ¢ 

Proposition 1-3: Let VEL 2 with SIV(x)llxI4 d 2x < 00. 

Suppose k> 0 is not an exceptional point, 12,17 and let 
5= IVII/Z¢solveEq. (Ll). Then 

¢(k,8,x) = exp(ik8·x) + exp( - 31Ti/4)(81T)- I/ZA (k,x,8) 

Xexp(ik Ixl)(k Ixl)-I12 + h (k,8,x), 

where 

A (k,8,8') = I exp( - ik8.x) V (x)tP(k,8 ',x)d 2X, 

Margaret Cheney 1453 



                                                                                                                                    

and h (k,e,x)EL Z(x) uniformly in e. If k > 0 is an exceptional 
point, then 

¢(k,x) = exp( - 31Ti/4)(81T)-I/Z exp(ik Ixl)(k Ixl)-I/Z 

xJ exp( - ikx.y)V(y)¢(k,y)dZy + h (k,x). 

Proof We begin with the Lippmann-Schwinger Eq. 
(1.1), which we write as 

¢(k,e,x) = exp(ike·x) + II + I z + 13 + 14 + Is, 

where II is the piece of the integral of (1.1) corresponding to 
integration over the set k Ix - yl < 1, and the rest of the 1's 
correspond to integration over the set k Ix - yl > 1. The ex
ponential appearing in the large-argument asymptotic ex
pansion for Ho can be split into pieces corresponding tolz, 13, 

and 14; Is is the large-argument remainder term. Thus the I's 
satisfy the following: 

II<c i Ilog k Ix - ylll V(y)¢(k,e,y)ldZy, 
klx -YI < I 

12 = exp( - i1r/4)( - il4)(2/1T)1IZ exp(ik Ixl)(k Ixl)-1/2 

xi exp( - ikx.y) V(y)¢(k,e.y)d Zy, 
k Ix-yl > I 

13 = exp( - 31Ti/4)(81T) -112 

xi exp(ik Ix - yl)(k Ix _ yl)-1/2 
klx -YI > I 

- (k Ixl)-1/2)V(y)¢(k,e,y)d 2y, 

14 = exp( - 31Ti/4)(81T)-1/2 

xi [exp(ik Ix - yl) 
k Ix-yl > I 

- exp(ik (Ixl - x.y))] 

x(k Ixl)- 1IZ V(y)¢(k,e,y)d 2y, 

Is<ei (k Ix _yl)-3/2jV(y)¢(k,e,y)ld Zy. 
k Ix,- yl > I 

The claim is that II + 13 + 14 + Is belongs to L Z as a func
tion of x. 

An application of Young's inequality l8 to II shows that 
II is in L 2. 

We show that Is is in L 2 by applying the Schwarz ine
quality, interchanging the order of integration, and splitting 
the domain of x integration into parts where Ix - y I < 1 and 
Ix - yl > 1, respectively. 

Next we calculate the L 2 norm of 13: 

III311~ <k - I Ji Ilx - yl-1IZ - Ixl-I/ZI 
k Ix -yl > I 

X I V(y)¢(k,e,y)ldZy 

xi Ilx'- y'I-I/Z -lxl-I/ZI 
k Ix -y'l> I 

X I V( y')¢(k,e, y')ld Zy' d zx. 

The positivity of the integrand allows us to do the x integral 
first; application of the Schwarz inequality then induces us 
to consider the integral 

J= Jllx-yl-I/Z-lxl-I/ZI2dZx. 

We make the substitutions x = Iylz, y = Iyln with Inl = 1: 
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J = Jllz - nl- I/z - Izl- 1/2
1
z d 2z =JI + Jz, 

where J I is the integral over B (0,2), the disc of radius 2 cen
tered at the origin, and Jz is the integral over the comple
ment. Then we have 

J I<1 Iz-n l-
I d Zz+21 (Izllz-nl)- I/Z d 2z 

B (0,2) B (O,Z) 

+ 1 Izl-1 2d Zz< 00. 
B(O,2) 

In the integrand of Jz, first we add the fractions and then 
multiply numerator and denominator by both 
Iz11/2+ Iz-nll/zand Izl + Iz-nl· Upon simplification, 
we have 

1 12z·n - W dZz 

J2= Be Izllz-nlllzI I/Z + Iz-nll/2lZllzl + Iz-nW' 

which converges. This shows that J is finite. 

We return to 13 having bounded the x integral by the 
constant e; an application of the Schwarz inequality then 
shows that III311z is finite for k #0. 

Next we consider 14; we calculate its L 2 norm: 

III411i = ~fi Ixl-Ilexp(ik Ix - yl) 
k k Ix-YI > I 

_ exp(ik (Ixl - x·y)) I I V(y)¢(k,e, y)ld Zy 

xi Ixl- I Jexp( - ik Ix - y'1) 
klx-y'I>1 

- exp( - ik (Ixl - x-y'))1 

X I V(y') ¢(k,e,y')ld2y' dZx. 

The positivity of the integrand allows us to integrate over all 
space and then to do the x integral first; again an application 
of the Schwarz inequality induces us to estimate the integral 

Q= flxl-llexP(ik(lX-YI-IXI +x.y))- Wdzx. 

With the notationy = Ixlz, z = lxix, the factor in the expo
nent can be written 

g = Ix l((1 - 2,X.z + Iz1Z)1/2 - 1 + x.z), 

which behaves like Ixllzl forlargez and like Ixllzl z for small 
z. This gives us the estimate 

g<elxllzI2(a + Izl)-I = elyl2(alxl + Iyl)-I. 

This helps us to estimate the integrand of Q; 

lexp(ikg) - W = (exp(ikg) - l)(exp( - ikg) - 1) 
= 4 sinZ(kg/2) 

<4Ikg/212(1 + Ikg/21)-z 

<4ck Zlyl4(2alxl + 21yl + ek lyI2)-2. 

We use this in Q, letting x = Iylw: 

Q<4c J k ZlyI4Iwl- I(2a lyllwl + 21yl + elk IlyI2)-2 d 2W 

<ekZlylz. 

Using this fact to estimate 14 , we have 

1I1411~«C/k{JjV(Y)¢(k,e,Y)lk2IYI2d2Yr < 00. 
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We have now shown that II + 13 + 14 + 15 belongs to 
L 2; it remains to show that if we write 12 = 16 + 17, where 

and 

17 = - exp( - 31Ti/4)(81T)-1/2 

X r exp( - ikx·y) V (y)¢(k,fJ, y)d 2y 
Jklx-yl<1 

Xexp(ik Ixl}(k Ixl}-1/2, 

then 17 is inL 2. Todo this we write III711~ = Is + 19 , where Is 
and 19 correspond to x integration over the unit ball B (0,1) 
and its complement, respectively. The integral Is converges 
by the Schwarz inequality. Application of the Schwarz ine
quality to 19 gives us 

1191 <k -I r liS- (k lIl~ r IV( y)ld 2y d 2X; 
JR 2'B(0.1) Jklx-yl<1 

we then let z = x - y in the inner integral, change the order 
of integration, and carry out the x integration. This gives us 

• 
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The purpose of this paper is to study the problem of equilibrium of a cylindrically symmetric 
distribution of perfect fluid under the action of an incident magnetic field. The magnetic field is 
due to an electric current along the axis of symmetry surrounded by static fluid of infinite electric 
conductivity. Two models have been derived and their physical features have been discussed. 

PACS numbers: 04.20. - q, 04.30. + x 

1. INTRODUCTION 

Static universes play an important role in the under
standing of phenomena of cosmological and astrophysical 
significance. Static cylindrically symmetric space-times rep
resenting material distribution were obtained by Marder. I It 
is known that a strong magnetic field is present in galactic 
and intergalactic spaces and is significant even in the cosmo
logical scale. This raises the interesting question about the 
possibility of static configurations of perfect fluid distribu
tion in equilibrium with the magnetic field. Magnetostatic 
fields of cylindrical symmetry were considered by Witten, 2 

Melvin,3,4 Thorne,5.6 and Safko and Witten. 7 A magnetic 
universe with matter has been studied by Khalatnikov. 8 Pa
tel and Vaidya9 have derived cosmological models describ
ing a static magnetic universe. Safko and Witten 10 have de
rived static models of matter with different internal and 
external magnetic fields. Prakash and Royll have recently 
obtained a cosmological model of cylindrical symmetry with 
incident magnetic field which is an inhomogeneous general
ization of the Einstein universe. 

In the present paper we have derived some magnetohy
drostatic models of cylindrical symmetry in which the free 
gravitational field is of Petrov type D. The magnetic flux 
vector is assumed to be in the azimuthal direction. Einstein's 
field equations give rise to two models. In the second section 
we give the derivation of these two models. In the third sec
tion we discuss the physical properties of these models. 

2. DERIVATION OF THE CYLINDRICALLY SYMMETRIC 
MODELS 

We consider the cylindrically symmetric metric in the 
form 

ds2 = A 2(dp2 - dt 2) + B 2 d:? + C 2 d¢2 , (2.1) 

in which A, B, and C are functions of p alone. The distribu
tion consists of an electrically neutral perfect fluid with an 
infinite electrical conductivity and magnetic field. The ener
gy-momentum tensor of the composite field is assumed to be 
the sum of the corresponding energy-momentum tensors: 

(2.2) 

where the electromagnetic energy momentum tensor E ~ is 
given byl2 

(2.3) 

In the above E, p are the proper density and pressure of the 
fluid and Vi is the unit velocity vector; f.L is the magnetic 
permeability and hi is the magnetic flux vector defined in 
terms of the electromagnetic field tensor F ij by 

r--:: kl . 
hi = (1I2f.L)-Y - gEijklF vi. (2.4) 

The non vanishing component of Vi is assumed to be v4 = 
11 A. Since the field is purely magnetic the components F 14, 

F 24, F34 are assumed to be zero, the coordinates x I, x 2
, x 3

, X4 

being the same asp, z, ¢, and t. The magnetic field is assumed 
to be in the azimuthal direction so that FI2 is the only non
vanishing component of Fij' Maxwell's equations 

Fiij;k) = 0, 

( ..lFij) . = 0 
f.L ;) 

(2.5) 

(2.6) 

requirethatF12 be a function ofp alone and thatF12 C /Bbea 
constant, say H so that 

h3 =H /f.LA. 

The field equations 

Ri j - !Rgi j - Agi j = 

lead to the equation 

A,IB,I 

(2,7) 

(~) +~ ---- A,I C,I _ B,I C,I = 0 
A ,I C AB 

B,IC,I B,II ----
BC B 

AC BC ' 
(2,8) 

(2.9) 

(2.10) 

_ C,II _ 41TH22) _ A . (2.11) 
C f.LC 

These are four equations in five unknowns A, B, C, E, andp. 
To get a determinate solution we require one additional con-
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dition. We assume the free gravitational field to be Petrov 
type D, the degeneracy being in the axial plane. This requires 
that C~j = Cj:, where Chijk is the conformal curvature ten
sor. Thus 

(
A. I ) _ C,II + A.I C. I + B,I C. I _ A.IB.I = 0. 
A.I C AC BC AB 

(2,12) , 

The above equations give rise to two cases. 

Case I: AI/A~O 

In this case Eqs. (2.8), (2.9), and (2.12) lead to the solu-
tion 

A =MC+q, B=LC.I/(MC+q) 

with C determined from the equation 

~[C(C.II) _ MC(C.d _ (C,I )2 ] + 81TH 
2 

= ° 
dp MC+q (MC+q)2 MC+q f-lC(MC+q) , 

(2.13) 

L, M, and q being constants. Equation (2.13) on integration gives 

(
dC)2 = C 2(MC )2[ _ 161TH2M2{l.- (C + qlM) 

2 
10 C + qlM 

dp + q f-lq4 2 C g C 

_ ~ (C+;IMy _2(C+;IM)logC+;IM +2(C+;/~ 

+ l.- (log C + q1M)2 _ ~} + !... { _ l.- (C + q1M)2 
2 C 4 q3 2 C 

+ 2(C+;IM) _ log C+;IM _ ~} + Q], (2.14) 

where P and Q are constants. 
After suitable transformation of coordinates and renaming of the constants the metric takes the form 

d:r = ds 2 + S 2 R 2(S )dZ 2 + S 2 dt/J 2 - (s + b )2dt 2 
s2R 2(S) , 

where 

In the above k can take the values 0, 1, or - 1. 

Case II: AI = 0 

In this case we have the solution 

A = /3, B = (aC 2 + (81TH 21f-l)r log C + 15)1/2 

with C determined from the equation 

dC 1 (81TH
2 

)112 - = - aC 2 + --rlog C + D , 
dp Y f-l 

a, /3, y, and 15 being constants. After suitable transformation 
of coordinates and renaming of the constants the metric 
takes the form 

ds2 = ds 2/1/1(s ) + I/I(S )dZ 2 + s 2 dt/J 2 - dT 2, (2.17) 

where 

I/I(s) = 1 - s21p2 - Klog S. (2.18) 
3. PHYSICAL FEATURES OF THE MODELS 

Case I: The first model 

The pressure and the density for the model (2.15) are 
given by 

81T = 3s + b R 2(5) + 2s + b (K 10 _s_ ~) 
p s + b s 2(S + b f b g s + b + 2 

(3.1) 
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(2.15) 

(2.16) 

(3.2) 

The nonvanishing component F12 ofthe tensor Fij is given by 

F12 = H IS2(S + b)2, (3.3) 

where the constant H is related to K by the equation 

K = - 81TH21f-l . 

In the above the coordinates x I, x 2
, x 3

, X4 stand for 

p, Z, t/J, and T. 

As s-+oo, 81Tp-+3Q + A and 81T€-+ - (3Q + A ). Also 
Chijk vanishes asymptotically. We set 3Q + A equal to zero. 
In order to understand the significance of the constant b, we 
note that whenK = k = 0, it gives rise to an unrealistic mod
el with zero density and nonzero pressure. Further, with 
K #0, k = 0, the density arises due to the magnetic field 
alone. Owing to this unsatisfactory feature, we shall assume 
that for b #0, k = ± 1. 

When b is zero, both density and pressure vanish. In 
this case the line element takes the form 
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~K -lks+Qs 4 

+ 1 S2 dZ 2 + S2d¢J 2 - s2dT2 .(3.4) 

The following cases arise: 
(a) Q = 0, k = - 1. The solution is a special case of 

Witten's solution representing the external field due to an 
infinite wire carrying an electric current and having gravita
tional mass per unit length equal to 8 1T. 

(b) Q < 0, k = - 1. The metric (3.4) has the proper sig
nature when K 3 Q < -Jt" and in that case, the metric is valid in 
theregions1 <S <S2 whereS1 andS2 are the positive roots of 
the equation ~ + j5 + Qs 4 = O. In the absence of magnetic 
field, we get an empty space valid in 0 <S < (l/3Q )1/3. 

(c) Q> O. The metric is valid in the region S> SI > 0 
where SI is the positive root of the equation 
~K - jks + Qs 4 = O. In the absence of the magnetic field, 
there are three possibilities corresponding to the three values 
of k. These are 

k = - 1. The metric is valid in S> o. 
k = + 1. The metric is valid in S> (l/3Q )1/3. 
k = O. The metric is that of anti-de Sitter space-time. A 

study of the scalar invariants (see Appendix) shows that 
these are finite everywhere in case (a). In case (b), the invar
iants are finite at both S = SI and S = S2' while in case (c) 
they are finite at S = SI' In this sense, the above solution has 
no singularity anywhere in the region in which it is valid. 
Real singularities appear at S = 0 in the absence of the mag
netic field in all the cases except when k = 0 or 1 in case (c). 
One can define a new coordinate r 2 = S - SI in both the 
cases (b) and (c) and take the axisasr = O.ltis easy to see that 
the elementary flatness condition is not satisfied on the axis. 
The hypersurface S = S2 in case (b) is null and forms a hori
zon. Each of the models (a), (b), and (c) represents the field 
due to an electric current flowing along the axis which also 
carries a distribution of matter. 

For a timelike radial geodesic, we have 

dt E 
ds (r2 + SI)2 ' 

dr 

ds 

~E2 - (r2 + sY J~ - jk(r 2 + SI) + Q(r2 + sl 
+ 
- (sl+ r2 fr 

E being a constant. In case (b), the velocity vanishes at the 
horizon at which there is repulsion. It is clear that a pair of 
such geodesics may cross each other twice at the most. It 
takes finite proper time for a neutral particle to reach the 
axis. Similarly the proper time to reach the horizon radially 
is finite. When b #0 and K = 0, the signature of the metric 
(2.16) remains valid for O<s < 00 provided Q;;;.O, k = - 1, 
b > O. There exists a real singularity at S = O. Assuming b to 
be small and Q = 0, we find that the density and pressure are 
given by 

€ = 3p = b /325 4. 

Thus, up to the first order in b, the matter behaves as disor
dered radiation. 

When b # 0, K =1= 0, we find that R 2 (S )-+ - 00 as s-+o 
and R 2(S )-+Q as S -+ 00. If Q > 0, there exists a positive root 
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S = SI of R 2(5 ). In this case the metric is valid for SI < S < 00. 

The invariants are finite at S = SI and there are no apparent 
singularities (see Appendix). Defining the coordinates by 
S - SI = r 2, we find that there is lack of elementary flatness 
at the axis r = O. Equation (3.3) tells us that the magnetic 
field is transverse and is due to an electric current along the 
axis. Following Witten, we find the total current flowing 
along the axis to be 21TH /J.L. The lack of elementary flatness 
shows that there is matter distribution along the axis. Den
sity and pressure are finite everywhere including the axis. 
The model therefore, represents a wire of non vanishing mass 
density carrying an electric current and is surrounded by a 
perfect fluid. 

Case II: The second model 

The pressure and density for the model (2.17) are given 
by 

81TP = A - l/i? , 

81T€=3/p2+K/S2_A. 

(3.5) 

(3.6) 

The non vanishing component FI2 of the tensor F ij is given by 

FJ2 = H /S, (3.7) 

where 

K = - 81TH 2 /J.L . 

The reality conditions €;;;'p > 0 require that 

K 2 1 -- + - >A > -. (38) 2S2 p2 pZ . 

The function ¢(S ) = 1 - S Z/p2 - K log S hasamaximumat 
S = sm = ( - KpZ/2)I/Z. The model will be realistic when 

J(OZ 
¢(Sm) = 1 + ~ -~Klog( - ~»O. (3.9) 

2 

In this case ¢(S) vanishes when S = SI and S = Sz 
(0 < SI < S2)' A glance at the scalar invariants (see Apendix) 
shows that there is no singularity at S = SI and S = 5z. Put
ting S - SI = r 2, we find that the elementary flatness condi
tion is not satisfied on the axis r = O. The hypersurface 
S = S2 is null. It is a horizon of the model. In this case also, 
the magnetic field is due to an electric current along the axis 
of strength 21TH /J.L with a nonvanishing matter distribution 
along the axis represented by the absence of elementary flat
ness there. 

For a timelike radial geodesic, we have 

dT =E, 
ds 

dr ~E2 - 1 
-=+ 
ds - 2r 

1- (r2~/d2 -Klog(r2+sd, 
p 

E being a constant. The velocity vanishes at the horizon at 
which there is repulsion. A pair of such geodesics may cross 
each other twice at the most. A similar result holds for null 
geodesics. A neutral particle moving radically reaches the 
axis in finite proper time. Similarly the horizon is reached in 
finite proper time. 

In the absence of the magnetic field, the metric (2.17) 
reduces to the form 
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for which the pressure and density are given by 

1 
81TP =A - -2' (3.11) 

P 
3 

8m: = - - A . (3.12) 
1/ 

The metric (3.10) is that of an Einstein universe. The effect of 
the magnetic field is to introduce inhomogeneity in the den
sity while the pressure remains homogeneous. It also intro
duces singularity on the axis which shows that a current is 
possible only when there is a nonvanishing distribution of 
matter along the axis. 
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APPENDIX 

Taking the orthogonal tetrad in the direction of coordi
nate axes, the physical components of C hijk and Rij are de
fined by 

_ , h , i i k 
C(abCd) - Chijk/l, (a)/I, (b)A (c)A (d) , 

R(ab) = RijA i(a)Ai(b) • 

The non vanishing components of these for the two models 
are given below. 

I. First model 
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1/. Second model 

C(Z323) = C(1313) = - ! C(lZlZ) = - K /SZ, 

Rill) = - 2!j?, 

R(zz) = - 2!pZ , 

R(33) = - (2!p2 + K/SZ) , 

R(44) = 0, 

A \a) = Diag {¢1/2(S)' ¢ - 112(S), lis, l}. 

The scalar invariants can be expressed in terms of these 
quantities. 

'L. Marder, Proc. Roy. Soc. London, Ser. A 244,524 (1958). 
2L. Witten, Gravitation: An Introduction to Current Research, edited by L. 
Witten (Wiley, New York, 1962), p. 382. 

3M. A. Melvin, Phys. Lett. 8, 65 (1964). 
4M. A. Melvin, Phys. Rev. 139, B225 (1965). 
5K. S. Thome, Phys. Rev. 138, B251 (1965). 
6K. S. Thome, Phys. Rev. 139, B244 (1965). 
'J. L. Safko and L. Witten, J. Math. Phys. 12, 257 (1971). 
81. M. Khalatnikov, Zh. Eksp. Teor. Fiz. Pis' rna 5(6),195 (1967) [JETP 
Lett. 5, 155 (1967)]. 

9L. K. Patel and P. C. Vaidya, Curr. Sci. 40, (11), 288 (1971). 
IOJ. L. Safko and L. Witten, Phys. Rev. D 5,293 (1972). 
"s. Prakash and S. R. Roy, J. Phys. A 13,3773 (1980). 
12 A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodyna

mics (Benjamin, New York, 1967), p 93. 

S. R. Roy and R. Bali 1459 



                                                                                                                                    

A class of shear-free perfect fluids in general relativity. II 
c. B. Collins 
Department of Applied Mathematics. University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 

A. J. White 
Materials and Mechanics Branch, Atomic Energy of Canada Limited, Whiteshell Nuclear Research 
Establishment, Pinawa, Manitoba ROE 1 La, Canada 

(Received 26 September 1983; accepted for publication 16 December 1983) 

We continue our previous investigation of shear-free perfect fluids in general relativity, under the 
assumptions that the fluid satisfies an equation of state p = p( f-l) with f-l + p¢O, and that the 
vorticity and acceleration of the fluid are parallel (and possibly zero). We classify algebraically the 
set of such solutions into thirteen invariant nonempty cases. In each case, we investigate the 
allowed isometry groups and Petrov types, and invariantly characterize the special subcases that 
arise. We also show how the various subcases are related to each other and to the works of 
previous authors. 

PACS numbers: 04.20.Cv, 02.40. + m 

1. INTRODUCTION 

In this article, we continue our previous investigation 
(Ref. 1; hereinafter referred to as I) of shear-free perfect 
fluids in general relativity, under the assumptions that the 
fluid satisfies an equation of state p = p( f-l) with f-l + p¢O, 
and that the vorticity (0)) and acceleration (u) of the fluid are 
parallel. Our notation, units, and conventions follow our 
previous work, with which a familiarity will be assumed, and 
our previous results can be summarized in the following 
theorems (labeled as in I): 

Theorem 3.1: Consider a shear-free perfect fluid in gen
eral relativity, with an equation of state p = p( f-l) satisfying 
f-l + p¢O. Suppose that the vorticity and acceleration are 
non-zero and parallel. Then the fluid's volume expansion is 
zero. 

Theorem 3.2 (cf. Theorem 5.1, Ellis2): Consider a shear
free perfect fluid in general relativity, in which the fluid flow 
is geodesic and in whichf-l + p¢O. Suppose that the vorticity 
is nonzero. Then the fluid's volume expansion scalar vanish
es. 
These two theorems can be combined, to give 

Theorem 3.3: Any shear-free perfect fluid in general 
relativity with an equation of state p = p( f-l), such that 
f-l + p¢O, has either vanishing vorticity or vanishing expan
sion (i.e., a==~() 0), provided that the vorticity and ac
celeration are parallel (and possibly zero). 
The result of Theorem 3.3, together with analogous results 
by several authors (see references cited in I), suggests the 
validity of the following conjecture: 

Conjecture: Any shear-free perfect fluid in general rela
tivity with an equation of state p = p( f-l), such that f-l + p¢O, 
has either vanishing vorticity or vanishing expansion, i.e., 
a==~() O. 
As previously observed (I), the case in which both the accel
eration and vorticity vanish is well-understood, giving rise to 
the spatially homogeneous and isotropic Friedmann-Rob
ertson-Walker (FR W) models,3 and in particular to the gen
eralized Einstein static model when the expansion also van
ishes. We shall therefore ignore this case, and assume that 
u2 + 0>2¢0. If, as seems plausible, the above Conjecture is 
true, then the following situations are therefore of interest: 

(i) a==0, 0>=0, ()¢O, U¢O, 
(ii) o-=() -0, 0> 0, U~O, 

and 
(iii) a==() -0, 0>¢0, 

where u is possibly, but not necessarily, zero in case (iii). If 
the Conjecture were false, there would of course be a fourth 
possibility 

(iv) a==0, 0>()¢0, u~O 

(note that U¢O in case (iv), in view of Theorem 3.2). 
Case (i) is well understood, since it was recently treated 

by Collins and Wainwright.4 It was shown that the only pos
sibilities are the spherically symmetric Wyman5 metrics, or a 
class of new exact solutions that are plane symmetric and 
hypersurface homogeneous. These results can be considered 
as generalizations of the works of Mansouri,6 Glass,? Mash
hoon and Partovi,8 and Srivastava and Prasad,9 who investi
gated case (i) solutions assuming spherical symmetry at the 
outset. As discussed by Collins and Wainwright,4 the exis
tence of the class of new exact solutions shows that Theorem 
5.1 and Theorem 5.2 of King and Ellis,1O wherein it is 
claimed that there are no tilted spatially homogeneous 
shear-free perfect fluids, and deduced that the only spatially 
homogeneous shear-free perfect fluid models are FRW, are 
not valid. The technique of Collins and Wainwright4 in. 
volved assuming the coordinate approach and results of 
Barnes, 11 who investigated shear-free perfect fluids with 
0>=0, and then the conditions relating to the existence of an 
equation of state and to the assumption ()~O were imposed. 
It was first discovered that the solutions were necessarily 
"locally rotationally symmetric",2,12 and the two classes of 
models were then determined. We shall discuss these results 
from the somewhat more satisfactory standpoint of ortho
normal tetrads, in which the geometrical properties are more 
transparently displayed. Moreover, we find that the discus
sion of cases (ii) and (iii) shares some common feature with 
that of case (i), and we therefore commence our analysis by 
providing a fairly uniform treatment of all three cases. This 
has the merit of indicating clearly both the common and the 
divergent features of the solutions in the different cases. 

While the solutions are known completely in case (i), 
this is not the situation for cases (ii), (iii), and (iv). In case (ii), 
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the flow is static and irrotational, but, as far as we are aware, 
not all solutions are known in this case (the article by 
Barnesll involves all such solutions which are algebraically 
degenerate and which do not necessarily possess an equation 
of state). In case (iii), the situation is similar; there are some 
known exact solutions, perhaps the most familiar being due 
to G6del, \3 in which U==O, although there are others given in 
the literature, 2.12.14 in which the acceleration is not necessar
ily zero. 

In the present article, we shall consider all cases, but in 
case (iii) we shall impose the additional restriction that the 
acceleration, if nonzero, be parallel to the vorticity. It then 
follows from Theorem 3.3 that all shear-free perfect fluids in 
general relativity with an equation of state p = p( fi), such 
that,u + p=/=O, and with the acceleration and vorticity paral
lel (and possibly zero), are then encompassed by our discus
sion of cases (i), (ii), and (iii), i.e., that case (iv) is disallowed. 
Although we still cannot obtain all exact solutions in cases 
(ii) and (iii), we are able to derive a set of tetrad equations 
which is self-consistent. We then investigate the allowed iso
metry groups and Petrov types for such space-times, both in 
the most general case, and in all various special cases, and so 
we feel that some progress has been made in understanding 
the nature of the solutions. 

The plan of this article is as follows. In Sec. 2, we obtain 
some preliminary results that are of assistance in the compi
lation of a "specialization diagram," which shows how var
ious subclasses (particularly those involving the solutions 
given by other authors) are interrelated. In Sec. 3, we present 
a technical discussion of the isometry groups and Petrov 
classification of the solutions. Section 4 concludes with mis
cellaneous comments and with ideas for further study. 
Throughout we shall use the tetrad constructed in Sec. 20fI, 
and at first we shall refer to the Jacobi identities, Einstein 
field equations, Bianchi identities, and commutation rela
tions as listed in the Appendix of I, but incorporating the 
result of Theorem 3.3, viz., that mO =0. After obtaining Pro
position 2.1, we incorporate its results, viz., that n = 0 and 
aaO = 0, and rewrite these equations in Appendix A. As in 
our previous work, in the case u=l=O we shall need to refer to 
the result of applying the commutation relations [(A28)
(A33) ofI] to the function F, defined by 

F(,u):= -f~d,u, 
,u +p 

wherep' = dp/ dfi (apart from a multiplicative constant, eF is 
then the thermodynamic "enthalpy" of the fluid). We there
by obtain 

aou = - G(fi)uO, (Ll) 

a20=a30= 0, 

a2u = d2u, a3u = d3u, 

and 

n=O. 

(1.2) 

(1.3) 

(1.4) 

Use has been made of Theorem 3.1 and the Bianchi identity 
(A24) ofI in deriving (1.4), and (1.1) has been simplified using 
(1.4) and the (01) field equation (A15) ofI, together with the 
definition 
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G(,u): = (p"/p')(,u + p) - p' + j, (1.5) 

where a prime (') denotes differentiation with respect to ,u, 
and p',¢O by the Bianchi identity (A25) of I. 

2. PRELIMINARY RESULTS AND A SPECIALIZATION 
DIAGRAM 

The following five propositions pertain to shear-free 
perfect fluids in general relativity with an equation of state 
p = p( fi), such that,u + p'¢O, and with the vorticity and 
acceleration parallel (and possibly zero). The tetrad is that 
defined in Sec. 2 of I, and we assume that u2 + m2=/=0 
throughout. 

Proposition 2.1: n = 0 and aaO = 0 (a = 1,2,3). 
Proof If U=l=O, we have n = 0 and a20 = al) = 0 by 

Eqs. (1.2) and (1.4), and then the (01) field equation (A15) ofI 
requires that alo = O. On the other hand, if U-O, then, by 
assumption, m=/=O, so by Theorem 3.2, 0 =0, and the (01) 
field equation (A15) ofI then implies that n = O. Hence in 
either case the proposition is proved. 0 

In view of Proposition 2.1, the basic tetrad equations 
are rewritten in Appendix A of the present article. 

Proposition 2.2: If U'¢O, then (d/ + d/)O o. 
Proof We show first that if U=/=O, it follows that 

(d/ + d/)O [(G'/p')(,u + p) - 2G + 1] = 0, (2.1) 

and then deduce that the possibility (d/ + d3
2 )0=/=0 is unten

able. 
Let the function H be defined by 

H: = al U + u2 + ue - H,u + 3p - 2A ), (2.2) 

so that the (00) field equation (A13) becomes 

aoo = - jO 2 + 2m2 + H. (2.3) 

Applying the [eo, ea ] commutators (A27) and (A28) to 0, and 
using Proposition 2.1 with Eqs. (2.3), (A14), and (A15), we 
obtain 

azH = - 4d2m2 (2.4) 

and 

a3H = - 4d3m2, (2.5) 

whereas, applying the [eo, e l ] commutator (A26) to U, we 
have 

aoB = - (G + j) [H + !(,u + 3p - 2A )] 0 

+ u20 [(G'/p')(,u + p) - 2G + 1] 

+!(l + 3p')(fi + p)O, (2.6) 

where we have made use ofEqs. (1.1), (2.2), (A6), (A22), and 
(A23), and of Proposition 2.1. We now apply that [eo, ez] 
commutator (A27) to the function H, and use Eqs. (1.3), (2.4), 
(2.5), (A 7), and (A24), together with Proposition 2.1 and 
Theorem 3.1, to deduce that 

d20 [(G '/p')(,u + p) - 2G + 1] = O. (2.7) 

Similarly, we can apply the [eo, e3] commutator (A2S) to H 
and use Eqs. (1.3), (2.5), (2.6), (AS), and (A25) to conclude 
that 

d30 [(G'/p')(,u + p) - 2G + 1] = o. (2.8) 

[Alternatively, we can regard Eq. (2.8) being derived from 
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(2.7) by the allowed rotations el~I' e2--e3, e3-- - ez, or 
e r--+ - e l, e2~3' e3~2; cfLJ Equations (2.7) and (2.8) are 
equivalent to Eq. (2.1). 

In the case where (d2
2 + d3

2)O¥=0 in (2.1), Theorem 3.1 
requires that 0.1=0, and Eq. (2.1) implies that 

(G'/p'){Il+p)-2G+ 1 =0. (2.9) 

Eliminating J IA2 from equations (A3) and (AI7), we obtain 

2J2a22 - Ji) + 4A 2a22 - 2diJ = 0. (2.10) 

Upon propagating Eq. (2.10) along eo, we obtain 

d2uO(G-j)=0, (2.11) 

where Eqs. (Ll), (1.3), (A7), (A9), (A 12), and (A27) and Pro
position 2.1 have been employed. Similarly, 

d3uO (G - j) = 0, (2.12) 

so, under the present assumption that (d2
2 + d3

2)UO¥=0, it 
follows from (2.11) and (2.12) that G =j, which contradicts 
Eq. (2.9). 0 

Proposition 2.3: If d2 = d3 = ° and O¥=O, then a22 = 0. 
Proof Since O¥=O, it follows by Theorem 3.3 that OJ-O, 

and hence, by our assumption, that U¥=O. We shall suppose 
in the following that a22¥=0, and derive a contradiction. We 
first observe from (A21) that n = 0. Now eliminating J2a22 

between (A3) and (A17), we obtain 

J IA2 = A z(fT22 - !e). (2.13) 

Ifwe apply the [eo, ez] commutator (A27) to 0, and use Pro
position 2.1, we find that 

(2.14) 

whereas applying the [el' ezl commutator (A29) to U, and 
using (1.3), we see that 

J2(J I U) = 0. (2.15) 

Hence, differentiating the (00) field equation (A13) along e2, 

and employing Eqs. (1.3),j2.14), (2.15), and (A24) and Propo
sition 2.1, we obtain uJl) = 0, or, since U¥=O, 

J/J=o. (2.16) 

Eliminating Jle between Eqs. (A19) and (A20), there results 

(2.17) 

and so, applying the [eo, ed commutator (A26) to a22 and 
using (1.1), (2.17), (A6), and (AI2) in conjunction with Propo
sition 2.1, we have ua22(G - j), or, since ua22¥=O, 

G=j. (2.18) 

The next step is to eliminate J IA2 between (A3) and 
(AI7), recalling (2.16). Thus 

J2a22 = - 2a2zA2' (2.19) 

We show that Az = 0, by applying the [el' e2l commutator 
(A29) to aZ2' and using (1.3), (2.16), (2.17), and (2.19), to ob
tain 

(2.20) 

Upon comparing Eqs. (2.13) and (2.20), it follows immediate
ly that A z = 0. Similarly, A3 = 0, i.e., 
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A2 = A3 = 0. (2.21) 

With Eq. (2.21) in force, we consider Eqs. (A13), (AI6), 
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and the sum of(A19) and (A20). Ifwe eliminate Jle and Jlu, 
we obtain 

Joe = - ~(p - Ii ) + ~ue - ~~2 + ~e 2 - ~e 2, (2.22) 

whereas if we eliminate Jle and Joe, we have 

Jlu= -uz+!ue-ie2+!(Il+Ii)-~~2 +~e2. (2.23) 

Finally, we apply the [eo, e l ] commutator (A26) to u and 
obtain, using Eqs. (Ll), (2.18), (2.22), (2.23), (A6), (A12), and 
(A22) and Proposition 2.1, that U_O, a contradiction. Hence 
the proposition is proved. 0 

In view ofthe results of Theorems 3.1-3.3 and of Pro po
sitions 2.2 and 2.3, it will be convenient to classify the solu
tions under consideration according to whether or not the 
quantities OJ, e, u, a22> and dz z + d3

2 vanish. Of the 32 possi
bilities, eight (those in which OJe¥=O) are immediately ruled 
out, by Theorem 3.3. Of the remaining 24 cases, in which 
OJe -0, a further eight are forbidden (those in which 
OJ-u-O) by our assumption that u2 + OJz¥=O. This leaves 16 
possibilities, in which OJe =0 and u2 + OJz¥=O. Now Proposi
tion 2.2 disallows two more cases [for which 
(d2

2 + d3
2 )u6¥=0 and OJ = 0], and there are therefore 14 pos

sibilities remaining, in all ofwhich0J6 -0, u2 + OJ2¥=0, andif 
U#-O then (d2

2 + d/)6-0. Finally, by Proposition 2.3, the 
case Uea22¥=0, OJ-d2

l + d/ ° is ruled out, and there are 
13 cases remaining. It will be convenient to assign a dimen
sion to each of these 13 possibilities, using the facts that it 
requires one parameter to specify each of OJ, e, and u at a 
point, and two parameters to specify each of a: = aAB and 
d: = dA (A,B = 2,3), since (in a general frame) aAB is 2 X 2, 
symmetric, and trace-free. Respecting the results of 
Theorem 3.3 and Proposition 2.2, it follows that the "most 
general" of the 13 possibilities is that in which e =0 and 
uOJad¥=O, which has a dimension of 6, whereas, by our as
sumption that u2 + OJ2¥=0, the "most special" cases are 
those in which U¥=O and OJ O-fr==d _0 and in which OJ¥=O 
and u-e =a=d -0, each possessing a dimension of 1. All 
other cases can be assigned intermediate dimensions, and the 
various possibilities linked by the specializations involved. It 
is important to note that this algebraic classification is now 
to be regarded as being based on the vanishing of OJ, e, u, fT, 
and d on an open set. The results are summarized in Table I. 
The models are labeled I, II, III, according as they belong to 
the cases 

(i) u=OJ=O, eu¥=o, 
(ii) u-e =OJ-O, U¥=O, 

and 
(iii) u=e -0, OJ¥=O 

(cf. Sec. 1). There then follows a letter, A or G, according as 
the fluid flow is accelerating or geodesic; a subsequent letter, 
A or G, similarly indicates whether the e l congruence is ac
celerating or geodesic. Finally, models in which fT¥=0 are 
labeled "i", while "ii" indicates that fr==0. (Note that with a 
defined as a 22 in the chosen tetrad, we have 2fF2 = frABaAB 
and a = O<=?a AB = 0, in direct analogy to the relationships 
between u and u ij') 

In Sec. 3, we shall study these 13 types of solutions. 
However, before doing so it is of interest to obtain some 
further results. Firstly, the four most special types (in which 
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TABLE I. Specialization diagram for the class of shear-free general relativistic perfect fluids, with an equation of state p = p( It), It + p¥=O, and with parallel 
vorticity (w) and acceleration (u). This includes the cases where u==O#w and where w==O# U, but excludes the FRW solutions in which u==w==O. Algebraic 
dimension is assigned on the left and arrows denote specialization to models oflower dimension. Locally rotationally symmetric (LRS) models are labelled, 
and in each case the Petrov type (PT) is given. The admissible isometry groups G. (n = 1,2,3,4,5) are also indicated. In all non-LRS cases the G. acts simply 
transitively on T. (n = 1,2,3); in LRS types IIAGii, IIIAGii, and IIIGGii the G. acts multiply transitively on T. _ I (n = 4,5) and in LRS type IAGii the G. 
acts multiply transitively on S. _ I (n = 3,4) (S. = spacelike orbit of dimension n; T. = timelike orbit of dimension n). The notation "G3I" denotes a Bianchi 
type I (abelian) isometry group, whereas "G3II" signifies Bianchi type II. 

6 

8=O;IIIAAi 
G,.G2;PTI;p+3p=2A 

5 

4 

3 

6 3Il =0 ; II AA i 
G, • G2 ; PTI .0 

8=0=0; II lAAi i 
G2;PTI;p+3p=2A 

2 ~~ 31 =0 ; lAG i i 
G3·G4;PTD(LRS) 

8 ::a =d=O; I IIAGi i 
G4;PTD(LRS) 

8~~a~d=0; I IAGi i 
G4;PTD(LRS) 

fr==d =0) are locally rotationally symmetric (LRS), whereas 
none of the most general types (in which f? + d 2:;;60, where 
2f? = aABUAB and d 2 = dAdA) is LRS. 

Proposition 2.4: The solutions are LRS if and only if 
fr==d=O. 

Proof It is clear that if the solutions are LRS then, since 
u2 + 0)2:;;6 0, the e1 axis is the spatial symmetry axis, and that 
hence fr==d ==0, because otherwise there would be a pre
ferred direction in the e2 - e3 plane in the tangent space at 
any point. 

Now suppose that fr==d =0. It follows from Eqs. (1.3), 
(A14), and (A15) that a2u = a3u = a20) = a30) = O. More
over, by Proposition 2.1, azfl = all = 0, and, eliminating 
a)A2 between (A3) and (A17), and a1A3 between (A4) and 
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I 
e= 0= a= d:=O ; I IlGGi i 
G4·GS;PTD(LRS) 

(A 18), we have ail = ail = O. With the allowed tetrad free
dom, e)- ± e) and the rotation 

(2.24) 
e3- - e2 sin e + e3 cos e, 

with aoe = 0 (cf. Sec. 2 of I), it is possible to arrange for 
ail = ail = a~2 = ay42 = a~3 = ay43 = 0, and one can 
therefore deduce (cf. Ref. 15) that the solutions are LRS. 
However, this involves the investigation of several compati
bility requirements for the propagation of e. We find it more 
convenient, particulary in view of our analysis in Sec. 3, to 
show that any solution admits an isometry group which acts 
multiply transitively either in the hypersurfaces orthogonal 
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to e l (in the case w¥O) or in the two-surfaces orthogonal to eo 
and e l (in the caSe w=O), and it then follows (cf. Ref. 16) that 
the solutions are LRS, with e l as the axis of symmetry. Fol
lowing Ellis,2 we investigate the existence of solutions to the 
equations 

[s,eo] = [s,ed = 0, [s,e2] = be3, 

and 

(2.25) 

which are equivalent to the equations for the Killing vector 
S. Here, b is a scalar function on the space-time. Under the 
transformation (2.24), n--*n + Jle, and so propagating e 
acc~ding to the requirement Jle = - n, we may arrange 
for n = ° [note that this is permitted, since the [eo, el] com
mutator (A26) applied to e is satisfied, by virtue of (A 11)]. 

Expanding S in the form S = 5 OeD + 52e2 + 53e3 (i.e., de
manding that 5 I: = so·el===O), substituting into (2.25), and 
employing the commutation relations (A26)-(A3l), we ob
tain propagation equations for 5 0,5 1,5 3 (see Appendix B for 
the equations in the general case, with 5 I not necessarily 
zero). In order for the equations to be compatible, the com
mutation relations acting On 5 a must be satisfied, and this 
leads to the restrictions [cf. Eqs. (A48)-(A59) of Appendix B] 

SO JoiJ = S° Joe = S° Joe = 0, 

Job = alb = 0, (2.26) 

Jlb+A2b+5aJaA3=0, J3b+A3b-5aJaA2=0, 

where use is made of Eqs. (AI), (A3)-(A6), (A9), and (AlO), 
and Proposition 2.1 and Theorem 3.3. Equations (2.26) 
themselves provide propagation equations for the function b, 
which, by Eqs. (A3), (A4), (A9), (AlO), and (A19) are compa
tible. In the case w¥O, we have e -0 by Theorem 3.3. We 
therefore have a self-consistent system of equations for the 
four quantities 5 °,5 1'5 3, andb, all being determined unique
ly by fixing their values at one arbitrary point, i.e., there is a 
G4 isometry group acting multiply transitively on the hyper
surfaces orthogonal to ej. In the case w-O, there are solu
tions with 5 °=0, and the three quantities 52, 53, and bare 
determined uniquely by their values at one point, i.e., there is 
a G3 isometry group acting multiply transitively on the two
surfaces orthogonal to eo and e l. Note that in each case the 
first three of Eqs. (2.26) are satisfied, by virtue of (1.1) and 
(A6), and that the groups whose existence we have thus de
termined are not necessarily the maximal isometry groups.D 

It is also of interest to note that in three of the nine non
LRS models, the matter necessarily satisfies the unphysical 
equation of state fL + 3p - 2A = 0. This is summarized in 

Proposition 2.5: In caSes IIAAii, IIIAAi, and IIIAAii, 
the matter content satisfies the unphysical equation of state 
fL + 3p - 2A = O,i.e.,ifud¥Oande-O,andeitherw¥Oor 
w=a=O, then fL + 3p - 2A = O. 

Proof We begin by applying the [e l, e2] commutator 
(A29) to U, thereby obtaining 

u[Jldl + JiJ + d2«722 -!8) - d3n ] 
+ d2(fL + 3p - 2A) = 0, (2.27) 

where use is made of Eqs. (1.3), (A13), (AI4), and (A24). 
Similarly, if we apply the [e l , ez] commutator (A29) tow, and 
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use (1.3), (AI), (AI4), and (AI5), we have 

w [ Jldl + J 2e + dl«722 - 18) - d 3n ] = 0. (2.28) 

In the case where w#O, it now follows from (2.27) and (2.28) 
that d2( fL + 3p - 2A ) = 0. Similarly, we have (if w = 0), 
d3( fL + 3p - 2A ) = 0, and so, since d #0, it follows that 
fL + 3p - 2A = 0. 

Now suppose that w a22 0. We can rotate the tetrad 
so that d 3 -0, and then the difference between (A 19) and 
(A20) shows that 

Jzdz = d 2(d2 + A2 ), (2.29) 

and (A2) and (A21) together show that J3d z = A3 = 0. Form
in& the difference between (A3) and (A 17), we obtain 
Jle = -A2dzu, and from the difference between (A4) and 
(AI8), J 3e = 0. Now applying the [e3, el] c~mutator (A31) 
to u [cf. the derivation of(2.27)], we have n = 0, since 
ud2 #O. Thus Eq. (2.27) becomes 

u [ Jldz - 2dzu - !dze ] + d 2( fL + 3p - 2A ) = 0, 

whose compatibility with equation (2.29) is assured provided 

u(2u + e) = 3( fL + 3p - 2A ), (2.30) 

where use is made of the [e l, ez] commutator (A29) and Eqs. 
(1.3), (A3), and (A24). Differentiation of (2.30) along ez now 
implies that 2u + e = 0, since udz #0, and so by (2.30) itself, 
fL + 3p - 2A = 0, as required. 

3. EXAMINATION OF THE VARIOUS CASES 

In this section we consider each of the 13 cases in Table 
I. We shall investigate the possible isometry groups admitted 
by space-times in each case, and we shall also examine the 
Petrov types. Wherever possible, we link our results to those 
of other authors. It follows from Proposition 2.4 that all 
solutions of types IAGii, IIAGii, IIIAGii, and IIIGGii are 
locally rotationally symmetric, whereas no other solution is. 
In these non-LRS cases, there is a geometrically invariantly 
defined tetrad, and so the study of isometry groups involves 
an investigation of(2.25) with the function b ° (cf. Ref. 2). 
In Appendix B, we have written out in equations (A32)
(A47) the components of (2.25) for a general S = 5 Q ea (cf. the 
proof of Proposition 2.4), using the commutation relations 
(A26)-(A31). Appendix B also contains in (A48)-(A59) the 
set of equations obtained as consistency conditions on 
(A32}-(A47), where use is made ofthe equations in Appendix 
A. In the non-LRS case (b -0), these conditions reduce to 
the standard requirement that the commutation functions 
]I" be be constant on the group orbits. 

We shall find that, among the 12 types of solutions in 
which e -0, the most general case admits only a G I isometry 
group. An abelian G2 isometry group may arise under special 
circumstances. In certain other cases, the abelian Gz group is 
not the maximal isometry group, but it arises as a subgroup 
of the maximal group. All such cases in which there is an 
abelian G2 isometry group acting on timelike orbits may be 
regarded locally as stationary axisymmetric solutions ofEin
stein's field equations, which have been extensively studied 
in view of their astrophysical applications (see, e.g., the dis
cussion and references cited in Ref. 16). Since in our case the 
fluid flow vector lies in the group orbits, and since the fluid is 
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both shear-free and expansion-free, the system is thus under
going rigid rotation. However, it is important to recognize 
that there are also solutions under consideration which can
not be regarded as rigidly rotating stationary axisymmetric 
space-times in the conventional sense. The reason for this is 
that in order to be axisymmetric, a solution must admit a 
spacelike Killing vector field whose trajectories are closed 
curves. Given an abelian G2 isometry group we can select a 
spacelike Killing vector field and identify points along the 
trajectories (cf. Ref. 17), thus making the space-time axisym
metric. In general, however, there will not be a rotation axis 
on which the Killing vector field vanishes, and even if there 
is, the space-time need not necessarily be regular on the axis 
(cf. the simple examples of conical singularities constructed 
in Minkowski space-time'8). Thus the conventional study of 
stationary axisymmetric gravitational fields involves the im
position of global requirements, not only on the compactness 
of the trajectories of a certain spacelike Killing vector field, 
but also on the existence of a well-behaved rotation axis. 
That not all of our solutions would satisfy these require
ments, even under appropriate identifications, is to be ex
pected, and is made particularly evident in view of a well
known result of Kundt and Triimper, 19 which states that 
stationary axisymmetric gravitational fields are orthogonal
ly transitive if and only if S dRd raSb 7Jc ) = 7JdR d raSb 7Jc ) = 0, 
where sand 1) are the Killing vectors involved. In the case of 
a perfect fluid whose flow vector is tangential to the orbits of 
the group generated by sand 1), these conditions are auto
matically satisfied. We shall find in some cases that, while 
there is an abelian G2 isometry group with timelike orbits, 
this group is not necessarily orthogonal transitive. This does 
not contradict the result of Kundt and Triimper, 19 since that 
result is proved using the conventional definition ofaxisym
metry (indeed, given the conditions S dRd [aSb 7Jc ) 
= 7JdR d raSb 7Jc J = 0, orthogonal transitivity is proved by us

ing the rotation axis in a crucial manner; see Refs. 16 and 20). 
In a similar manner (under appropriate identifications, but 
ignoring the question of the rotation axis), we may regard 
certain specializations as being static and/or as possessing 
cylindrical symmetry. Some further remarks, concerning 
the existence of a rotation axis, are given in Sec. 4. 

The investigation of the consistency of the system of 
tetrad equations in each of the 13 types involves some very 
lengthy and tedious calculations. For the sake of brevity, 
since the actual techniques are similar to those already pre
sented both in this article and also in I, we shall not give the 
details, but merely present the results. Similar remarks ap
ply, in general, to the calculations of the isometry groups, 
although a somewhat distinct situation arises when, in a giv
en type, additiolJal symmetries are allowed. Such cases are 
discussed in a slightly extended manner. The calculations of 
the allowed Petrov types involves an investigation of the ad
missible canonical forms of the trace-free complex tensor 
Qab = Eab + iHab' where Eab and Hab are, respectively, the 
electric and magnetic parts of the Weyl tensor (see, e.g., Ref. 
16). This is achieved by first determining the general (i.e., 0-23 

is not set equal to zero) tetrad components, Qa{3' of Qab' us
ing, for example, the expressions given by MacCallum,21 and 
then applying some established results in order to narrow 
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down the range of possibilities. For instance, there are no 
Petrov type 0 (conformally flat) models in our class, since if 
Eab = Hab = ° for a perfect fluid with an equation of state 
p = p( f.l) satisfying f.l + p =I 0, it necessarily follows that 
U = W = 0 (and the space-time is FRW; this result, credited 
to Triimper, is proved by Ellis3

). Also, if d = 0, it follows that 
Ea{3 + iHa{3 is diagonal in a frame with respect to which 
0-23 = 0, and so the space-times are of Petrov types I or D. 
Moreover, if both 0- and d vanish, the models are LRS, and 
therefore Petro v type D, whereas ifboth 8 amd cu vanish, the 
models are static, and therefore either Petrov type I or D. 16 

These results therefore show that, at least apart from 
the four types I1IAAi (8 =0), I1IAAii (8 =8==0), I1IGAi 
(8 u 0), and IIIGAii (8 -U_O-=O), the space-times in 
our class are of Petrov type I or D. In fact, this is true of all 
space-times in our class. We first considered the Petrov type 
III and N cases, in which Qa{3Q{3YQy /j = 0, and showed that 
this requirement could not hold in an open set. We then 
considered the Petrov type II possibility, in which Qa{3 pos
sesses one real eigenvector, and one complex null eigenvec
tor. With respect to any frame, at least one of d ~ + ~3 and 
d ~ + ~3 is nonzero; without loss of generality (renumber
ing if necessary) we can assume that d~ + ~3 =1O, that the 
real eigenvector is in a direction parallel to the nonzero vec
tor (0, - 0-23 , d3, 0) and that the null eigenvector is therefore 
(parallel to) the vector (0, d3, 0-23 , ± i(d; + ~3)1 12). Writing 
out the components of the eigenvalue equations for both ei
genvectors, and appealing to the fact that the null eigenvec
tor is associated with a repeated eigenvalue it follows by 
propagation of the resulting algebraic equations that this sit
uation is untenable. We may thus conclude that all models of 
our class are either Petrov type I or Petro v type D, and it 
remains to investigate the circumstances under which the 
solutions can be ofthe more special Petrov type D. This now 
corresponds to the situations in which Qa{3 possesses a pair of 
equal eigenvalues, and we may therefore rotate the frame 
about the e l axis [as in (2.24)] to arrange for the preferred 
eigenvector to be in the e l -e2 plane, and thus for e3 to be an 
eigenvector associated with the repeated eigenvalue. In this 
case, d3 = 0-23 = 0, and the problem becomes one of invest i
gating the compatibility of the system of equations relative to 
this tetrad and subject to the restriction on Qa{3' Once again 
this is a fairly standard but tedious calculation, whose details 
are omitted. The results are contained in the subsequent dis
cussion of the various types of models in our class. 
1. Type IIIAAi (8 -0). By Proposition 2.5, the fluid has the 
unrealistic equation of state f.l + 3p - 2A = 0. Equation 
(2.27) provides a propagation equation for d2 along e l : 

a1d2 + ai) + d2 (fr22 - !8) - d/l = 0, 

and similarly 

ald3 + a38 - d3(fr22 + !8) + d/l = 0. 

(3.1) 

(3.2) 

The remaining equations are consistent [e.g., the derivative 
of (A2) along e l is compatible with (3.1) and (3.2)]. The solu
tions are of Petro v type I, and in general admit a G 1 isometry 
group, with Killing vector parallel to the fluid flow vector u. 
The only special case that can arise is when there is an abe
lian G2 isometry group whose orbits are orthogonal to both 
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CJ) (or, equivalently, to u) and d; this G2 is orthogonally transi
tive if and only if d is an eigenvector of U a/3 ~n which case 
d3 = 0, without loss of generality, and then il = A3 = 0 and 
a3 r" be = 0 for all commutation functions r" be; a proof of this 
statement is provided in Appendix C). The space-times are 
stationary, and in the special case of a G2 may be regarded as 
also being axisymmetric (cf. our previous remarks in this 
section). 
2. Type IIAAi (0 =w=O). This is the specialization of type 
IIIAAi to the static case. The commutation relations (A29) 
and (A31) applied to u result in propagation equations for d2 

and d3 along e l : 

a 1d2 + ail + d2(U22 - !8) - dil 

+ (d2/u)(J.l + 3p - 2A) = 0 
and 

a ld3 + a38 - d3(U22 + ~8) + dll 

+ (d3/u)(J.l + 3p - 2A) = 0, 

and the remaining equations are consistent. In general, the 
solutions are of Petro v type I, but may be of Petro v type D in 
special cases. In order for a solution to be of Petro v type D, it 
is necessary that d should be an eigenvector of U a/3' In a 
frame in which d3 = U23 = 0, it then follows that in all Pe
trov type D solutions, 

dp A 

-=1, A3=il=0, a3r"be=0, 
dJ.l 

4U~2 + ud ~ + (J.l + p)u22 = 0, (3.3) 

and 

2d2(U22 + u) - d28 - 4A2u 22 = 0, 

where r" be refers to any commutation function. In such a 
tetrad, Eqs. (3.3) together with the field equations and Jacobi 
identities are self-consistent, and in fact Eqs. (3.3) provide 
the necessary and sufficient conditions for type IIAAi mod
els to be of Petro v type D in such a frame. The Petrov type D 
models have already been determined as exact solutions by 
Barnes 11.22 in his studies of shear-free normal flows, the pres
ent type corresponding to Barnes' class IV solutions. In the 
general case, type IIAAi solutions admit a G1 isometry 
group, with Killing vector parallel to the fluid flow. As in 
type IIIAAi, there is the possibility of an additional symme
try, in which case there is an abelian G2 isometry group 
whose orbits are orthogonal to both u and d; and again the G2 

is orthogonally transitive if and only if d is an eigenvector of 
UAB (in which case d3 = 0, without loss of generality, and 
then fl = A3 = 0 and a3r" be = 0 for all commutation func
tions r" be; a proof of this is provided in Appendix C). Thus 
the Petrov type D solutions admit an orthogonally transitive 
abelian G2 isometry group with timelike orbits (which agrees 
with the results of Barnes I 1.22), although the converse is not 
true. When there is an abelian G2 isometry group, the space
times may be considered as being static and axisymmetric 
(cf. our previous remarks). 
3. Type IIIGAi (0 =U-O). The commutators (A29) and (A31) 
applied to w imply Eqs. (3.1) and (3.2), and the (00) field 
equation, (A13), requires that 4w2 = J.l + 3p - 2A (which 
may be regarded as determining J.l). The field equations and 
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Jacobi identities are now self-consistent. The solutions are 
always of Petro v type I, in general admitting a GI isometry 
group with Killing vector parallel to u, the fluid-flow vector. 
The admissible special cases are as follows. First, there could 
be a second Killing vector, S aea , where S 18 = s 2d2 + S 3d3 
and (S2j2 + (S3)2#0. This case gives rise to an abelian G2 
isometry group acting on timelike 2-surfaces. This group is 
orthogonally transitive if and only if d is an eigenvector of 
UAB and the group orbits are orthogonal to both CJ) and d (in 
which case d3 = 0, without loss of generality, and then 
fl = A3 = 0 and a3r" be = 0 for all commutation functions 
r" be (cf. type IIIAAi); a proof is given in Appendix C). In 
addition, it is possible for solutions of type IIIGAi to admit a 
G3 isometry group of Bianchi type I (whose orbits are time
like hypersurfaces orthogonal to d), and this occurs if and 
only if 8 = 0 and u22 = ± fl (in which case, d3 = ± d2 , 

A3 = ± A2, 4~2 + 8dzA2 = J.l - p + 2A, and alr"be 
= a2r" be + a3r" be = 0 for all commutation functions, r" be)' 

Since the acceleration is zero, and we are assuming an equa
tion of state p = p( J.l), it follows from the Bianchi identities 
(A22)-(A25) that p is identically constant, and the solutions 
are therefore most readily interpreted as dust (p=O) models. 
The solutions admitting a G3 isometry group correspond to 
the general class Ciii (i.e., c#O) of Ellis2

; the abelian G2 case 
with S 1=0 corresponds to the general class Cii (i.e., c#O) of 
Ellis,2 whereas the orthogonally transitive abelian G2 case is 
the special case of Class Cii with c = Oin Ellis,2 and so (in the 
case ofa regular rotation axis) is the case treated by Van 
Stockum.23 When there is an abelian G2 isometry group, the 
solutions can be regarded as being stationary axisymmetric 
dust solutions, and as being stationary cylindrically symmet
ric dust solutions when there is an abelian G3 isometry group 
(cf. our previous remarks). Winicour24 provides a construc
tion of the exact solution of all stationary axisymmetric dust 
solutions in which the flow vector is tangential to the group 
orbits and in which there is a well-behaved axis of rotation. 
4. TypeIIIAAii(O U 0). This represents a specialization of 
type IIIAAi in which the requirement J.l + 3p - 2A = 0 is 
preserved, i.e., the equation of state is unphysical. Without 
loss of generality, d3 = 0, and then fl = 0, A3 = 0 and a3r" be 
= 0, for all commutation functions r" be' We must now ap

pend to (3.1) the extra propagation equation 

a2dz = d2(d2 + A2) (3.4) 

and the algebraic constraints 

8= -2u (3.5) 

and 

4w2 + 4u2 
- 4dzA2 + J.l - p + 2A = O. (3.6) 

The system of equations is then self-consistent. The space
times are of Petro v type I, and there is an orthogonally tran
sitive abelian G2 isometry group whose orbits are orthogonal 
to both CJ) (or, equivalently, u) and d. They may therefore be 
regarded as stationary axisymmetric space-times (cf. our re-
marks above). A 

5. TypeIIIAGi(O -d =0). In this caseil =A2 =A3 = O,and 

18 2 
_ ~2 + u8 - w 2 

- (p - A ) = O. (3.7) 

Furthermore, a2r" be = a3r" be for all commutation functions 
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l' be' The resulting system of equations is now consistent. 
These solutions are of Petro v type I and admit a G3 isometry 
group of Bianchi type II acting transitively on hypersurfaces 
orthogonal to ro and U. 
6. Type IIAAii (0 ==lU=t7==O). Consistency of the constraints 
requires the unphysical equation of state f1 + 3p - lA = 0. 
Without loss of generality, we may choose a tetrad in which 
d3 = 0, and the~ a31' be = ° for all commutation functions 
1'be' andA 3 = n = 0. The quantity d2 is propagated alonge l 

in accordance with Eq. (3.1), and furthermore, Eqs. (3.4)
(3.6), specialized to the case lU = 0, hold as additional con
straints. The system of equations is now self-consistent. The 
space-times are static, of Petro v type I and admit an orthogo
nally transitive abelian G2 isometry group whose orbits are 
timelike 2-surfaces orthogonal to u and d. They may be re
garded locally as static axisymmetric solutions (cf. our pre
vious remarks). 
7. Type IIAGi (0 =lU Ad =0). This is a specialization of type 
IIIAGi. Once again, n = A2 = A3 = 0, and Eq. (3.7), with 
lU = 0, must hold. Furthermore, a21' be = a31' be for all com
mutation functions l' be' and the resulting system of equa
tions is now consistent. In general, solutions of type IIAGi 
are of Petro v type I, but they may also be of Petro v type D. In 
the Petrov type D case, the commutation functions are con
strained by the further relationships 

and 

(20-22 + 30)u = f1 + 3p - lA, 

02 
- 4~2 + 4uO = 4( P - A ), 

20-220 - 4~2 - 4uo-22 = - (f1 + p)/p', 

40-22(P' - 1)p' + u [( f1 + p)(p" /p') + p' - 1] = 0, 

from which it follows that the pressure and density are relat
ed to each other either by the second-order differential equa
tion 

(f1 + p)(f1 + 3p - lA) d2~ 
df1 

= dp (3 dp _ 1)( f1 - p + lA ) 
df1 df1 

or the first-order differential equation 

dp = 1 
df1 

( with dp #~) 
df1 3 

[cf. the similar differential equations obtained by Collins and 
Wainwright4 for our case IAGii treated below; these equa
tions are (3.10) and (3.13) below]. The Petrov type D solu
tions have been obtained in exact form by Barnes, 11,22 and 
correspond to his class III. All solutions of type IIAGi admit 
a G3 isometry group of Bianchi type I, whose orbits are time
like hypersurfaces orthogonal to U. All of the solutions are 
static; with appropriate identifications, they may be regard
ed as static cylindrically symmetric solutions (cf. our pre
vious remarks), and with regular rotation axes fall into the 
class studied by Evans25 and Bronnikov. 26 Note that the 
class of solutions with an ultrarelativistic equation of state 
p = j f1 investigated by Teixera, Wolk, and Som2

? cannot be 
of Petro v type D, since as we have shown, dp/df1#j in our 
Petrov type D solutions. 
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8. Type IIIGAii (0 -U=t7==O). This is a specialization of 
both types IIIGAi and IIIAAii. Without loss of generality, 

A A 

d3 = 0, and then n = A3 = 0 = 0, and al1'be = a31'be = ° 
for all commutation functions l' be' The commutation func
tion d2 is propagated along e2 according to (3.4); note that 
(3.5) is still valid when specialized to this type. Equation (3.6) 
is replaced by the relations 

4£U2 = f1 + 3p - 2A (3.8) 
and 

4d~2 =f1-p + lA, 

and the entire system is now self-consistent. The solutions 
are of Petro v type I and admit a G3 isometry group of Bian
chi type I acting transitively on timelike hypersurfaces or
thogonal to d. When interpreted as dust solutions, they cor
respond to the case Bii of Ellis,2 and, when interpreted as 
cylindrically symmetric dust solutions, to the special solu
tion of Van Stockum,23 which was first determined by Lanc
ZOS,28 rediscovered by Wright,29 who established the Petrov 
type and discussed the isometries, and later obtained by Kra
sinski 14 in his search for rigidly rotating perfect fluids pos
sessing a Killing vector parallel to the vorticity vector. 

9. Type IIIGGi (0 =u=d =0). This is a specialization of 
1)'pes IIIGAi and I1IAGi, and again we have 

n = A2 = A3 = ° and a21'bc = a31'be = ° for all commuta
tion functions l' be' Furthermore, Eq. (3.7), specialized to the 
case u=o, is still valid, and in addition we have the relation 
(3.8). The system of field equations and Jacobi identities is 
now self-consistent. The solutions are of Petrov type I and 
admit a G3 isometry group whose orbits are timelike hyper
surfaces orthogonal to roo With the interpretation that the 
source is dust, this type corresponds to the exact solution of 
cases Aii and Ci of Ellis. 2 
10. Type IA Gii (lU-t7==d =0). This type is LRS (cf. Proposi
tion 2.4), and in view of its high symmetry, it has been dis
cussed extensively in the literature. Without loss of general

ity, fl = 0, and we obtain a21' be = a31' be = ° for all 
commutation functions save possibly A 2 and A 3 (cf. the proof 
of Proposition 2.4). In addition, al() = 0, by Proposition 2.1. 
The system of equations is consistent provided 

(3G - 2)p' [f1 + A + ~O 2 _ !() 2 

+ 3(a~2 + a~3 +A; +A ~)] 

+ 6u2[2Gp' - G'( f1 + p)] = ° (3.9) 

whose preservation requires a succession of constraints, de
pending on whether or not u = u( f1), as follows: 
(i) u #u( f1): 9p'G = 9p'2 - 1, (3.10) 

10(1 - 3p')u2 - 15p'(1 - 3p')uO - 27p'2(U + p) = 0, (3.11) 

and 

r== - (a~2 + a~3 +A ~ +A j) = (~_ 0 )2 >0. 
3p' 2 

(ii) u = u(f1): 

(3.12) 

G(3G - 2) + 3(1 + 3p')[(f1 + p)G' - 2Gp'] = 0, (3.13) 

2Gu2[9Gp' - 9p'2 + 1] + p'( f1 + p)( 1 + 3p')2 = 0, (3.14) 

(1 + 3p')O = 2[1 + 3p' - 3G]u, (3.15) 

and 
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(3.16) 

Here G is the function defined in Eq. (1.5), in terms of f-L, p, p', 
and p". Thus in case (i), Eq. (3.10) represents a second-order 
differential equation forp as a function off-L' and by (3.12) the 
solutions are spherically symmetric [when A = 0, the differ
ential equation thus obtained is equivalent to Eq. (3.18b) of 
Collins and Wainwright4]. In this case we may regard Eqs. 
(3.9)-(3.12) as determining the quantities e, 8, and r in terms 
of basic independent variables, u andf-L. In case (ii), Eq. (3.13) 
represents a third-order differential equation for p as a func
tion off-L, and by (3.16) the solutions are plane symmetric [cf. 
Eq. (3.18a) of Ref. 4]. In this case, e is identically constant, 
and Eqs. (3.9), (3.14), and (3.15) may be regarded as deter
mining the quantities e, u, and 8 in terms of the one basic 
variable, f-L [note also that in case (i) there is a special case in 
which e is identically constant, but that this requires 
p' = -~, so G = ! and Eq. (3.10) is redundant; cf. Eq. (3.18c) 
of Ref. 4]. 

In case (i), the solutions admit a G3 isometry group act
ing multiply transitively on the spatial2-surfaces orthogonal 
to both u and u and are spherically symmetric. They were 
first given in exact form by Wyman.5 Further details may be 
found in Refs. 4 and 14, and references cited therein. In case 
(ii), the solutions admit a G4 isometry group whose orbits are 
hypersurfaces tangential to e2 and e3 and which may be time
like or spacelike. These solutions are plane symmetric and 
hypersurface homogeneous, and are given in exact form by 
Collins and Wainwright.4 They are of interest since they 
show that shear-free spatially homogeneous perfect fluids 
are not necessarily FR W, contrary to the claims of King and 
Ellis. 10 

Since all solutions of type IAGii are LRS, they are of 
Petrov type D (recall from above that they cannot be of Pe
trov type 0, since we are assuming that u2 + U)2~0). They 
belong to case IIc of Stewart and Ellis. 12 
11. Type IlIA Gii (e -fT===d =0). These solutions are LRS and 

A 

we may again choose a tetrad in which {1 = 0; then JZr"be 

= J 3r" be = 0 for all commutation functions except possibly 
A2 and A3 (cf. the proof of Proposition 2.4). The system of 
field equations and Jacobi identities is self-consistent. The 
solutions are of Petrov type D, and admit a G4 isometry 
group acting multiply transitively on timelike hypersurfaces 
orthogonal to ro (and to u). In general, they belong to the case 
Id of Stewart and Ellis, 12 but may also belong to case Ib; this 
alternative is possible if and only if 8 =0, which requires 
2U)2 = (f-L + p) and an unphysical equation of state satisfying 
dp/df-L = - j. Solutions of type IIIAGii have recently been 
studied by Lukacs, Newman, Sparling, and Winicour.30 

12. Type IlAGii (e =U)=a=d =0). This type is static and 
LRS. The commutation functions are constrained by 

J~2 + Jy43 + A ~ + A ~ + !O 2 + uO - (p - A) = 0 
(3.17) 

(cf. Eq. (3.8) of Ref. 12), and J2r" be = J3r" be = 0 for all com
mutation functions except possibly A2 and A 3 • The solutions 
are of Petrov type D and belong to case IIc of Stewart and 
Ellis. 12 They admit a G4 isometry group acting multiply
transitively on timelike hypersurfaces orthogonal to U. A 
construction of all static plane-symmetric solutions has been 
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given by Taub,31 and some solutions for p =!,u were ob
tained by Teixera, Wolk, and Som.32 Plane symmetric solu
tions are governed by the further specification that 
r===(J~2 + Jy43 + A ~ + A ~) = 0 in (3.17), which is auto
matically preserved throughout space-time. Static spherical
ly symmetric solutions, in which r> 0, also belong to this 
class, and have been extensively studied for a variety of equa
tions of state (see the discussion in Ref. 16). 
13. TypeIlIGGii(e =u=&===d =0). These solutions are LRS 
and of Petrov type D. The system of equations, with (3.8) 
appended, is self-consistent. In the general case (0 #0), the 
solutions admit a G4 isometry group, multiply transitive on 
the timelike hypersurfaces orthogonal to ro. These solutions 
belong to case Ie of Stewart and Ellis 12 and are given in exact 
form by these authors (but note that there are some errors, 
most notably in their expression for f-L). If the fluid is inter
preted as dust (p = 0), the solutions belong to case Ib of 
Ellis,2 who also provides an exact form. If however 8 =0, it 

follows thatp = f-L + A, r = - (J~2 + J~3 +A ~ +A~) 
= - 2tU2 < 0, and U)2 = f-L + A in agreement with Eq. (3.1) 

of Stewart and Ellis, 12 and, for dust, with (4.24) of Ellis. 2 In 
this case p, f-L, r, and U) are constants, and there is a G5 iso
metry group acting transitively on space-time. In the case of 
dust, this is the well-known Godel13 solution [cases la, Ai, 
Bi, and Ci ofEllis2], and for nonzero pressure it is the "gener
alized G6del" solution, apparently first discovered (for 
A = 0) by Raval and Vaidya,33 and (for arbitrary A) by 
~tewart and Ellis 12 in their case la. These solutions, in which 
e =0, arose in the search by Krasinski 14 for stationary per
fect fluid solutions of Einstein's equations in which there is a 
Killing vector parallel to the vorticity. 

4. GENERAL REMARKS 

Ellis2 has shown that if, in the case of shear-free dust, 
there are spacelike hypersurfaces {f-L = constant I, then the 
space-time is locally either a G6del model (ro#O) or FRW 
(ro=O). This result can be easily generalized to 

Theorem 4.1 (cf. Theorem 5.3, Ellis2
): Any shear-free 

perfect fluid in general relativity with an equation of state 
p = p( fJ-), such that f-L + p~O, for which there are hypersur
faces {f-L = constant) transverse to the fluid flow, and for 
which the acceleration is parallel to a nonzero vorticity vec
tor, is necessarily a generalized Godel model 
(e u=&===d =8 =0). 

Proof By Theorem 3.3 of I, it follows that under the 
assumptions of the present theorem, e =0. Since f-L is con
stant on hypersurfaces transverse to the flow, we may propa
gate off these hypersurfaces using the Bianchi identity (A22) 
to obtain that f-L is constant throughout space-time, in which 
case, by the assumption of an equation of state, so also is p, 
and hence, by (A23), u=o. The fluid is therefore effectively 
dUst, and the proof of Ellis2 can be used from this point on. 
[Equation (A13) shows that 4<;J2 = f-L + 3p - lA, and hence 
U) is identically constant. From (AI), (AI4) and (A15), we 
have 8 =:=d2=d3=0, and so the solutions are of type IIIGGi 
(&#0) or IIIGGii (&===0). Suppose that U#O. By (A16), 2~2 
= -!( f-L - p) - A and hence an is constant; the difference 

between {A3) and (A17) shows thatA 2 = 0, and similarly, 
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A3 = O. Then (AI9) shows that 2tu2 = -!( p - p) - A, im
plying that p + p=O, a contradiction. Thus type IIIGGi is 
inadmissible, and the only case in type IIIGGii in which o =0 is the generalized G6del model, as we saw in Sec. 3.] 0 

Remark. This theorem provides a characterization of 
the Gooel model, i.e., a uniqueness theorem for the G6del 
model among the class of solutions being studied. We have 
shown its validity irrespective of the spacelike nature of the 
hypersurfaces on which p is constant. Since locally there are 
always hypersurfaces on which p is constant, it follows that 
the only cases excluded from consideration in the theorem 
are those in which there are hypersurfaces Ip = constant J to 
which the flow is tangential. 

Ellis2 has also shown that iff or shear-free rotating dust 
there is a Killing vector independent of the flow vector u in 
the 2-surfaces spanned by u and ro, then the space-time either 
admits a G3 isometry group of Bianchi type I acting transi
tively on timelike hypersurfaces, or admits a G5 isometry 
group acting multiply transitively on space-time (this being 
the G6del model). We can now re-derive and generalize this 
result, in the context of our present study. Thus we obtain 

Theorem 4.2 (cf. Theorem 5.4, Ellis2
): Consider a shear

free perfect fluid with an equation of state p = p( p), satisfy
ing p + p=/=O, in which the acceleration, 0, and vorticity, ro, 
are parallel (and possibly zero, but not simultaneously zero). 
Suppose that there is a Killing vector independent of u and 
tangent to the 2-surfaces spanned by u, 0 and ro. Then either 
0#0 and ro#O, and the solutions admit a G3 isometry group 
of Bianchi type II acting transitively on timelike~ hypersur
faces orthogonal to 0 and ro (type IIIAGii with () = 0 and 
hence dp/ dp = - j) or 0=0 and ro # 0, in which case either 
there is a G3 isometry group of Bianchi type I acting transi
tively on timelike hypersurfaces (type IIIGAii), or there is a 
G5 isometry group acting multiply transitively on space-time 
(the generalized G6del model; type IIIGGii with e _0). 

Proof We see from Appendix B that in order to have 
two independent Killing vector fields in the eo - e1 plane, it 
is necessary that () U22=e =0. If UJ-O and u #0, the only 
candidates are types IIAAii and IIAGii. However, in type 
IIAAii,O = - 2u [cf. Eq. (3.5)]andsoO #0, whereas if 0 =0 
in type IIAGii, Eqs. (A13) and (AI6)implythatp + p_O. If, 
on the other hand, u # 0 and w # 0, type IIIAAii is ruled out 
by Eq. (3.5); the only viable alternative is type IIIAGii, and, 
as we have seen, 0 =0 is possible only if dp/ dp = - j. Final
ly, suppose that u 0 and w#O. Then the only possibilities 
are type IIIGAii (in which e automatically vanishes) and 
type IIIGGii, where, as discussed in Sec. 3, the requirement 
that 0 =0 leads to the generalized G6del model. The group 
properties claimed in the theorem can be immediately de-
duced by reference to the discussion in Sec. 3. 0 

Another result of Ellis2 shows that if for rotating shear
free dust, p is constant on the hypersurfaces orthogonal to ro, 
then the space-time admits an isometry group acting transi
tively on these hypersurfaces. That this is so follows readily 
from our discussion in Sec. 3, since if () -u-O it follows that 
4cu2 = p + 3p - 2A, and differentiation of this along e2 and 
e3, with the assumptions J 2UJ = J 3w = O#w requires d = 0; 
then we have types IIIGGi and IIIGGii, which both admit 
isometry groups that are transitive on the hypersurfaces or-
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thogonal to ro. The fact that ro is indeed hypersurface-or
thogonalfollows since n = 0, which is also true ifU # 0 and ro 
and 0 are parallel (Proposition 2.1). This result of Ellis2 does 
not generalize directly to the case 0#0, since types IIIAAi 
and IIIAAii provide counterexamples. However, in these 
types the matter obeys the unrealistic equation of state 
p + 3p - 2A = 0; moreover, in the class of models under 
consideration, they are the only exceptional cases, since 
space-time is locally homogeneous on the hypersurfaces or
thogonal to ro (and 0) in the case of the other candidates, viz., 
IIIAGi and IIIAGii. If in addition p is constant along ro, 
then 0 must be zero. We therefore obtain 

Theorem 4.3 (cf. Theorem 5.2, Ellis2
): Consider a rotat

ing shear-free perfect fluid with an equation of state 
p = p( p), satisfyingp + p=/=O andp + 3p=/=2A, in which the 
acceleration is parallel to the vorticity (and possibly zero). 
Then p is constant on the hypersurfaces orthogonal to ro if 
and only if space-time is invariant under an isometry group 
acting transitively on these hypersurfaces. Ifin additionp is 
constant along the vortex lines, then space-time is homogen
eous. 

Wainwrighe4 has constructed a classification scheme 
for Petrov type D perfect fluid solutions. Since some of our 
solutions are of Petro v type D, it is of interest to classify them 
according to Wainwright's scheme. The LRS solutions are 
of Wainwright's class IA and the acceleration vector, if not 
zero, lies in the 2-space spanned by the principal null direc
tions at each point. The only other admissible solutions are 
static, and belong to our types IIAAi and IIAGi; these are 
the static Barnes II ,22 class III and IV solutions, and are of 
class IC. 34 In the context of Wainwright's classification 
scheme, the static Barnes' solutions differ from the LRS so
lutions not only in regard to their subclass (i.e., IC as op
posed to IA), but also in the fact that in these solutions the 
acceleration vector can not lie in the 2-space spanned by the 
principal null directions. 

It is to be noted that in three of our types (viz., IIAAii, 
IIIAAi, and IIIAAii) the fluid necessarily satisfies the unre
alistic equation of state p + 3p - 2A = 0; a proof was given 
in Proposition 2.5. While this equation of state is physically 
unreasonable, it is reminiscent of that in the well-known 
Wahlquise5 solution; A = 0 andp + 3p is constant. More 
particularly, there is a limiting case16 of the Wahlquise5 so
lution, due to Vaidya,36 in which A = 0 and p + 3p = 0 (so 
that p + 3p - 2A = 0, as above). These solutions are of Pe
trov type D, the fluid flow is shear-free, expansion-free, ro
tating and accelerating, and the space-time admits an abelian 
G2 isometry group acting on timelike orbits. 16,34,35 The solu
tions belong to Wainwright's class II, in which the fluid flow 
vector does not lie in the 2-space spanned by the principal 
null directions. They are the only class II solutions of which 
Wainwrighe4 was aware, and the only static axisymmetric 
perfect fluid (not dust, and with no higher symmetries) solu
tions listed by Kramer, Stephani, MacCallum, and Herlt. 16 
In these solutions, the acceleration and vorticity are not par
allel, and therefore do not fall into the class presently under 
study. 

Krasinski 14 has considered stationary perfect fluids 
with an equation of state p = p( p)( p + p=/=O) having 
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u==() =0 and ro=jiEO, and with the additional restriction that 
there is a Killing vector parallel to the vorticity vector, ro. He 
arrived at three cases. In the first case, the only one in which 
U=jiEO, he obtained a new exact solution. In the other two 
cases, U=O, and the possibilities can be deduced from our 
discussion in Sec. 3, viz., types IIIGAi, IIIGAii, and 
IIIGGii (the generalized Gooel solution). In all of these 
cases, there is a G3 isometry group of Bianchi type I that acts 
transitively on timelike hypersurfaces to which ro is tangen
tial. However, type IIIGAi is ruled out, since it follows from 
(A42), (A43), and (A47) that in order for there to be a Killing 
vector parallel to ro, it is necessary that fr==8 =n -0. In both 
types IIIGAii and IIIGGii there is indeed a Killing vector 
parallel to ro. Krasinski's first case is a new exact solution in 
which the vorticity and acceleration are orthogonal, and 
therefore does not belong to the class of solutions presently 
under discussion. 

It is of interest to observe that in the 12 stationary types 
of solution, the space-times are necessarily analytic, pro
vided that there is an analytic equation of state. 37 This means 
that, having determined locally a solution which admits an 
orthogonally transitive abelian G2 isometry group with time
like orbits (e.g., in type IIIGAi), such a space-time must (pro
vided that the equation of state is analytic) be extended ana
lytically, so that in principle one could determine uniquely 
whether the initial region is locally part of a space-time 
which contains a regular rotation axis, and so is stationary 
and axisymmetric in the conventional sense. 

In connection with shear-free solutions of Einstein's 
field equations, in which the source is a perfect fluid with 
equation of state p = p( f.1), and in which f.1 + p=jiEO, a number 
of outstanding problems clearly remains. Among these, the 
most pressing concern is, in our opinion, whether or not the 
Conjecture of Sec. I is true. Since this seems to be difficult to 
determine, a less ambitious pursuit would be to attempt to 
establish the truth (or falsifY) of the Conjecture under a var
iety of additional special conditions (cf. I, and the many spe
cial results cited therein). Among these extra conditions 
could be the requirement that the vorticity be orthogonal to 
the acceleration (cf. the results of Krasinski 14 discussed 
above), or that the space-time admit certain types of iso
metry groups, such as an abelian G3 with timelike orbits (as 
in the Krasinski l4 solution), or an abelian G2 with timelike 
orbits (cf. the solutions ofWahlquiseS and Vaidya36

). 

Regardless of whether the Conjecture is true (or can be 
proved to be true!), a thorough examination of the cases (i)
(iv) of Sec. 1 would be of interest, particularly with a view to 
obtaining exact solutions. Case (i) (u==0, ro=O, ()=jiEO, U=jiEO) 
has been discussed herein, and the solutions are known in 
exact form.4 Case (ii) (u==() -0, ro=O, U=jiEO) has also been 
discussed in the present article. The solutions are all static, 
and the non-LRS Petrov type D ones are known exactly. 11,22 
While there are many known LRS (and necessarily Petrov 
type D) solutions, such as those with static spherical symme
try, the most general solution is not known in exact form, We 
know of no exact static Petrov type I space-times, of which 
the most special (and hence presumably most amenable to 
exact solution) belong to our type IIAGi (() =w-d 0) and 
admit an abelian G3 isometry group. In case (iii) (a=() -0, 
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ro=jiEO), we have examined in this article the special case in 
which u is parallel to ro (and possibly zero). When U=O, the 
solutions are all known in exact form if ud =0 (correspond
ing to our types IIIGAii, IIIGGi, and IIIGGii; see Ref. 2), 
but the general type IIIGAi remains obscure. Even in the 
most special subcase, when type IIIGAi admits an abelian 
G3 isometry group, there appears to be no known exact solu
tion. When u is nonzero and parallel to ro, there are four 
types; the most special (in terms of isometry groups and Pe
trov types) and also the most relevant (allowing a realistic 
equation of state) are type IIIAGi (() =d =0), which is Petrov 
type D and admits a G3 isometry group, and type IIIAGii 
(() =u=d =0), which is LRS (and hence Petrov type D), and 
admits a G4 isometry group. The only exact solution of 
which we are aware in the entire class is the special case Ib of 
Stewart and Ellis, 12 for which () =fr==d =fr==0 and dp/df.1 
= - j, i.e., we know of no solutions admitting a physically 

reasonable equation of state. However, we have succeeded38 

in constructing a general metric form for all solutions of type 
IIIAGi and its various specializations (IIAGi, IIAGii, 
IIIAGi, IIIGGi, and IIIGGii), viz., 

ds2 = _ T2(x l )(dxO - Y(X2,x3)dx3f + (dxlf 

+ y2(XI)(dx2)2 + Z2(X I )t 2(x2)(dx3 )2, 

where, in the orthonormal tetrad 

I J 
eo=--, 

T Jxo 

and 

. T' 
u=

T' 
- T Jy 

w=----
2YZ Jx2

' 

A_I (Y' Z') a22 -- --- , 
2 Y Z 

A Y' Z' 1 d ()=_+_ A ___ t 
Y Z' 2 - t Y dx2 ' 

and 

() = d2 = d3 = n = A3 = 0, 

Without loss of generality, we can make further specializa
tions. In the non-LRS models, we putt =1; ifw=O, we make 
y 0, whereas if w=jiEO, we puty=x2. Ifu=O, we put T=I, 
and in the LRS models, Y Z, with t (x2

) satisfying the equa
tion d 2t /d (X2)2 + Kt = 0, where K = - 1, ° or + 1. This 
coordinate system is equivalent to that of Barnes 11 ,22 for the 
Petrov type D solutions of our type IIAGi, to that of Ellis2 

for the type IIIGGi and type IIIGGii solutions, and to that 
of Stewart and Ellis l2 for the type IIAGii, type IIIAGii, and 
type IIIGGii solutions. Finally, there is case (iv) (a==O, 
ro¥=O, ()=jiEO, u¥=O), and we know of no solutions in this class 
(indeed, the exhibition of one solution in case (iv) amounts to 
the provision of a counterexample to the Conjecture of Sec. 
1). In addition to the above list of problems, the question of 
the global properties of the solutions remains outstanding, 
particularly with regard to whether or not any can represent 
reasonable stellar or cosmological models. 
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APPENDIX A 

Jacobi identities 

alw = w[u - 0], 

a2d3 - a3d2 - d~3 + dy42 = 0, 

a lA2 + a2U22 - !a20 - ali + !(d2 +A2)0 

- (d2 - A2 )U22 + n (d3 - A3 ) = 0, 

alA3 - a3U22 - !a30 + a2n + ~(d3 + A3)0 

+ (d3 - A3)U22 - n (d2 - A2) = 0, 

acPJ = 0, 

aoo = - j8(0 - 2u), 

aod2 = - jd28, 

aod3 = - jd38, 

aoA2 = - jA28, 

aoA3 = - jA38, 
A A 

ar/1= -j!18, 

aOU22 = - ju228. 

Field equations 

(00) ao8 + j8 2 
- 2w2 

- alu - u2 

- uO + !( p + 3p - 2A ) = 0, 

(Oa) a2w = d2w, 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(AI2) 

(A13) 

(AI4) 

a3w = d3w, (AIS) 

(ap) alo - a2d2 - a3d3 + 2~2 
A 2 2 2 +!8 + d 2 + d 3 - d~2 - dy43 

= jao8 - alu - u2 + 8 2/3 - !(p - p) -A, (AI6) 
A A A A 

alA2 - a2U22 + !a28 - a3il + d3!1 - A3!1 

+ !(d2 +A2)0 - (d2 + 3A2)U22 = - 2d2u, (AI7) 

alA3 + a3U22 + !a30 + a2n - d2n + A2n 

+ !(d3 + A3)0 + (d3 + 3A3)U22 = - 2d3u, (AIS) 

alU22 + !alo - a2d2 + a~2 + ay43 + U220 

+!02-dy43+A~ +A~ +d~ 
= - U(fr22 +!O) - !(p - p) 

- A + 8 2/3 + ao813 + 2w2, (AI9) 

- a lU22 + !a)o - a3d3 + a~2 + ay43 - u220 

+!O 2 - d~2 + A ~ + A ~ + d ~ 
= U(U22 - !O) - !(p -p) -A + 8 2/3 + ao813 + 2w2, 

(A20) 

a2d3 + a3d2 - WU22 - 2d2d3 - d~3 - dy42 = 0. (A21) 

Equations (1.3), which were derived in the case U¢O, 
but which also hold trivially in the case u=o, have been 
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employed in equations (AI7) and (AIS). 
Bianchi identities 

arJl + (p + p)8 = 0, 

at!' + (p + p)u = 0, 

a7P = 0, 

a3P = 0. 

Commutation relations 

[eo,e l ] = ueo 

[eO,e2] = 
- (813)e l, 

- (813)e2, 

(A22) 

(A23) 

(A24) 

(A2S) 

(A26) 

(A27) 

[eO,e3] = - (813)e3, (A2S) 

[e l ,e2] = - d2el - (fr22 + ~O )e2 + ne3 , (A29) 

[e2,e3] = - 2weo + A3e2 - A2e3, (A30) 

[e3,e l]= d3e l +ne2-(u22-~0)e3' (A31) 

APPENDIXB 

Components of Eq. (2.2S) for ~ = S aea : 

aot° = - USI, 
alSo = ur, 
azt° = 2ws 3

, 

a3r = - 2ws 2
, 

aot) = j8s I, 

als 1= - j8r + dzt2 + d3s
3, 

azt I = - dzt I, 

a3s 1= - d3s I, 
aot 2 = j8s 2

, 

alS
2 

= (fr22 +!O )S2 + ns 3
, 

azt 2 = - j8r - (fr22 + !O)s 1_ A3S 3, 

a3s 2 = - ns I + A 3S 2 + b, 

aot 3 = j8s 3
, 

3 A 2 A A 3 
als = -!1s - (0"22 - !8)s , 

azt 3 = ns I + Azt 3 - b, 

a3S
3 = - j8s 0 + (U22 - !O)s) -Azt2. 

Compatibility requirements/or (A 32)-(A 47): 

Saaau = 0, 

rao8=0, 

Saaad2 = bd3, 

Saaa d3 = - bd2, 

SaaaO=O, 

SaaaU22 = 0, 

S aaa A2 = a3b + A3b, 

SaaaA3 = - a2b -A2b, 

saaa n = alb, 

saaaw = 0, 

bU22 = 0, 

aob =0. 
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(A32) 

(A33) 

(A34) 

(A3S) 

(A36) 

(A37) 

(A3S) 

(A39) 

(A40) 

(A41) 

(A42) 

(A43) 

(A44) 

(A4S) 

(A46) 

(A47) 

(A4S) 

(A49) 

(ASO) 

(ASI) 

(AS2) 

(AS3) 

(AS4) 

(ASS) 

(AS6) 

(AS7) 

(AS8) 

(AS9) 
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APPENDIXC 

In this appendix, we derive necessary and sufficient 
conditions for an abelian G2 isometry group in types IIAAi, 
IIIAAi, and IIIGAi to be orthogonally transitive. In all 
three types, () _0 and u~ 0, and in types IIIAAi and IIIGAi, 
cu ~ O. Since () =0, there is a Killing vector parallel to eo; 
suppose now that ~ = s °eo + se l + 1]e2 + ve3 is an indepen
dent Killing vector field (so that S 2 + 1]2 + v:¥,=O). If 
1] v 0, so that s:¥,=O, Eqs. (A42) and (A47) show that 
U = 0, a contradiction, and hence 1]2 + v:¥,=O. We construct 
the orthonormal tetrad Eo defined as follows: 

and 

Eo = eo, 

E - (1]2 + v)e l - s1]e2 - S1]e3 
1- (1]2 + V)I/2(S2 + 1]2 + V)I/2 ' 

E2 = _---::-v_e-=.2_+'-::--!-1]7:e:!..3 
(1]2 + V)I/2 ' 

E3 = se l + 1]e2 + ve3 
(S2 + 1]2 + V)I/2 ' 

so that the two Killing vector fields lie in the 2-space spanned 
by Eo and E3 at each point. In types IIAAi and IIIAAi it 
follows that S -0 since ~( /1 )=0, and in these cases U ~ O. By 
equations (A32), (A40) and (A44), we have that Eo and E3 
(and hence the two Killing vectors) commute. We show that 
EI and E2 are 2-surface forming if and only if S = 0 and d is 
an eigenvector of UAB , and this completes the proof. The 
necessary and sufficient condition for EI and E2 to be 2-
surface forming is that Eo·[EI, E2l = E3·[EI, E2l = O. Now 
by direct calculation using (A31), we obtain Eo·[EI, E2l = 0 
q cus (1]2 + v) = 0 q cuS = O. But in types IIAAi and 
IIIAAi, S =0, as we have just shown, so Eo·[E I, E2l-O, 
whereas in type IIIGAi, cu:¥,=O, so Eo·[EI, E2l = 0 q s = O. 
In this case, the above expressions for E I, E2, and E3 simplify 
considerably and a direct calculation using (A29), (A31), 
(A41) and (A45) shows that E3·[EI,E2l = 0 q 1]vu = 0 q 
1]V = 0, since U~O, as we observed previously. Now 
1]d2 + ydJ = 0, since in types IIAAi and IIIAAi, U~O, so 
~(/1)=0 q 1]d2 + vdJ = 0 using Eq. (1.3), whereas in type 
IIIGAi, ~(cu) 0 q 1]d2 + vd3 = 0 by (A 14) and (A 15). Thus 
if 1] = 0 and v~O, dJ = 0, and so d is an eigenvector of UAB 

(and similarly if v = 0 and 1] ~ 0), whereas if d is an eigenvec
tor of UAB then, without loss of generality, d3 = 0 (and d2~0 
in the three types under consideration), so 1] = 0, implying 
EAEI, E2l = O. 
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Note also that ifdJ = Oandd2~0, the requirement that 
1] = 0 and v~O in (A41) and (A42) proves that n = A3 = O. 
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The phase space of general relativity is considered in the asymptotically flat context. Using 
spinorial techniques introduced by Witten, a prescription is given to transport rigidly the space
time translations at infinity to the interior of the (spatial) three-manifold. This yields a preferred 
four-parameter family oflapses and shifts and hence reduces the infinite-dimensional freedom in 
the choice of "time" to the restricted freedom available in special relativity. The corresponding 
Hamiltonians are computed and are shown to have an especially simple form: the Hamiltonians 
are "diagonal" in the (spatial) derivatives of variables which define "time." Furthermore, the 
Hamiltonians (generating timelike translations) are shown to be positive in a neighborhood of the 
constraint sub manifold of the phase space, even at points at which the ADM energy is negative. 
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1. INTRODUCTION 

The multifingered nature of time in general relativity 
has been a major problem in the canonical quantization of 
the theory. In fact, in a recent review, Kuchar' has singled 
out this issue as the primary obstacle to canonical quantiza
tion. He summarizes the situation as follows. "Where we 
have a priviledged time, as in classical mechanics, relativistic 
particle theory in flat space-time, or free field theory in flat 
space-time, we know how to build the Hilbert space of states. 
When we are not sure what to use as time, as in relativistic 
particle theory and field theory in curved space-time, or in 
geometrodynamics, we lose our way .... I thus believe that the 
main problem which we face in an attempt to build quantum 
geometrodynamics is not a technical problem, but a concep
tual one. It consists in reconciling the diametrically opposite 
ways in which relativity and quantum mechanics view the 
concept of time." General relativity by itself does not select a 
preferred time, in fact it insists that the choice can be essen
tially arbitrary. Quantum mechanics, on the other hand, 
knows how to make physically interesting predictions only 
when time is separated from the rest of the variables and 
treated as a c-number. 

The purpose of this paper is to suggest a way in which 
the necessary reconciliation can be made in the context of 
asymptotically flat gravitational fields. More precisely, we 
shall see that it is possible to single out, among all possible 
lapse and shift fields, a preferred four-parameter family, 
thereby selecting the preferred time variables which can be 
eventually used in the quantum theory. However, this family 
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ci Albert Einstein Fellow. Address from September 1,1983: Physics Depart
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is not universal: it depends on the gravitational Cauchy data. 
Thus, time is not introduced as an external parameter, insen
sitive to the choice of the gravitational field. Rather, it is a 
function of where one is in the gravitational phase space. 
This expresses the fact that we are dealing with general rela
tivity rather than a field theory on a background geometry; 
the spirit of general relativity is not blatantly violated in the 
introduction of the extra structure required for quantum me
chanics. What is more, the Hamiltonians generating evolu
tions along the preferred lapses and shifts have an especially 
simple form in terms of the spatial derivatives of the varia
bles which define these lapses and shifts. In exactly soluble 
quantum models, the variables which simplify the Hamil
tonian playa crucial role. One may therefore expect that 
quantization of the gravitational field would be simpler in 
terms of the new variables introduced here. There are many 
indications that this is the case. Furthermore, the canonical 
quantization program based on these variables is closely re
lated to that involving Newman's2 H-spaces and Penrose's3 
nonlinear gravitons. These issues, however, will be discussed 
elsewhere; this paper will deal only with classical general 
relativity. 

The main ideas of this paper may be summarized as 
follows. Consider an asymptotically flat initial data set for 
general relativity. In terms of this data, one can write down 
an elliptic differential equation on a spinor field, the equa
tion introduced by Witten4 in his proof of the positive energy 
theorem. The equation enables one to transport rigidly con
stant spinors at infinity to the interior of the three-manifold 
(on which the initial data are defined.) The resulting spinor 
fields will be called the Witten spinors. The required pre
ferred family oflapses and shifts can be constructed by "tak
ing squares" of these Witten spinors; one can interpret them 
as the projections of the four-dimensional vector fields, ob
tained by transporting rigidly the space-time translations at 
infinity. Next, on the phase space of general relativity, one 
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can compute Hamiltonians corresponding to these lapses 
and shifts. Although these Hamiltonians-like all others
have a complicated form (involving volume and surface inte
grals) in terms of the usual canonical variables, they are sim
ply the volume integrals of squares of derivatives of the Wit
ten spinors. In particular, the Hamiltonians generating 
Witten-time translations are manifestly positive. Thus, the 
squares of Witten spinors define "time" while the squares of 
their derivatives "diagonalize" the Hamiltonian. It is this 
intertwining that makes the present prescription interesting. 
Indeed, one can imagine other prescriptions to select pre
ferred families oflapses and shifts; in essence, all one needs is 
an elliptic equation to rigidly transport translations from 
infinity. However, it seems unlikely that other prescriptions 
will select the preferred lapses and shifts and cause such a 
drastic simplification in the Hamiltonian in the same stroke. 

Section 2 recalls the Witten equation and, under the 
assumption that it admits asymptotically constant solutions, 
introduces the preferred lapse-shift fields and the corre
sponding Hamiltonians. Section 3 discusses the issue of exis
tence of solutions: using methods introduced by Reula,5 we 
show that there exists a neighborhood of the constraint sub
manifold of the phase space for which the Witten equation 
admits solutions and that the solutions are uniquely deter
mined by their asymptotic values. (The ADM energy is not 
everywhere positive in this neighborhood.) In broad terms, 
what we have done in this paper is to use certain techniques 
asssociated with the Witten equation to obtain new insights 
into the Hamiltonian description of general relativity. 

A. Sen, J. Nester, and G. A. J. Sparling have indepen
dently obtained results similar to those contained in Sec. 2e. 
However, since canonical quantization is not the main con
cern in these analyses, their motivation and the overall view
point is different from ours. In particular, the problem of 
separating gauge and dynamics and the use of the Witten 
equation to rigidly transport lapses and shifts do not playa 
central role in these works. 

2. GRAVITATIONAL PHASE SPACE AND WITTEN 
SPINORS 

This section is divided into three parts. The first recalls 
the phase space description of general relativity, fixes nota
tion and formulates the problem. The second introduces the 
pref~rred family of lapses and shifts under the assumption 
that the solutions to the Witten equation exist and are 
uniquely determined by their asymptotic (constant) values. 
The third analyzes the Hamiltonians corresponding to these 
lapses and shifts. 

A. Preliminaries 

Fix a C'" three-manifold.E, the complement of a com
pact set of which is diffeomorphic with the complement of a 
ball in R 3. Denote by ~ the space of positive definite metrics 
q ab on.E, with respect to which.E is complete, and which are 
asymptotically flat in a suitable sense. (Since the existence 
theorems of Sec. 3 hold under quite weak fall-off conditions, 
we shall not tie ourselves down to a specific choice here.) The 
phasespacerconsists of pairs, (qab,ped), whereped is a sym
metric tensor density of weight 1, also subject to a suitable 
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asymptotic condition. Not all points of r are accessible to 
the physical gravitational field: there are constraints. The 
constraint submanifold r of r consists of points (q ab ,ped ) 
satisfying the constraint equations 

C'=9 b(q-l/2P'b) = 0, (2.1) 

C R - (qacqbd - ~ qabqcd) q-1p'b ped = 0, (2.2) 

where 9, R, and q are, respectively, the derivative operator, 
the scalar curvature, and the determinant of q ab . Every point 
(q,P) of r provides an initial datum for Einstein's equation, 
qab being the intrinsic three-metric and 1f'b: = 
q-l/2(p'b _ ! Pqab) being the extrinsic curvature of ~, 
where P = p'b qab is the trace of p'b. 

To define the Hamiltonian we need to introduce the 
notion of time. In the four-dimensional space-time picture, 
this corresponds to introducing a foliation by spacelike 
three-manifolds (given by t = const, say) and an evolution 
vector field 5' which "relates one leaf of the foliation to the 
next one." Such a vector field can be projected into and per
pendicular to the leaves: 5' = T~ + T" , where ~ is the fu
ture directed unit normal to the leaves and ta T" = 0. The 
fields T and T' refer only to the spatial three-manifolds and 
can be, therefore, carried over to the phase-space frame
work; T is the lapse field and T" is the shift. Given any pair 
(T,T') (or, in the four-dimensional picture, the vector field 
5' ) on~, one can define a Hamiltonian H T T" (q,P) on r: 

-Ii HTT"(q,P) = - (TC + 2Taca)dVq 
, 161T I 

+ _1_,C T(aaqbc - abqac)rCdS b 
161T Ys 

+_I_,C Ta q-l/2 P dS b (2.3) 
81T Ys ab' 

where S is the (two-sphere) boundary of ~ at spatial infinity, 
fac a flat metric on ~ in a neighborhood of infinity, and aa 
the derivative compatible with fab.6 This Hamiltonian is a 
differentiable function on r provided T and T" are asymp
totically constants, i.e., 5' is an asymptotic translation. 
From now on, we shall use the symbols T and T" only to 
denote such fields. Since H T T" is differentiable, it generates 
canonical transformations 0'0 r. The restriction to r of these 
transformations gives us the required evolution: they corre
spond to the changes undergone by qab and p'b under the 
diffeomorphism generated by 5' in the four-dimensional 
picture. 

The multifingered nature of time expesses itself in the 
infinite-dimensional freedom available in the choice of T and 
T' even when their asymptotic values-i.e., the asymptotic 
translation to which they correspond-are fixed. Let (T,T") 
and (t,r) agree asymptotically7 and set T - T = Nand T" 
- r = ~. Then, since Nand Na vanish asymptotically, 
the Hamiltonian to which they correspond is given by 

-Ii H NNu =-- (NC+2N aCa )dVq ; 
, 161T I 

(2.4) 

it is a constraint function. In the Dirac theory of constrained 
systems, constraint functions generate gauge. Hence, the ca
nonical transformations generated by H N.w-which corre
spond, in the four-dimensional picture, to the evolution 
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along the asymptotically zero vector field Nt' + Na -can be 
considered as gauge. Thus, the multifingered nature of time 
expresses itself in the Hamiltonian framework via gauge am
biguities: one can always add to the generator of a translation 
a generator of a gauge transformation and obtain a generator 
of the same asymptotic translation. Let us consider two 
lapse-shift pairs-or, alternatively, two Hamiltonians-as 
equivalent if they correspond to the same asymptotic trans
lation. Then, we have a four parameter family of equivalence 
classes. To reduce the infinite-dimensional freedom in the 
choice oflapses and shifts to the restricted freedom of special 
relativity, we need to give a prescription to choose, from each 
equivalence class, a preferred element. That is, we need to 
give a "gauge fixing prescription" for lapses and shifts, or, 
for Hamiltonians. Once this is done, one would be able to 
decompose canonically any Hamiltonian H T,TO(q,P) into 
two parts, one generating a "pure" translation, and the oth
er, "pure" gauge. In the transition to quantum theory, one 
can then concentrate on generators of pure translations and 
e.g., look for variables which diagonalize, or, more general-
ly, simplify them. _ 

Remarks: (i) On the constraint submanifold r, C and 
C' of Eq. (2.1) and (2.2) vanish, and hence, the numerical 
value of H o(q,P) is given just by the surface terms ofEq. T,T 
(2.3). Note, however, that, even if ~e wishes to reproduce 
the dynamical trajectories just on r, one cannot just work 
with these surface terms; the entire expression ofEq. (2.3) is 
needed. This is because equations of motion involve deriva
tives of the Hamiltonian and it turns out that the dynamical 
trajectories within F crucially depend upon the derivatives 
of H TTO offF. 

(ii) Since Einstein's equation determines dynamics only 
on F, there is some ambiguity in the expression of the Hamil
tonian. Consider another candidate, 
H ~.TO = H T,T.jq,P) + fT,T"(q,P). Since the value of 
H .(q,P) on r,i.e., the surface terms in Eq. (2.3) yields the T.T 
correct expression of the component of the ADM four-mo-
mentum along the asymptotic translation defined by (T,T"), 
and since this is a desirable property of any Hamiltonian 
associated to (T,T"), f(q,P) should vanish on F. Further
more, if H ' • is to yield the correct dynamical trajectories _ T,T _ 
on r, the derivatives of f(q,P) must also vanish on r. Thus, 
the most general permissible expression of f(q,P) is of the 
type 

fT. TO (q,P ) = gT,T" (q,P ) L (NC + NaCa )dVq 

X L (ivc + NaCa )dVq 

for some function g(q,P) on r and some choice oflapse-shift 
pairs (N,N" ) and (N,lr ).8 In spite of this ambiguity, through
out the literature, it is HT,TO(q,P) that has been used as the 
Hamiltonian because it has many attractive properties. For 
example, if we set T = 0, it generates canonical transforma
tions which correspond, on all of r, to diffeomorphisms 
within ~ generated by T" . This property is desirable from 
just geometric grounds, without any appeal to field equa
tions and can be satisfied by H ~,T" only if go,T" (q,P ) = 0 for 
all T" . A second and more important property comes from 
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the study of the modifications required to incorporate mat
ter fields (as sources of the gravitational field). H T,TO(q,P) has 
the property that we only have to add to it the Hamiltonian 
of the matter field (propagating on a background geometry) 
to obtain a Hamiltonian which yields the correct dynamical 
trajectories for the coupled Einstein-matter system. This 
property is not shared by other Hamiltonians H ~,T" (except 
perhaps for very special choices of matter fields.) In this pa
per, we shall use H T,Ta(q,P) only. 

B. The Witten equation and the preferred lapses and 
shifts 

Fix a point (qab ,ped) of the phase space. We shall work 
with the SU(2) spin structure defined by the metric qab' The
spinors will carry upper case latin indices; e.g., A.A and,uB 
denote spinor fields. At any point of ~, contravariant and 
covariant spinors each form a two-dimensional complex vec
tor space, These spaces are naturally equipped with second
rank skew spinors ~B and EAB , respectively, which enable 
one to raise and lower the indices. Associated with each 
spinor A. A is its Hermitian conjugate (A. A) + ==A. + A such that 
((A.A )+)+ = - A.A and A. + A A.A ;;'0, equality holding if and 
only ifA.A = O. Finally, there is an isomorphismU;:Bbetween 
the complexified tangent space at any point of ~ and the 
three-dimensional complex vector space of symmetric, sec
ond-rank spinors at that point: the vector sa corresponds to 
the symmetric spinor SAB = :U;:Bsa. Under this isomor
phism, the real vectors correspond to Hermitian spinors, i.e., 
spinors SAB satisfying (SAB ) + = SAB , Thus, iA. + (A A. B J~B is 
a real vector. The metric qab is related to EAB by 
qam = - U;:Bu;';;NEA (MENJB' Since, in what follows, calcula
tions will involve (an arbitrarily chosen but) fixed metric
and hence, a fixed isomorphism between the symmetric sec
ond-rank spinors and the complexified tangent vectors-we 
shall suppress the symbol U;:B and simply write sa = S(ABJ, 

qam=q(ABIIMNJ = - EA(MENJB , etc. 
To introduce Witten's equation let us first define a deri

vative operator Da = D(ABJ on the SU(2) spinors: 

DABA.c: = ~ ABA.C + [i/(2q)lf2] 

X (P ABC D + ! Pm m E C (A E B) D )A. D 

~ ABA.C + (i//i)11'ABcDA.D , (2.5) 

where ~ AB' PABCD ' and 11'ABCD are the spinorial forms of the 
derivative operator ~ a compatible with qab' of the momen
tum Pab , and of the extrinsic curvature 11' ab' Witten's equa
tion can now be written as 

(2.6) 

To define the preferred four-parameter family oflapses and 
shifts, we proceed as follows. Fix any constant spinor A A in a 
neighborhood of infinity of ~ (i.e., a spinor field A A defined 
near infinity, satisfying aaAA = 0 where aa is the derivative 
operator compatible with a fixed flat metriciab to which qab 
approaches9

). We shall see in Sec. 3 that (at least) when the 
point (qab ,ped) is chosen to lie in a suitable neighborhood of 
the constraint submanifold of the phase space, Eq. (2.6) ad
mits a unique solution A. A which asymptotically approaches 
A A • That is, Eq. (2.6) enables one to transport constant spin
ors at infinity to the interior of ~ and the rotation of the 
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spinor at infinity causes a rigid rotation on the entire spinor 
field. Consequently, there is available on.I a distinguished, 
complex two-dimensional vector space of asymptotically 
constant spinor fields. 10 With each of these spinor fields A A 

we shall associate a lapse-shift pair (T,P) given by 

T=A+AAA andP = -.J2iA +IAABI.(Inthefour-di
mensional picture, this pair defines a null vector field which 
is an asymptotic translation.) Let a A and {3A be two linearly 
independent Witten transported spinor fields. Then, by con
secutively substituting aA, {3A, (aA + {3A ), and (aA + i{3A) 
for A A in the above prescription, one obtains four pairs, (T Ik I ' 
T(k I) with (k ) = 1,2,3,4, oflapse-shift pairs each of which 
defines an asymptotic null translation. Consider the real 
four-dimensional lO vector space generated by these pairs. 
This space is independent of the initial choice of a A and {3B . 
[Proof Set CiA = aaA + b{3A and,BA = caA + d{3A. It is 
easy to check that the resulting (T lk I' f(k I) are expressible as 
constant linear combinations of (Tiki ' Tiki ).] This is the pre
ferred family oflapses and shifts. Each element of this family 
defines an asymptotic translation and is, in turn, completely 
determined by this translation. [Proof Use the basis 
(~ki' T(kl)'] Thus, we have here a prescription for rigid 
transport of the asymptotic translations to the interior of .I. 

Remarks: (i) Although the transport prescription given 
above is unambiguous, the reason behind the choice of the 
specific expressions of T and P in terms of the Witten spin
ors is somewhat obscure in the SU(2) framework. To see that 
the choice follows naturally from the use of spinors, it is 
more convenient to use the SL(2,C) spinors. 11 Fix a space
time (M, gab) and an asymptotically flat spacelike submani
fold.I therein. Denote by qa b the projection operator asso
ciated with.I. Set Da = qa b Vb' where V is the derivative 
operator compatible with the four-metric gab' Then, in the 
SL(2,C) language, the Witten equation becomes 

(2.6), 

As before, provided the (qab ,pcd) pair defined by gab on.I 
lies in a neighborhood of the constraint surface r of the 
phase space, (2.6)' admits a unique solution, given the bound
ary value A A at infinity. This provides an isomorphism 
between the SL(2,C) spin space at infinity and the SL(2,C) 
spin space at any point of.I which, in turn, defines an iso
morphism between the space of (four-dimensional) asympto
tic translations and the four-dimensional tangent space at 
any point in.I. That is, we can rigidly transport translations 
at infinity to the interior of .I. The simplicity of this proce
dure is somewhat lost in the SU(2) framework because of the 
necessity of doing a 3 + I decomposition. 11 The reason why 
we work with the SU(2) spinors in the main part of the dis
cussion is that they fit in more naturally with the phase-space 
formulation. 

(ii) Fix a spin dyad at infinity. Equation (2.6), then pro
vides us with a spin dyad everywhere on.I. Alternatively, in 
terms of vectors, given a tetrad at infinity, we obtain a tetrad 
field everywhere on.I. If we rotate the tetrad at infinity, the 
entire field rotates rigidly by the same amount; the freedom 
is that of global rather than local Lorentz transformations. It 
is in this sense that we have a "gauge fixing procedure." 
Note, however, that the preferred tetrad fields depend on the 
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choice of the variables (qab'P m m) on.I: if we change the 
metric gab near .I, the tetrad fields change. [The fields are 
insensitive to the trace-free part of pab because only the trace 
enters the Witten equations (2.6) and (2.6)'.] 

(iii) Since Eq. (2.6) is linear and since the solution A A is 
determined everywhere by the boundary value A A , we have 
an isomorphism 10 tflp from the vector space of constant spin
ors at infinity to the vector space of spinors at any point p of 
.I. Denote by € AB' the natural two-form on the asymptotic 
spin space. Its image tflp (€ AB) is a two-form in the spin space 
at p, and hence, proportional to € AB Ip; say € AB Ip = 
Rtflp (€AB)' Thus, Eq. (2.6), defines a complex functionR on.I 
such that for any two solutions A A and}LA with boundary 
valuesAA andpA atinfinitY'€ABAA}LB =R€ABAApB.Next, 
note that the isomorphism tflp extends uniquely to tangent 
vectors: Given any asymptotic translation on.I (or, a vector 
in the tangent space of the point P at spatial infinity), say 
T~ , tflp provides us a. vector P in the tangent space of p. 
The relation between€AB Ip and tflp (€AB) now implies that, for 
any two of such vector fields, P and JI" with asymptotic 
values r and va, we have V·T= IR 12 V.T. Thus, if r is 
timelike (respectively, null, spacelike) at infinity, P is time
like (respectively, null, spacelike) everywhere. 

(iv) Let (M, gab) be Minkowski space. Then, since the 
constant spin or fields in (M, gab) automatically satisfy (2.6)' 
for any choice of .I, the transport of translations at infinity 
yields the translational Killing fields everywhere on M. In a 
generic space-time, however, the transport is tied to the 
choice of .I. Thus, it is only when we are given a foliation of a 
generic space-time that we can obtain four vector fields 
everywhere on the space-time, and they depend on the 
choice of the foliation. The transport is well suited to the 
canonical framework, however, because in this framework 
one deals only with three-surfaces. 

C. Hamiltonian corresponding to preferred lapses and 
shifts 

Let us now combine the results ofSecs. 2A and 2B. For 
simplicity, let us consider the lapse-shift pair (T,P) corre
sponding to the "pure time translation at infinity," i.e., satis
fying the boundary conditions T = I and P = O. As we saw 
above, (T,P) is guaranteed to correspond to a future-direct
ed timelike four-vector, i.e., to satisfy T> 0, T2 > P Ta. [In 
general, P #0 except at infinity. It is not difficult to show 
that P = 0 everywhere iff (qab ,pcd) satisfies pab qub = 0.] 
This pair (T, P) will be referred to as the Witten-time trans
lation. Let us now substitute for the lapse and the shift in Eq. 
(2.3) the Witten-time translation. The resulting Hamiltonian 
Hw(q,P) is 

-Ii Hw(q,P) = - (T(q,P)C(q,P) 
1617" .I 

+ 2Ta(q,P)C a(q,P))dVq + E ADM , (2.7) 

where 

EADM = _1_ ~ (aaqbc - abqac)rC dS b 
1617" Ys 

is the ADM energy. Note that, even though the lapse and the 
shift now themselves depend on qab and pm m' this Hamil-
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tonian generates the correct dynamics on l\:!,he Hamilton
ian vector field evaluated at a point (q,P) of r yields the 
infinitesimal change in that (q,P), dictated by Einstein's 
equation, caused by a diffeomorphism corresponding to 
(T(q,P), 1" (q,P)). This comes about because, in the expres
sionoftheHamiltonian, T(q,P)and 1" (q,P)aremultipliedby 
quantities which vanish on r. 

Expression (2.7) of the Hamiltonian simplifies consider
ably if we substitute for T(q,P ) and 1" (q,P lin terms of Witten 
spinors, i.e., solutions to (2.6). Note, first, that any t'air 0 

(T, P)can be expressed as (T, P) = (a +A aA + r[3+A[3A' 
- {i ita + (AaB) + r/J + (A /J B I) for some constant spinors a A 

and /JA and real number r. For T = 1, 1" = 0, it suffices to 
choose for &A any spinor normalized so that a + A a A =!, 
and so set /r = a + A , and r = 1. Let us make this choice. 
Denote, as before, by a A and[3A the Witten spinors-i.e., !he 
solutions to (2.6)-which asymptotically tend to aA andfjA . 
(Note that, in general, tr i=a +A except at infinity.) Then, 
the Hamiltonian generating the Witten-time translation be
comes6 

Hw(q,P) = -=.! r [(a +AaA + [3 +A[3A)C 
161T JI 
- 2 {i ita + AaB + [3 +A[3B)CAB ] 

XdVq + EADM . (2.8) 

Now, any spinor field A. A on ~ satisfies the identity4 

4~ L (DABA C)+(DABAeldVq 

= ~ r (A +AAA) C - (2 {i iA +AA B)CABdVq 
161T JI 

+ I l~ +AD+ DB ACdV 
- /I. AB C q 
21T I 

+ _1_ A: A +B(DaAB) dS a (2.9) 
41T Js 

provided all the integrals exist. If we substitute a A and [3A 
for AA in this identity, the second term on the right vanishes 
by the Witten equation and the sum of the surface terms 
yields4 

_I_A: (a + BDaaB +[3 +BDa[3B)dsa=EADM' (2.10) 
41T Js 

Hence, we have 

Hw(q,P) = _1_ r [(DABaC)+(DABael 
41T JI 
+ (DAB [3C)+(DAB [3el] dVq (2.11) 

which is the desired result. To summarize, (at least) in a 
neighborhood of the constraint submanifold r of the phase 
space, one can introduce Witten spinors to select preferred 
lapses and shifts. The Hamiltonian generating the Witten
time translation-which is asymptotically a pure time trans
lation, with T = 1 and T = O-has an especially simple form 
in terms of the (spatial) derivatives of the Witten spinors. 

Remarks: (i) It is only for concreteness that we have 
restricted ourselves to the Witten-time translation. Given 
any asymptotic null translation with T = A + A A A , 

Ta = - {i iA + (A A B I, the corresponding Hamiltonian is 
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H a (q,P) = _1_ r (DABA C) + (DABAeldVq . (2.12) (T,T I 41T JI 
The Hamiltonian corresponding to any preferred lapse shift 
can be obtained by superposing these generators of null 
translations. Note that right side of (2.12) is manifestly non
negative, and vanishes iff D ABAc = 0, which can occur only 
if (qab ,1yod) corresponds to Cauchy datum for Minkowski 
space. 

(ii) The mathematics leading from (2.7) to (2.11) is exact
ly the same as that in the positive energy theorems where one 
shows the positivity of the surface term in (2.7), given that C 
and C' satisfy the dominant energy condition. Our motiva
tion here is however, different: we are interested in the struc
ture of the phase space and the Hamiltonians. Also, note that 
the Hamiltonian has the form (2.11) as long as asymptotical
ly constant solutions to the Witten equation exist, we need 
not tie ourselves down to the constraint surface. In fact, we 
will see in Sec. 3 that the required solutions can exist even 
when the energy condition is violated: even when the energy 
is negative, H w can be positive. Thus, positivity of H w is a 
more general result than the positivity of energy. 

(iii) The form of H w(q,P) given in Eq. (2.11) is similar to 
the formH = ZlZI + ... + ZnZn of the Hamiltonian of the 
n-dimensional oscillator, with Z k = P k + iq k . This suggests 
a quantization method using a Bargmann-type representa
tion. This can be carried out in the weak-field limit in a 
straightforward manner. The situation is more complicated 
in the exact theory. This is because, whereas the Poisson 
bracket between Zj and Zj is a constant, the analogous Pois
son bracket in the gravitational case is a constant function on 
r only in the weak field limit. In otherwords, (2.11) is not a 
true diagonalization in the exact theory. It does, nonetheless, 
suggest an approach to quantization which will be discussed 
in a subsequent paper. 

3. EXISTENCE AND UNIQUENESS OF WITTEN SPINORS 

In this section we shall obtain the results on the exis
tence and the uniqueness of solutions to Eq. (2.6) on which 
the discussion of Sec. 2B and 2C was based. The main idea is 
to combine the techniques introduced by Reula,5 to show the 
existence and uniqueness of the Witten spinors in the case 
when the dominant energy condition is satisfied, and the 
conformal invariance of the Witten equation to obtain a gen
eralization of Reula's results. 

We shall first show that Reula's results hold even when 
the energy condition is mildly violated. Although the proof 
requires only minor modifications of Reula's work, we pre
sent it in some detail for completeness as well as because, as 
was pointed out to us by Reula, his published proof-i is in
complete because it uses an incorrect Sobolev inequality. 

Let us begin with some preliminaries. Consider a neigh
borhood N 1 of the constraint submanifold r of r such that 
for all (qab ,ped) in N 1, the following conditions hold 12: 

(i) Given (qab,pcd), there exists a flat metric Jab on the 
complement ~ - K of a compact set K of ~ such that 
(~ - K,iab) is isometric with the Euclidean space minus a 
ball and such that there exists a Co > ° for which 
C 0- liabvavb,qabvavb'Coiabvavb for all va; 
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(ii) laaqbc 12, q-lpb Pab , IC' I, and C [ofEqs. (2.1) and 
(2.2)] are all integrable on (.2', qab)' where, as before, aa is the 
derivative operator compatible with lab' One expects that 
any (q ab ,ped) in r will, by virtue of asymptotic conditions, 
automatically satisfy all conditions except possibly the inte
grability of I C' I and C; it is to ensure this integrability that 
we introduce the subspaceNI' Next, fix a pair (qab ,pb) inNI 
and consider the SU(2) spinors corresponding to qab' Then, 
for all COO -spinors A A with compact support (A A E CO') the 
following inequality holds13 : 

1 (DABA C)+(D A ) dV ~kl A +AAA dV 
AB C q P 1 d 2 q 

~ ~ + 
(3.1) 

for some (positive) constant k, where d is the distance func
tion on (.2', qab) with respect to an arbitrarily chosen origin. 
Note that the constant k depends on the choice of the pair 
(qab ,ped). In terms of this k, we can define a subset in N2 of 
N I, which includes r, as follows (qab ,ped) in NI will be in N2 
if and only ifC' and C ofEqs. (2.1) and (2.2) satisfy, for some 
E>O, 

C - 21C' I> - (4k - E)/(l + d 2
) (3.2) 

with some choice of origin in.2'. Thus, N2 includes all points 
(qab ,ped) at which the dominant energy condition holds as 
well as points at which it is "mildly" violated. 14 Finally we 
introduce an Hermitian inner product on the CO' -spin or 
fields on.2' associated with any pair (qab ,ped) in N2: 

(a,{J): = L(DABaB)+(DAC{JC)dVq. (3.3) 

The linearity in the second member of the inner product as 

well as the properties (a, (J) = ((J,a) and (a,a) >0 follow 
from inspection. Next, combining the identity (2.9) with (3.1) 
and (3.2), one obtains, for CO' -spinor fields a A 

, 

E 1 aA+aA 
(a,a»- 2 dVq ; 

8 ~ 1 +d 
(3.4) 

whence it follows that (a,a) = 0 if and only if a = O. Thus, 
(3.3) is indeed an Hermitian inner product on C O'-spinor 
fields on.2'. The Cauchy completion of this pre-Hilbert space 
will be denoted by H. 

Weare now ready to prove the first result: 
Lemma 1: Fix a Coo -pair (qab,ped) in the neighborhood 

N2 of r and a Coo , asymptotically constant spinor field aA 

on.2'. Then, there exists a unique element {JA of H such that 
a A = aA + rr is a solution to the second-order equation 
D} B DBCac = O. Furthermore, if is C'" . 

Proof Set pA = - DA C aC . pA is square integrable on 
.2'.15 Now, a A = aA + {JA satisfies the second-order equa
tion iff {JA satisfies D A+ BDBC (J C = D + A B PB' To find a so
lution in H to this equation, consider the linear functional 
I(A ) defined on CO' -spinor fields A A : 

I(A) = L (DABA B)+ PA dVq . (3.5) 

Since P is in L 2(.2',dVq ),f(A ) is continuous wrt A A in the H
topology. Since the space of C 0' -spinor fields is dense in H, 
by the Reisz lemma there exists an element (J in H such that 
I(A) = (A, (J), AEC 0'(.2'). Now, Eq. (3.4) implies that ele-
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ments of H are distributions which are square integrable on 
(.2', (1 + d 2)-1 dVq ). Hence, 

(3.6) I(A) = L (DABA B)+(DAC (JC) dVq 

~orsomedistribution{Jc inL 2(.2', (1 + d 2)-ldVq). Subtract
mg (3.6) from (3.5) and integrating by parts, we obtain 

(3.7) 

for all AEC 0' (.2' ), i.e., that a A = {JA + aA is a distributional 
(or, weak) solution to the second-order equation. Now, from 
standard theorems on elliptic equations, it follows that a A is 
necessarily Coo . Next, we establish uniqueness. Let {JA and 
A A 

{JA be two elements of H such that aA + {JA and aA + {JA 
satisfy the second-order equation. Then, IlA = {JA - pA sat
isfies D + A B DBc Il

c = O. Hence, for any C O'-field AA, we 
have 

whence (A, Il) = O. Since the space of CO' -fields is dense in 
H, we have Il = O. 

Remarks: (i) Note that, since a A is asymptotically con
stant and since H is obtained by Cauchy completion of 
CO' (.2' ), a A does not belong to H. This is compatible with the 
proof of the uniqueness result which also implies that there 
are no nonzero solutions to the second-order equation in the 
Hilbert space H. 

(ii) Note that the solution a A does not have to tend to 
the fixed constant spinor field aA pointwise. That is, even 
though{JA is a smooth spinor field inH and even though Eq. 
(3.1) implies that{JA has to be square integrable [wrt 
(1 + d 2) - 1 d Vq], a priori there is no guarantee that it will 
tend to zero pointwise at infinity. a A tends to aA only in the 
sense that a A 

- aA belongs to H [and hence to 
L2(.2', (1 +d 2)-ldVq)]. 

Next, we consider the (first-order) Witten equation 
(2.6). We have: 

Lemma 2: The spinor field a A of Lemma 1 necessarily 
satisfies the first-order equation DAB a B = O. 

Proof Set DAB a B = Il A • Then, it follows from the proof 
of Lemma 1 that Il A is Coo and square integrable. Consider a 
sequence Il~) of C''' -spinor fields with compact support on.2' 
which (together with their first derivative) tend to IlA 

pointwise. Applying (2.9) and (3.1) tOIl~) and taking the limit 
as n-+ 00, one obtains IlA = O. Hence a A satisfies the first
order Witten equation . 

We now wish to use the behavior of Witten spinors un
der conformal rescal~gs. Let (q ab ,Fcd) = (qy4 q ab ,ped ) and 
;tA = qy-3AA. Then, DAB;tB = qy- 3DAB AB. Hence, it is nat
ural to extend the neighborhood N2 ofr to N3 as follows: An 
element (qab,ped) of NI will be said to belong to N3 iff there 
exists a Coo -conformal factor qy such that (qy4qab ,ped) belongs 
to N2.16 Clearly, N2EN3• Finally, since the Witten equation 
does not refer to the trace-free part of pb, we can further 
enlarge N3 to N as follows: (qab ,ped) belongs to N iff N3 ad
mits an element (qab ,p:d) with pb qab = pb qab' Thus, in 
essence, N is the subset of r consisting of points (q ab ,pb ) for 
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which (qab ,ped qed) is confonnally related to an element of r 
which either satisfies the dominant energy condition on ~ or 
violates it only slightly. It is straightforward to construct the 
Hilbert space H for any (q ab ,ped ) in N. In tenns of H we can 
now establish the following result: 

Theorem: Fix a Coo -pair (qab ,ped) in the neighborhood 
N of r and an asymptotically constant Coo -spinor field &A 
on~. Then, there exists a unique element pA in H such that 
~ = &A + pA is a solution to DAB a B = O. Furthennore, 
~ is Coo. 

Proof Since the Witten equation does not refer to the 
trace-free part of pb, without loss of generality, we can as
sume that (q ab ,ped ) is in N3, i.e., that there exists a confonnal 
factor rp such that (qab ,P:d) = (rp 4qab ,ped) is in N2. Now, 

"'-
from Lemmas 1 and 2, given aA 

, there exists a unique pA in 
H such that £ZA = &A + rr solves DAB aB = 0.17 Set 
~ = rp3£ZA . Then ~ satisfies the Witten equation. Further
more, since pA : = a A 

- &A = rp3£ZA - &A and since rp is a 
smooth and bounded function 16 on~, it follows that pA is in 
H. This establishes the existence part of the .!.heore'!p-' The 
uniqueness of pA in H follows from that of pA in H. 

Remarks: The theorem has been proved by combining 
in a straightforward way the techniques introduced by 
Reula, the fact that the Witten equation involves only the 
trace of pb , and the fact that the equation is confonnally 
invariant. The resulting subset N of r for which the result 
holds is, however, surprisingly large: Not only does N con
tain points (qab ,ped) at which the dominant energy condition 
can be violated-in fact N2 contains such points already
but, thanks to the confonnal invariance, it also contains 
some points at which the ADM energy is negative. [Exam
ple: consider the point (fab ,0) in the constraint surface, Jab 
being a flat metric. Choose a Coo -confonnal factor rp such 
that, outside, say, r = 17, rp 4lab is a negative mass spatial 
Schwarzschild metric. Then, (rp 4lab ,0) is in N and has nega
tive ADM energy.] Even at these points of N, the preferred 
lapses and shifts exist and the Hamiltonian generating the 
Witten-time translation is positive. How big is N? Clearly, it 
includes all points of the phase space from which solutions to 
the constraint equations can be constructed using York'slB 
procedure. Furthennore, since N includes all pairs (qab ,ped) 
which are confonnally related to pairs which violate the 
dominant energy condition mildly, it may well be that N is 
essentially all of r: it may be possible to obtain arbitrarily 
large violations of the energy condition by confonnally re
scaling the mild violations. 19 However, as we shall see in 
subsequent papers, the fact that N constitutes a finite neigh
borhood of r is already sufficient for the quantization pro
gram based on Witten spinors. 
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APPENDIX 

Although it has never been stated in the literature, one 
often hears the statement that Witten's proof of positivity of 
energy should go through as long as the dominant energy 
condition holds "on the average" [i.e., as long as 
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S.x (C - 21C a l) dVq ;'0], even though it may not hold 
pointwise. The reason behind such an expectation is that C 
and C' appear only under an integral in the Witten identity 
[the first tenn on the right-hand side ofEq. (2.9)] and the 
ADM energy is positive if that integral is positive. In this 
Appendix, we shall present a counterexample to this state
ment. This discussion is not relevant to the main body of the 
paper; it is included here only as a general observation. 

Let ~ be R 3, qab be flat and pab =! pm m ifb, where 
- ~ q-I/2pm m = 'IT is a smooth function satisfying 'IT = 'ITo, a 

constant, for r< r l and 'IT = o for r> r2 (r2 > r l). The pair (qab , 
pb) is obviously asymptotically flat and its ADM energy is 
obviously zero. Since it does not correspond to flat space, it is 
clear from the positive energy theorem that it must violate 
the dominant energy condition. A straightforward substitu
tion in Eqs. (2.1) and (2.2) yields 

(AI) 

Hence the violation can occur only in the transition region 
rl ,r,r2' Since Cis positive in the range r<r2 while C' is 
nonzero only in the range r l < r < r2, given a 'ITo, we can al
ways choose r l, r2, and 'IT(r) in the range r l < r < r2 such that 
the dominant energy condition is satisfied on the average, 
i.e., such that 

rr dr - 2.....!!... r dr;.O. IT, iT' I a I 
o T, ar 

(A2) 

Thus, satisfaction of the energy condition on an average can
not be sufficient for Witten's proof to go through. What goes 
wrong? One's first reaction may be that the Witten spinors 
may not exist on the background (qab ,ped) under considera
tion. Note, however, that if 'ITo is chosen to be sufficiently 
small, the Witten spinors will exist by Lemmas 1 and 2 of 
Sec. 3.20 Hence, the identity (2.9) still holds and implies that 
any Witten spinor ..1 A must satisfy 

:'lT1 L (DAB..1 C) + (DAB..1cJ dVq 

=_1_ r (TC+2T aCa)dVq, (A3) 
16'IT JI 

where (T,r) is the lapse-shift pair (null translation) defined 
by..1A (with T> 0.) Thus, the Witten argument for positivity 
of energy is inapplicable because, with the rigidly transport
ed (T,r) the matter integral has the wrong sign [i.e., 
h (TC + 2Ta Ca) dVq is negative] even though the domi
nant energy condition is satisfied on the average [i.e., 
h (C - 21Ca I) dVq is positive]. 

Using the fact that the spatial metric ofthe negative 
mass Schwarzschild solution is confonnally flat, it is 
straightforward to modify the example to obtain a (qabyd) 
pair which satisfies the dominant energy condition on the 
average and yet has negative ADM energy. 

lK. Kuchar, in Quantum Gravity 2, edited by C. J. Isham, R. Penrose, and 
D. W. Sciama (Oxford U.P., Oxford, 1981). 

2See, e.g., M. Ko,M.Ludvigsen, andE. T. Newman,Phys. Rep. 71, 51-139 
(1981). 

3R. Penrose, Gen. Rei. Grav. 7, 31 (1976). 
'E. Witten, Commun. Math. Phys. 80, 381 (1981). 
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So. Reula, J. Math. Phys. 23, 810 (1982). 
6dV. is the volume element on I defined by the metric q.b' 
7That is, T= T + o (l/r) and r = ]v + o (l/r). 
"N, N, N", and N- may be functions of (q.b ,pcb ). However, each of the two 
integrals as well as g(q,P) have to admit bounded derivatives on r in order 
to get the correct dynamics. 

"Note, however, that 1 A itself is defined using the spin structure of q.b' and 
not of lab' 

IOSince the transport equation is elliptic, the solutions cannot vanish on an 
open region of I. It is of interest to know if they can have isolated zeros. In 
the intuitive discussion, we shall often assume that such zeros do not exist, 
although our main results are insensitive to this assumption. 

IIFor the relation between the SL(2,C) and the SU(2) spinors, see, e.g., A. 
Sen, J. Math. Phys. 22,1781 (1981) and Int. J. Theor. Phys. 21,1 (1982). 
(Note, however, that these references use the signature + - - -.) As
sociated with the solution AA of (2.6), is a null vector field K· = A AA A' 
defined on I. The lapse and the shift defined by this vector field are, in the 
SU(2) notation, given by T = A + AAA and T· = -,fi iJ.. + IAA BI. 

12For simplicity, we shall assume that all fields on I are C~ . 
130. Reula (private communication). The generalized Sobolev inequality 

given on p. 811 of Ref. 5 is incorrect. In effect, Lemma I rectifies (and 
extends slightly) the proof of the main theorem in Ref. 1 by using Eq. (3.1) 
in place of the incorrect inequality. 

I4In the present notation, the dominant energy condition is C - 21 C' 1 >0. C 
and C' are related to the more familiar f.l and J" by C = 161Tf.l and 
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C' = 81T J" , whence the usual form of the energy condition f.l - 1 J" 1 >0 
follows. 

ISThis follows from the square integrability of la.qbc 1 and the fact that, by 
definition a-< satisfies a.ltB = 0, where a. is the derivative operator com
patible with a flat metric J.b to which q.b approaches. 

16Since q.b and q.b approach lab at infinity, rp tends to I at spatial infinity. 
Smoothness of rp and the fact that the complement of a compact set of I is 
homeomorphic to the complement of a ball of R 3 now imply that rp is 
bounded on I. 

17Since q.b and q.b are conformally related, they define the same spin struc
ture. Hence, ~A is a spinor field wrt q.b as well as q.b' 

I"See, e.g., J. W. York, in The Proceedings oJthe 1982 Les Bouche Summer 
School, edited by N. Deruelle and S. Piran (North-Holland, Amsterdam, 
1983). 

19Indeed, given any point (q.b ,ped) in r, one can define a nonnegative func
tional 

S [A 1= L (D" BAB)+(DACAC) dV. 

on the space of spinor fields A A which asymptotically approach a constant 
1 A • The minimum of this functional (under perturbations of compact sup
port) satisfies the second-order equation. Since S [A I is nonnegative, one 
expects the minimum to exist. 

2°It is apparently unknown if the Witten spinors continue to exist for arbi
trarily large values of 1T o. 
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Formal features of Einstein-Maxwell equations for spherically symmetric distributions of a 
charged perfect fluid in equilibrium are discussed. An exact solution of the system of equations for 
a specified choice of matter density and fluid pressure, representing a charged perfect gas is 
presented. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

The problem of determination of exact solutions of Ein
stein-Maxwell equations in general relativity, representing 
static, spherically symmetric distributions of matter in the 
form of a charged perfect fluid has attracted wide attention. 
Such solutions will be convenient to describe the equilibrium 
states of collapsing spherical distributions of matter whose 
collapse to a point singularity is countered by the repulsive 
electrical force due to the presence of charge. The gravita
tional field in the exterior region of such charged fluid 
spheres is described by the Reissner-Nordstrom metric. 

Spherically symmetric distributions of charged inco
herent matter were studied by Bonnor,I.2 who showed that 
equilibrium of such distributions could only be maintained 
when charge density bears a constant ratio with matter den
sity throughout the distribution. De and Raychaudhari3 

have shown that this result is a consequence of Einstein
Maxwell equations for distributions which are singularity
free. Cooperstock and De la Cruz4 have shown that, for 
charged perfect fluid spheres with nonzero pressure, in equi
librium m2 > q2, where m denotes the gravitating mass and q 
denotes the total charge contained within the sphere. 

In this paper some formal features of the coupled Ein
stein-Maxwell equations of general relativity for static, 
spherical distributions of matter in the form of a charged 
perfect fluid are discussed, and a new class of their analytic 
solutions is presented. The physical plausibility of the solu
tions is discussed, and it is shown that Pant and Sah's5 solu
tion is a member of this class. 

2. EINSTEIN-MAXWELL EQUATIONS 

The coupled Einstein-Maxwell equations in the geo
metric units with c = G = 1 read 

R 7 - ~ Ro7 = - 81TT7. (1) 

For a perfect fluid with charge, the energy-momentum ten
sor 

T7 = lo + p)ujuk - po7 + (1/41T)( - FijFki + 1 Fmn F mno7)· 
(2) 

Here,p,p, and u j
, respectively, denote the matter density, 

the fluid pressure, and the unit, timelike 4-velocity field of 
the fluid. The components of the Maxwell stress tensor Fij 
satisfy 

(3) 

(4) 

For nonconducting fluids, the 4-current density 

(S) 

where u denotes the charge density. We consider the spheri
cally symmetric space-time metric in the Schwarzschild co
ordinates 

d~ = -lilT) dr - r d(}2 - r sin2 () do ¢> 2 + e>1r) dt 2, (6) 

as representing the geometry of the spherical charged perfect 
fluid distribution in an equilibrium configuration. The 
4-velocity of the fluid will be 

uj = (0, 0, 0, e- VI2
) 

and, consequently, 

Jj = (0, 0, 0, ue - VI2). 

(7a) 

(7b) 

In view of spherical symmetry, the Maxwell stress tensor has 
only one nonzero independent component, which is deter
mined by Eq. (4) as 

eiA. + v)l2 r 
F41 = - r Jo 41Turll l2 dr. (8a) 

We introduce the electric field intensity E as 

E 2 = - F41F 41
, (8b) 

so that the total charge contained within the sphere of coor
dinate radius r is given by 

q(r) = 417' Lurll l2 dr = rEo (8c) 

The coupled Einstein-Maxwell equations stated expli
citly read 

8 T I 8 E2 _A.(V' 1) 1 17' 1 = - 1Tp + = - e -; + r + r2' (9) 

81Tn = - 81TP - E2 

-A.( v" V,2 A'V' v' -A ') 
-e "2+4--4-+ 2r ' (to) 

81Tn = 81TTL 

(11) 

Here and in what follows a prime indicates a differenti
ation with respect to r. 

The system of equations (9), (10), and (11) can formally 
be solved to give 

81Tp= --- --+------__ e-A.(v" V,2 A'V' V'+SA') 
224 4 b 
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1 _e- A 

+ 2? ' (12a) 

e-A(v" V,2 A.'V' 3V'A.') 
8rrp=-- --+----+--

224 4 ~ 

e- A -1 
+ 2? ' (12b) 

E2= e-A(~+~_A.'V' _ v'+A.') 
2 2 4 4 2r 
l-e- A 

+ 2? . (12c) 

For charged fluid distributions with specified matter 
density p(r) and known equation of state P = pip), one would 
like to integrate this system of equations for A and v. Equa
tions (12a) and (12b) give 

81T(p + p) = (e- A Ir)(,1' + v'). (13) 

If we use this relation to eliminate v' and v" from (12a), 
we get 

e-A(~_~+ lA' _i.) 
2 2 r ? 

+ 21T(p + p)A , - 16~1p + p)2?e" 

- 16rrp - 41T(p' + p')r + ~ = 0, (14) 

the equation for determining,1. Subsequently, vis given by a 
formal integration of (13) as 

v = 8rr J Ip + p)e"r dr - A + const. (15) 

The electric field required to maintain the equilibrium of the 
configuration is determined by (12c) as 

E 2 _A(,1' 1) 1 = e -r- - -;s + ? - 8rrp. (16) 

3. A SOLUTION OF FIELD EQUATIONS 

We assume the following expressions for the matter 
density and the fluid pressure: 

4rrp = (al?)e-", 

4rrp = (b I?)e - ", 

(17a) 

(17b) 

where a and b are nonnegative constants. These expressions 
imply that the matter distribution consists of a perfect gas 
with equation of state pap. Substitution for p andp in (14) 
gives 

?tP" + 2np' I ~ (a + b ) + 2j + 2!(a + b + 1 f - 4b j tP = 2, 
(18) 

wherein we have put e - A = tP. Equation (18) admits the gen
eral solution in the form 

e - A = tP = ar - p, + f3r - P2 + !(a + b + W - 4b j- I, 

(19) 

where 

PI = H3(a + b + 1) + I (a + b + W + 32b j1/2], (20a) 

P2 = H 3(a + b + 1) - I (a + b + W + 32b j I
/2]. (20b) 

Equation (15) then determines 

(21) 

A 2 being the arbitrary constant of integration. The space-time metric of the solution reads 

ds2 = _ [!!... +!!... + 1 ] - Id? _ ? dO 2 _ ? sin20 d¢ 2 
1'" 1'" (a + b + W - 4b 

+ A 2?(a + b)[!!... +!!... + 1 ] dt 2. 
1'" 1'" (a + b + W - 4b 

(22) 

The square of the electric field intensity E 2 and the proper charge density 0'* = O'e" /2 follow from ( 16), (4), (5), and (8b), re
spectively, as 

E2 = i.[ (a + b f - 2b + a(p) - 2li+T) + f3(P2 - 2li+T)], 
? (a + b + 1)2 - 4b 1'" 1'" 

(23) 

4rru* = ± 1 [ 2(a + b )2 - 4b + a(2 - PI)(PI - 2li+T) + f3 (2 - P2)(P2 - 2li+T)]. 
2~ E (a + b + 1)2 - 4b 1'" 1'" 

(24) 

4. PHYSICAL PLAUSIBILITY 

It is necessary that expression (19) assigns positive val
ues for e - A throughout the region of validity of the distribu
tion represented by (22). The physical requirements 

p > 0, p>O, p - 3p>0 (25) 

imply the following conditions on a and b: 

a> 0, b>O, a - 3b>0. (26) 

The requirement e - A > 0 throughout the distribution im
plies a >0,f3> 0. However, if a >Oandf3> 0, (20a) and (20b) 
imply that Eq. (23) gives E 2 < ° in the central region of the 
distribution. If R denotes the radius of this region obtained 
by solving E 2(R ) = 0, the space-time metric (22) provides an 
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-,---------------------------------
analytic solution of Einstein-Maxwell equations in the re
gion r> R. If we choose b = 0, the distribution will be in the 
form of charged incoherent matter, and, if we choose a = 3b, 
the distribution will exist in the form of a disordered radi
ation with charge. 

5. A PARTICULAR CASE 

The gravitational field in the exterior region of a static 
charged fluid sphere of radius r 0 is uniquely described by the 
Reissner-Nordstrom metric 
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(27) 

Accordingly, the metric (22) will describe the field in the 
interior of a charged fluid sphere of radius ro, if and only if 
the boundary conditions 

e>1rol = e -A (rol = (1 - 2m/ro + q2;,i) (2Sa) 

and 

p(ro) = 0 (2Sb) 

are satisfied across the boundary r = roo 
Equation (17b) implies that it is not possible to find a 

finite radius r = ro such that (2Sb) can be satisfied unless 
b = O. Accordingly, the metric (22) with b #0 represents a 
distribution of infinite extent and so cannot be matched with 
the Reissner-Nordstrom metric. 

In particular, when a = f3 = 0, the metric (22) describes 
a physically plausible distribution of a charged perfect gas 
with matter density and the fluid pressure given by 

41Tp = a/[(a + b + 1)2 - 4b ]~, 

41TP = b / [(a + b + 1)2 - 4b ] ~, 

(29a) 

(29b) 

respectively. The total charge contained within a spherical 
region of radius ro is found from (23) and (Sc) as 

= [ (a + b )2 - 2b ] 1/2 r . 
q (a + b + 1)2 _ 4b 0 (30) 

When the constants a and b are identified with 

a = [1 - e(n - W]/4c, 

b = [e(n + 1)2 - 1]14c, 

(31a) 

(31b) 

the metric (22) with a = 0, f3 = 0 assumes the form of the 
solution given by Pant and Sah,5 which reads 
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ds2 = - (lie) d~ - ~ de 2 
- ~ sin2e d¢ 2 + A 2~n dt 2.(32) 

The form presented here has the advantage that the physical 
requirements (25) leading to the choice of a and b as condi
tioned by (26) are suitably handled. 

Pant and Sah have matched the metric (32) with (27) 
across a finite boundary r = ro by imposing the conditions 
(2Sa) only. Since it is not possible to find r = ro such that 
p(ro) = 0, it should be noted that this solution describes an 
infinite distribution and so cannot be matched with (27). 

However, the metric (22) with a = f3 = 0, b = 0, which 
represents a distribution of charged incoherent matter can 
be matched with Reissner-Nordstrom metric (27) across a 
finite boundary r = roo The boundary conditions (2Sa) deter
mine the constants A 2 and m as 

A 2 = (lIro)2a, 

m = [a/(a + 1)]ro. 

It is observed that the De-Raychaudhari requirement 

(33) 

(34) 

0' = ± p is fulfilled in this case, and accordingly, the equilib
rium of the static charge sphere can be maintained. 
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A class of exact solutions ofthe O( 1) supergravity theory is presented. It is obtained from an ansatz 
motivated by a previously known exact plane-wave solution together with the additional 
assumption that the connection forms equal their torsion-free and zero-order Grassmann part. 
The demonstrated solutions are nontrivial and admit a covariantly constant spinor field. 

PACS numbers: 04.20.Jb, 04.30. + x, 04.50. + h 

1. INTRODUCTION 

There are only few known exact nontrivial solutions of 
the 0(1) supergravity field equations. I As starting point, we 
use one of them given by Aichelburg and Dereli, describing a 
plane-fronted wave with parallel rays2 (pp-wave, Ref. 3). The 
Rarita-Schwinger field ¢ = ¢p dx P in the Weyl representa
tion of the Y matrices4 takes the form 

¢=F(U)( a;:g. ), 
-a* d;* 

(1 ) 

where (XO, Xl, x 2, x 3
) = (t,x,y,z),;: = y + iz, u: = t - x, and 

a a constant (complex) Grassmann parameter (* denotes 
complex conjugation). ¢ is associated with the orthonormal 
tetrad ea = e~ dx P, 

eO = dt - H (u,y,z)du, 

el = dx - H (u,y,z)du, 

e2 = dy, e3 = dz, 

(2) 

where H has to satisfy the two-dimensional Laplace equa-
tion 

a2H a2H 
ay2 + a~ =0, 

and F is an arbitrary real function. 
The energy-momentum tensor of ¢ vanishes as a conse

quence of the anticommutativity a*a = - aa*, 

*Ya: =! i¢ A Y5YaD A ¢ = 0 

(D A ¢ = d¢ + !wab 
U ab A ¢, the exterior covariant deriva

tive of ¢, * = Hodge star operator). The two parts of the 
Rarita-Schwinger equation are separately satisfied: 

Y Ad¢ =!Y Awabuab A ¢ = 0 

(y: = Yaea). Since a is constant, the torsion part of the Ein
stein tensor vanishes although the torsion itself is nonzero. 
The Einstein equations just express the fact that the line ele
ment ds2 = e~e~'T/ab dxPdx v is a vacuum metric. The solu
tion (¢,ea) cannot be generated from (¢ = O,ea) by a finite 
global (or local infinitesimal) supersymmetry transforma
tion, hence it is nontriva1.2.5 

In this paper, a new class of exact solutions is presented. 
It does not include the mentioned one. One possible aim of 

-) Work supported in part by the Einstein Memorial Foundation. 

an alternative ansatz to (1), (2) is to obtain a dependence of ¢ P 

on the coordinates y and z in order to describe gravitino 
waves localized in a finite region of space. If we only allow a 
to depend on u, y, z without changing the vierbein ea

, the field 
equations6 demand da = 0.2 Thus we also have to add a 
Grassmann-valued part to the tetrad. 

2. THE ANSATZ 

We define the one-forms (2) to be the zero-order Grass
mann part ("body") of the tetrad, 

eO: = dt - H du, 

el
: = dx -Hdu, 

e2: = dy, e3
: = dz, 

where H = H (u,y,z), 

(3) 

tSAB a ABH = 0; (4) 

capital indices A, B, C, ... run from 2 to 3, aA = a/ax A. The 
gravitino field is now taken to be 

¢=( P;;~. ), 
- 13* d; * 

(5) 

wheref3 (u,;) is an anticommuting (Grassmann-valued) com
plex function. It shall be analytic in ;, which can be ex
pressed by the usual Cauchy-Riemann differential equa
tions 

af3 + i af3 = O. (6) 
ay az 

As a consequence, df3 = (af3/ au) du + (af3 / a; ) d;; thus 
d¢-du Ad;. 

Now we make an ansatz for the orthonormal tetrad, 

(7) 

where fia is the Grassmann-valued part ("soul"). In general, 
it may consist of a second-order and a fourth-order part. To 
evaluate the connection forms, we define iJ: to be the con
nection of the "background" ea only, 

dea = _ iJ: Aeb, iJab = _ iJba, 

and (;j: to be the metric connection of ea, 

dea = _ (;j: A eb, (;jab = _ (;jba. 

The iJ% are well known: iJOI = iJ23 = 0, iJOA = iJlA 

(8a) 

(8b) 
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10i 
= (aAH)du. Now we decompose the w~ into real part cu~ 

and Grassmann-valued part S ~, 

(9) 

and insert the decompositions (7) and (9) into (8b), obtaining 

10i 10i 
dea + d'!fa = - cu~ 1\ eb - cu~ 1\ '!fb 

- s~ I\eb - s~ 1\ '!fb. 

Only the first terms on the left- and right-hand sides are non
Grassmannian, thus we read off, comparing with (8b), 

The first step to specify our ansatz is that we demand the 
tetrad to satisfy 

S~I\'!fb=O. (10) 

S~ 1\ '!fb are fourth-order Grassmann-valued two-forms. 
Equation (10) is surely satisfied, if the tetrad (and the vector
spinor field ¢ which is to be related to the tetrad by the field 
equations) involves only three real Grassmann parameters. 
As a consequence of (10) we find 

(11) 

The sense of condition (10) will be clear after the next step, 
the evaluation of the torsion. 

The torsion of ¢ can be calculated directly from (5), 
giving 

sa: = ! ;if; 1'1\ ¢, 

SO = Sl = - 2/3 */3 dy1\ dz = :K(u,y,z)dyl\dz, 

Sl =S3 =0. 

(12) 

Expanded with respect to the zero-order background forms 
ea, the torsion takes the form 

(13) 

with 

,.1,01 = 0, A 12 = A 02 = ~Ke3, 
A 13 =,.1, 03 = _ ~e2, ,.1,23 = !y<du. 

In general, the one-forms A ~ consist of a second -order and a 
fourth-order Grassmann part. The complete connection 
forms cu~ are now given by 

sa = dea + cu~ 1\ eb, cuab = _cuba, 

cu~ = w~ + S ~ + A ~. 

They are split up here in the e-part, the '!f -part, and the 
torsion part. 

(14) 

In order to specify a class of solutions that allows the 
field equations to be easily integrated, we have to impose an 
additional restriction. We demand that the torison part of 
the connection forms compensates their '!f -induced part, 

S ~ + A ~ = 0, (15a) 

or, in other words, that the total connection (14) consists 
only of its non-Grassmann ("body") part 
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(j)~ = w~. 
From (11) one sees that this is equivalent to 

d'!fa + w~ 1\ '!fb = sa, 

(15b) 

(15c) 

which is a differential equation for the Grassmann-valued 
one-forms '!fa. Our ansatz is now characterized [besides the 
obvious equations (4) and (6)] by the conditions (10) and (15). 
Condition (10) is, e.g., easily satisfied by restricting the an
satz to only three anticommuting variables, and (15) leads to 
a set of differential equations. 

3. THE FIELD EQUATIONS 

The Rarita-Schwinger equation for the ansatz (¢,ea
) 

reads 

o = Y 1\ (D 1\ ¢) 

= Yaea I\d¢ + !Yaea 1\ WbcUbe 1\ ¢ + Ya '!fa I\D 1\ ¢. 

It is easily checked that the first two terms vanish separately; 
thus we are left with the equation 

(16) 

(which is trivially solved if one restricts the ansatz to only two 
real Grassmann variables). 

Now we turn to the differential equations (15c). Impos
ing '!f0 = '!f 1 = :Y [which is strongly suggested by the com
ponent version of (15c)], we see that d'!fA = O. We take '!f2 
and '!f3 to be exact forms: 

'!fA = d~A, ~A = ~A(U,y,z). (17) 

The equation for Y becomes 

dY -(aAH)dul\d~A=Kdyl\dz. (18) 

Taking the exterior derivative, we find that Y exists locally 
if and only if (integrability condition) 

~e(aABH). ae~A = _ aK (19) 
au 

(~3 = _ ~2 = 1). Expanding Y, we set 

Y = Yu(u,y,z)du + YA(u,y,z)dx A, 

which gives Eq. (18) the form 

cz- aYA cae 
aA Y u - -- = -(aeH)aAv , 

au 
(20) 

~BaAYB =K. (21) 

Clearly, (19) is a consequence of these two equations. If K 

splits into K(U,;) = K1(U)K2(;), (21) is a consequence of 
(19) and (20). 

Our solution is now determined by (4), (6), (16), (20), and 
(21) which have to be inserted into the Einstein equations. 
Since the curvature forms are given by 

&tab = dwab 

(remember wab ~du, thus w~ I\w~ = 0), the Einstein equa
tions reduce to 

&t be 1\ *eabc =Eabed&tbc 1\ ed + Eabcd&t bc 1\ '!fd 

= - 2*3'"'a' 

The first term on the left-hand side vanishes because the eO 
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form a vacuum field as in ordinary general relativity. The 
energy-momentum tensor is easily calculated from (5) to be 
zero, 

*Yo: = Ft/Jl\r5ro D I\ t/J = O. 

Thus we are left with 

eabcd
gpbc 1\ ~d = 0, 

which reduces to 

OAB(JBCH)JA ~c = O. (22) 

In the next step we satisfy (10) and (16) by reducing the 
number of independent Grassmann parameters. 

4. SPECIALIZATION TO ONE COMPLEX GRASSMANN 
PARAMETER 

We now impose the condition that the vierbein and the 
gravitino field depend at most on one complex parameter. 
This specialization leads to a drastic simplification of the 
field equations without reducing the solution to be trivia1. 
The general ansatz for this restriction is 

(3(U,b) = aA (U,b) + a*B (U,b), 

where a is a constant Grassmann parameter and A and Bare 
analytic in b' For simplicity, we restrict the ansatz to 

(3 (U,b) = aA (U,b)' (23) 

The a* B-term gives only a trivial generalization. As A is 
analytic in b, 

JA + i JA = O. (24) 
Jy Jz 

As a consequence of(23), the Grassmann-valued functions 
and forms may be expressed as follows: 

~a = a*aea
, Y = a*af, Y A = a*afA' 

Y u =a*afu' ~A =a*ag A, 

5% = a*a~, A, % = a*aft%, 

K = - 2a*aA *A = a*ak. 

The Grassmann parts split off explicitly and we are left to 
deal with the ordinary one-forms ea,f, ~,ft% and the ordi
nary functionsfA ,Ju' gA, and k. Equations (10) and (16) are 
automatically satisfied, and the remaining equations are 

ft% + ~ = 0 [cf. (15a)], 

~C(JABH) Jcg A = - ~ [cf. (19)], 
Ju 

JfA c 
JAfu - - = (JCH)JAg [cf. (20)], 

Ju 

eABJA fE = k [cf. (21)], 

OAB(JBCH) JAg C = 0 [cf. (22)]. 

(25) 

(26) 

(27) 

(28) 

(29) 

Now our relevant equations are (4), (24), (27), (28), and (29). 
Equation (26) is the integrability condition for the local exis
tence of the one-formf and follows from (27) and (28). 

The generalized ansatz (3 = aA + a* B would give ex
actly the same equations (26)-(29) with 
k = - 4(A * A - B * B ) instead of k = - 4A * A. 
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5. SEPARATION OF THE u-DEPENDENCE 

If the u dependence is split off via 

A (U,b) = F(u)b (b), 

H (u,y,z) = Fl(U)K (y,z), 

gA(U,y,Z) =F2(U)h A (y,z), 

fu(U'y,z) = F'(u)F(u)m(y,z), 

fA (u,y,z) = !F2(u)nA (y,z), 

k (u,y,z) = - 2F2(U) b *(b)b (t), 

such that 

FI(U)F2(U) = F'(u)F(u), 

(4), (24), and (26)-(29) may be rewritten, now involving only 
the two coordinates y and z, as 

DAB JABK (K harmonic), 

Jb . Jb 0 (b I· ) - + 1 - = ana ytlc , 
Jy Jz 

~C(JABK )Jch A = 4b *b, 

JAm - nA = (JCK)JAh C, 

eAB JAne = - 4b *b, 

OAB(JBcK)JAh c = O. 

[The generalized ansatz 

(3=aA +a*B, 

A (U,b) = F(u)b 1(t), B (u,t) = F(u)bz(b), 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

would give the same equations (32)-(35)withb *breplaced by 

b fbI - b Tb2• J 
The integrability condition (32) follows from (33) and 

(34). Conversely,(34) is a consequence of(32) and (33). Hence 
the equations determining our solutions are either [(30) to 
(35) without (32)] or [(30) to (35) without (34)]. If one chooses 
the second possibility, (33) may be regarded as the definition 
of n A . Thenf = fu du + fA dx A may be calculated explicitly, 

f = ~d [F2(U) m(y,z)] + V2(u)(JcK )(JA h C)dx A, 

and n A has disappeared. If K is given, two functions h A satis
fying (35) are easily found. The only problem that remains is, 
that the function + 1~c (J ABK )J ch A has to be the squared 
absolute value of an analytic function b. If b is given, K and 
h A have to be found from (32) and (35) which turn out to be 
the two fundamental equations of our problem. 

Simple choices of the u-dependence are FJ(u) = F{u) 
and Fl(U) = F'(u). In both cases, the gA are linear in F,Jis 
quadratic. This is a consequence of the nonlinearity of the 
Einstein equations; the F 2-terms arise from the torsion 
which is quadratic in t/J. 

Equations (30) and (32)-(35) may be expressed in a co
variant manner on the two-dimensional flat manifold given 
by the line element 

dl 2 = dy2 + dz2 = DAB d~ dx B. 

In an arbitrary coordinate system? (y,z), the line element 
takes the form dl 2 = r AB d~ dxB. On this manifold, the 
one-form 
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n: = nAdx A = nAdx A 

and the vector field 

h:=hAaA =hA(JA 

are covariant objects; K, m, and b *b are scalar functions. The 
above equations (30), (32)-(35) take their covariant form if a A 

is replaced by the covariant derivative V A with respect to the 
metric TAB' 8AB by ~B, and ~B by (det T)-1/2 ~B. After the 
calculation, the components of nand h have to be retrans
formed into the coordinate system (y,z). 

The mathematical structure ofEqs. (32) and (35) is rath
er simple. Let band K be given. Raise and lower indices with 
8AB (the same thing can be done in an arbitrary coordinate 
system X A). Then (32) and (35) can be brought into the form 

a2h3 + a3h2 = - 4b *b~ -]a22K = given, 

where~ is the determinant of the matrix (aABK), and 

a2h2 - a3h3 = 4b *b~ -la23K = given. 

Note that the equations are identically satisfied if ~ 0 (in 
general ~ <0). Defining the two-dimensional vector 
q: = (h2' - h3), we may write, using the two-dimensional dif
ferential operators div and rot, 

div q = given, 

rot q = given. 

These equations can be integrated (e.g., by the method of 
Fourier transforms if the functions b *b~ -I a ABK do not 
behave too wildly). In principle, there is an explicit integral 
formula for h A in terms of band K. In this sense, our solution 
(with split-off u-dependence) is characterized by (a) an arbi
trary analytic function b (;) [or two functions b l (;), b2(;) in 
the generalized ansatz], (b) an arbitrary harmonic function 
K (y,z), (c) functions F(u), FI(u), and F2(U) satisfying FI(u) 
F2(U) = F'(u),F(u), (d) an arbitrary function m(y,z) , and (e) an 
arbitrary constant complex Grassmann parameter a. 

Since b is (locally) analytic, it is unbounded (if not a 
constant) and posesses signularities either in the complex 
plane or at infinity. The same thing occurs with the harmon
ic function K (which can be regarded as the real part of an 
analytic function). If one restricts b to lim f3 = 0 and -"" the absence of essential singularities, b has to be a rational 
function. 

The spinor field ¢ and the "body" vierbein ea may be 
chosen completely independent of each other. This fact is 
rather strange but corresponds to the remarkable freedom in 
constructing solutions of the supergravity field equations. 

6. AN EXAMPLE 

As an example of finding an explicit solution we use 
polar coordinates (x2, x3) = v.>, t/J), 

y=pcost/J 
z=psint/J 

and demand that 
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anAlat/J = ah A lat/J = aK lat/J = amlat/J = O. The Laplace 
equation (30) gives essentially 

Kv.» = lnp. 

Equation (35) leads to h 2v.» = C = const, and Eq. (32) gives 
h 3v.» = 4b *bp2. We define b (;): = c; P for integer p. Then 
b *b dependsonlyonp,andh 3v.» = 4c2p2P + 2. Sinceh 2 is con
stant, we get nA = (jAm; thus nA = aAm and 

/=!d [F2(U) mv.»]. 

Transformation into (y,z)-coordinates gives 

h = ( ; - 4c2z p2P + 2 )dY + ( ~z + 4c2y p2P + 2 )dZ. 

Thus the final solution is 

eO = dt - F](u)lnp du + !a*a d [F2(U) m(p)], 

el = dx - F](u)lnp du + !a*a d [F2(U) m(p)], 

e2 = dy + a*a d [F2(uj{ Cylp - 4c2z p2p + 2J], 

e3 = dz + a*a d [F2(u)! Czlp + 4c2yp2P+2J], (36) 

¢=( ?'JL,. ), A(u,;)=cF(u);P, 

-a*A * d;* 

with FI(u)F2{U) = F'(u)F(u), integer p, m an arbitrary func
tion ofp = (y2 + Z2)1/2, C and C constants. Finally, wecalcu
late the metric ds2 = e; ee 1'Jab dx f' dx v for m=O, C = 0, and 
p= -I: 

ds2 = dt 2 - dx2 - 2F](u) Inp du2 _ dp2 

- p2 dt/J (dt/J - 8c2a*aF~ (u)du). (37) 

7. DISCUSSION 

Each solution that is subject to the restrictions made in 
Sec. 2 admits a covariantly constant spinor €, D€ = 0, 

€ = (:. ), da = 0, a arbitrary, 

-a* 

and a corresponding covariantly constant one-form I = la ea, 
namely I = eO - el = duo I is the gradient of the null coordi
nate u, thus a null field, lalb 1'Jab = O. In this sense, the ob
tained solutions are pp-waves. 3 

Moreover,the presented solution (5), (7) is nontrivial 
and different from the previously known one (1), (2) in the 
following sense. Suppose that the linearized version (infinite
simal f3 ) of (¢,ea

) is obtained by an infinitesimal local super
gauge transformation from (¢ = O,ea): 

¢ = D€ (D = d + !(;jobuab = D ), 

If d€=j; 0, an immediate consequence of the first equation is 
that € has the form 
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(

a ) a+e 
E= , de = ° a* +e* 

-a* 

(otherwise Pdt #-P dt). a exists locally, if 

ap = ie (a
2
H -i a

2
H). (38) 

au 2 ay2 ayaz 
Together with (4), (6), and (19) this leads to aAH = 0, 
b = const. Only these solutions may be generated by a local 
infinitesimal supersymmetry transformation. If dE = 0, let 

E=(:: ) a! 
-aT 

be an arbitrary constant Majorana spinor. It is easily 
checked that ¢ = DE if and only if 

P (u,t )dt = waH / az) + i(aH / ay) ](az - a tldu 

which can only be valid if ¢ = 0. Thus, the linearized solu
tion (¢,ea) cannot be generated by a local infinitesimal super
gauge transformation [except those satisfying (38)]. For the 
same reasons, ¢ can be produced from (1), (2) by an infinitesi
mal local super-rotation only if a A b = 0. But then the linear
ized version of (¢,ea

) is identical with that of (1), (2). 
Now suppose that a full solution (¢,ea

) is generated by a 
finite global supersymmetry transformation from (¢ = O,ea

) 

with parameter E (dE = 0). Ref. 5 tells us 

¢ = (jjbcabCE 

which implies P dt -du, hence ¢ = 0, i.e., the full solution 
(¢,ea) cannot be produced by aglobalfinite supergauge trans
formation. In the same way we check that the solution (1), 
(2), denoted by (¢IO),ea), is not related with (¢,ea) by a global 
finite super-rotation if P is of first order in the Grassman 
algebra. The transformation law for the gravitino fields be
comes 

¢ = tf}0) + ~(jjabaabE + third-order Grassmann terms, 
giving the same contradiction (f3 (u,t) - F(u)a)dt -duo Only 
solutions satisfying a A P = a A H = ° remain. Except for 
these, (tf}°),ea) and (¢,ea) are never related by a finite global 
supergauge transformation. 

The solution (1), (2) is not included in the class presented 
here, because condition (15) is not valid. Furthermore, if 
aAP #-0, (¢,ea) cannot be obtained by a pure tetrad rotation 
applied to tf}0). Suppose ea = A ~ (x I-')eb, A ~ a Grassmann
valued Lorentz matrix (i.e., A ~A ~1Jac = 1Jbd) for each space
time poin~. The spinor components ¢IO) = ¢~) dx I-' transform 
into ¢ = ¢I-'dx I-' according to 

A _1.10) 
¢I-' = So/I-" 

S-Iy"S=A ~Y', det S= 1. 
(39) 

If aAP #-0, P has a zero either in the complex plane or at 
infinity. Hence our solution (5) satisfies 

u = const 
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where to denotes either a complex number or a certain man
ner for t to go to infinity. If ~ is such a solution, we note that 
limb~bo ¢~) #- 0, thus [from (39)] limb~'o S = ° which is a con
tradiction to det S = 1. ¢IO) and ¢ are not related by a tetrad 
rotation. Moreover, a pure coordinate transformation 
xl-' -+ X I-' cannot produce Grassmann-valued terms in the 
metric coefficients gl-'v' 

As a result we conclude that most of our new solutions 
are nontrivial and truly different from (1), (2). 

Finally, we discuss the plane-wave solution found by 
Urrutia (Ref. 1). His solution is the general one obtained by 
the ansatz ¢-du, ea = ea. Obviously, the torsion is zero 
(du 1\ du = 0). This solution cannot be related to the one pre
sented here by a global finite supergauge transformation if P 
is of first order in the Grassmann algebra. If it is denoted by 
¢(11, the relation 

¢ = ¢(I) + !(jjabaabE + third-order Grassmann terms 

reads 

Pdt - (first order)du + third-order terms. 

Since P is taken to be of first order, we conclude P = 0. In 
contrast, an infinitesimal relationship may be established. If 
we apply a local infinitesimal supergauge transformation 

-nth ::a(m~I~!J ~+ ~(UI) 
- a*(u,t) 

to produce <P: = ¢ + DE, we find 
¢=aAEdx A is of type (5), 

<P = (aE/au)du + !(jjabaabE-du. 
The linearized version of one of Urrutia's solutions is <P. The 
infinitesimal solutions of our class differ from those of U rru
tia only by infinitesimal local super-rotations. The finite so
lutions are truly different from each other. 

We are left with a new class of solutions satisfying the 
0(1) supergravity field equations showing the following 
properties. 

(i) The connection forms are real valued although met
ric and vierbein are Grassmann valued and the torsion is 
nonzero. 

(ii) The gravitino-energy-momentum tensor vanishes. 
(iii) There exists a covariantly constant spinor (and a 

corresponding covariantly constant null vector field, the 
propagation vector of the pp-wave). 
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We formulate stationary axially symmetric (SAS) Einstein-Maxwell fields in the framework of 
harmonic mappings of Riemannian manifolds and show that the configuration space of the fields 
is a symmetric space. This result enables us to embed the configuration space into an eight
dimensional flat manifold and formulate SAS Einstein-Maxwell fields as a O'-model. We then 
give, in a coordinate free way, a Belinskii-Zakharov type of an inverse scattering transform 
technique for the field equations supplemented by a reduction scheme similar to that of 
Zakharov-Mikhailov and Mikhailov-Yarimchuk. 

PACS numbers: 04.20.Jb, IUO.Qr, 11.10.Lm, 11.1 S.Kc 

1. INTRODUCTION 

Completely integrable systems and, in connection with 
these, Backlund transformations have attracted much atten
tion in recent years. As a result we now have a better under
standing of the nature of certain nonlinear partial differen
tial equations of mathematical physics, and this enables us to 
devise methods for systematic generation of exact solutions 
at least in two dimensions. One of these methods is the in
verse scattering transform technique of Belinskii and Zak
harov. !,2 It consists of (I) representation of the nonlinear 
system in the form of compatibility conditions of a more 
general overdetermined system of linear matrix equations 
depending on a complex spectral parameter; (2) explicit inte
gration of a Backlund transformation for these equations, 
thus generating new solutions from the known ones, 

The Belinskii-Zakharov integration technique was first 
applied, by the authors, to the Einstein vacuum field equa
tions where the space-time admits two commuting Killing 
vectors, These authors obtained all multisoliton solutions of 
Einstein's equations for stationary axially symmetric (SAS) 
vacuum and colliding plane gravitational wave space-times. 
The method was later extended and applied by Aleksejev3 to 
SAS Einstein-Maxwell equations. In both formulations the 
parametrization of the problem was such that the relevant 
linear eigenvalue equation contained the space-time metric 
functions directly, 

In this work we present, in a coordinate-free way, a 
different formulation of the inverse scattering transform 
technique of Belinskii and Zakharov for the integration of 
SAS Einstein-Maxwell field equations written in terms of 
complex Ernst4 potentials. In Sec. 2, we first show that the 
use of Ernst potentials enables one to formulate SAS Ein
stein-Maxwell field equations as equations determining har
monic mappings5

,6 from a base manifold, which is a three
dimensional flat space, to a four-dimensional Riemannian 
manifold called the configuration space of the fields. It turns 

out that the configuration space is a Riemannian symmetric 
space with the isometry group SU(2,1), in agreement with 
previous results 7-9 that Ernst equations are invariant under 
the action of this group. This property enables us to write the 
kinematical content of the theory in terms of the Maurer
Cartan equations for SU(2, I) while the dynamical content 
(i.e., the field equations) appear in the form of conservation 
of Noether currents, both expressed in terms of the set of 
eight Killing vectors that the configuration space admits. 
Using 3 X 3 matrix representation of the generators of 
SU(2, I) we define a Lie algebra valued flat connection I-form 
which can be integrated to give the 3 X 3 Hermitian matrix, 
found recently by Gurses and Xanthopoulos, \0 characteriz
ing SAS Einstein-Maxwell fields as a O'-model. The symmet
ric space property of the configuration space is reflected by 
the fact that this matrix leaves invariant the metric of the 
three-dimensional complex vector space on which the group 
SU(2, I) acts. As a final remark of Sec. 2, we note that the 
configuration space can be embedded into an eight-dimen
sional flat space, generalizing the result of Matzner and 
Misner!! for SAS Einstein vacuum to the electrovacuum 
case. 

In Sec. 3, we present a Belinskii-Zakharov type of in
verse scattering formulation for the integration of SAS Ein
stein-Maxwell field equations. Using the flat connection 1-
form of Sec. 2 and its Hodge dual with respect to a 
two-dimensional Euclidean space E 2 and introducing a com
plex spectral parameter, we construct a new connection 1-
form defined on E 2 X C whose curvature vanishes modulo 
the field equations. The associated linear eigenvalue equa
tion follows immediately while gauge transformations of the 
connection are nothing but Backlund transformation for the 
field equations. Using the technique invented by Belinskii 
and Zakharov, a particular form of Backlund transforma
tion can be integrated explicitly for the 3 X 3 matrix, charac
terizing the solution in terms of a known solution. The pro
cedure, however, does not guarantee the symmetric space 
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property of the 3 X 3 matrix, which is crucial for the parame
trization ofSAS Einstein-Maxwell fields. To solve this prob
lem, one has to modify the integration scheme by imposing 
additional conditions an the Backlund transformation. This, 
the so-called reduction problem, was solved by Zakharov 
and Mikhailov l2 and Mikhailov and Yarimchuk, 13 and is the 
subject of Sec. 4. We also include an appendix for the details 
of Sec. 2. 

2. THE CONFIGURATION SPACE FOR SAS EINSTEIN
MAXWELL FIELDS 

The equations governing SAS Einstein-Maxwell fields 
in terms of complex Ernst potentials E( p,z) and (/> (p,z) are 

(E + "E + 2(/>fP )V2E = 2(VE + 2fPV(/> )·VE, 

(2.1) 
(E + "E + 2(/>fP )V2(/> = 2(VE + 2fPV(/> I-V(/>. 

Here V and V2 are, respectively, the flat space gradient and 
Laplace operators in cylindrical coordinates ( p,z,¢ J. Equa
tions in (2.1) can also be regarded as equations determining 
harmonic mappings! M_M', where M and M' are two Rie
mannian manifolds with metrics 

M: ds2 = dp2 + dz2 + p2 d¢ 2, (2.2) 

M': ds'2 = F -21dE + 2fP d(/> 12 - 4F -I d(/> dfP, (2.3) 

where F = ~(E + "E) + (/>fP. To see this, it is enough to consid
er the set of basis I-forms {(JA (A,B, ... = 1,2,3,4) of the cotan
gent space T * (M ') of M'. which are orthonormal with re
spect to the metric g' of M '. These satisfy the integrability 
conditions d{(JA + {(JAB A. {(JB = O. which enables one to deter
mine the connection I-forms {(JAB = - {(JBA' The basis I-

. forms {(JA along with the connection I-forms {(JAB' when 
pulled back to M using the map f, ~ = j*O{(JA and 
nAB =j*O{(JAB' satisfy 

(2.4) 

displaying the Riemannian structure of the induced vector 
bundlej-I T (M ')-M transported from that of the tangent 
bundle T (M ')_M I. Introducing now the Hodge dual oper
ation (*). which is determined by the Riemannian structure 
of M. the field equations (2.1) can be written as 

d*~ + n AB A. *cf1 = O. (2.5) 

Ii(/> 

- (E + "E - 2(/>fP )/2 

i/i"E(/> 

where 

F = !(E + "E + 2(/>fP ). 

in agreement with the results of Gurses and Xanthopoulos. 10 

Because of Eqs. (2.10) and (2.13) the field equations (2.1) can 
be written in terms of the matrix P as 

d[(*dP)P- I] =0. (2.15) 

This form for the SAS Einstein-Maxwell field equations is 
particularly suitable for the application of inverse scattering 
transform techniques for generation of soliton solutions. 

The matrix P given in (2.14) leaves the metric of the 
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while the variational principle for the problem is M = 0 with 

(2.6) 

The Riemannian manifold M' with the metric given in Eq. 
(2.3) is called the configuration space for SAS Einstein-Max
well fields and is a Riemannian symmetric space. This prop
erty implies that there exists eight Killing vectors generating 
the isometry group SU(2.1) of M' and that the line element 
(2.3) can be written as (see the Appendix for details) 

d ,2 _ 1 ...J.l v 
S - 21J"v'" ® T • (2.7) 

where r-' (/i. v ... · = 1.2 ..... 8) are the corresponding Killing 1-
forms satisfying the Maurer-Cartan equations 14 

dr-' + !C" a{3r A. rI3 = O. (2.8) 

with C" a{3 being the structure constants of SU(2.1) and 

(2.9) 

being the constant group metric. (See the Appendix for de
tails.) The invariance of the action integral (2.6) under 
SU(2.1) implies the existence of eight Noether currents 
j*0r-'. which are conserved. i.e .• 

d *(f*or-') = O. (2.10) 

As it is for the case of a symmetric space. these conservation 
laws are in one-to-one correspondence with the field equa
tions (2.5) or equivalently (2.1). 

Using the 3 X 3 matrix representation of the generators 
X" of SU(2.1) we can now define Lie algebra valued connec
tion I-form 

(2.11) 

which. because of the Maurer-Cartan equations (2.8). satis
fies 

dW+ WA. W=O. (2.12) 

This implies that the curvature of W vanishes identically; 
hence 

(2.13) 

where P is a 3 X 3 Hermitian matrix with unit determinant. 
Using Eqs. (2.11) and (2.13) the matrix Pcan be determined. 
up to a constant gauge transformation. as 

i("E - E + 2(/>! )/2) 
- i/iE(/> • 

E"E 

(2.14) 

I 
complex vector space on which the group SU(2.1) acts invar-
iant. i.e .• 

PyP=y. 

where 

y=( ~. 
-/ 

o 
-1 
o 

(2.16) 

(2.17) 

By defining Z = yp. the configuration space can be consid
ered as the four-dimensional hypersurface Z 2 = I. embed
ded in an eight-dimensional flat space with the metric 
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ds'z = -! Tr(dZ ® dZ), 

where 

( 

Zg - jiZz {i(Z7 + iZ6 ) 

Z = 1 {it - Z4 + iZ5 ) i + JiZz 

- ZI .j2( - Z5 + iZ4 ) 

The embedding equations are 

ZI = F- 1
, Zz = - 3(/)if> IF, 

Z3 = €UF, Z4 = !i{(/) - if> )IF, 

Z5 = !((/) + if> )IF, Z6 = !(E'<P + €if> )IF, 

Z7 = F(E'(/) - €if> )1 F, Zg = i(l - €)I2F, 

and the line element (2.18) becomes 

_ dS,2 = (dZ I ® dZ 3 + ! dZ 2 ® dZ 2 + 4 dZ 4 ® dZ 7 

(2.18) 

(2.20) 

+ 4 dZ 5 ®dZ 6 
- dZ 8 ®dZ 8

), (2.21) 

which has zero signature. This generalizes the results of 
Matzner and Misner l

! for the SAS Einstein vacuum to the 
SAS Einstein-Maxwell case. 

3. THE INVERSE SCATTERING TRANSFORM 
TECHNIQUE 

Even though the base manifold M, whose metric is giv
en by Eq. (2.2), is a three-dimensional flat space, the fact that 
the map/is independent of the azimuthal coordinate ifJ 
makes M effectively two-dimensional. For a coordinate-free 
formulation of the inverse scattering transform technique, 
we shall from now on consider the two-dimensional Euclid
ean space E 2 as the base manifold M. Therefore, in what 
follows the Hodge dual operation (*) should be understood 
as the one defined with respect to the Riemannian structure 
on E 2. The field equation given by (2.15) will then read 

d [Ll (*dP)p-l] = 0, (3.1) 

where Ll is a scalar function on E 2, satisfying 

d(Ll -1* dLl) = O. (3.2) 

The explicit functional form of Ll depends on the particular 
choice of local coordinates by 

(3.3) 

whereg is the metric of the three-dimensional base manifold 
M of the previous section. 

The flat connection I-form W defined in Eqs. (2.13) and 
(2.14) is not suitable for the application of an inverse scatter
ing transform technique to generate soliton solutions of the 
field equations. This is because its curvature vanishes identi
cally without any references to the field equations. What is 
needed is a connection whose curvature vanishes on the solu
tion submanifold (i.e., modulo the field equations) and, fur
thermore, contains a complex parameter in such a way that 
the connection defined in Eq. (2.13) is obtained in the limit 
that the value of the parameter goes to zero. For this purpose 
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we introduce a generalized exterior derivative operator D, 
satisfying D 2 = 0, by 

D=d- - dB-(aB)-1 a 
aA aA' 

(3.4) 

where A is a complex parameter independent of the coordi
nate on E 2 and 0 (A,E 2) is any scalar function with the prop
erty 

lim D = d. (3.5) 

Next we consider a linear eigenvalue problem for a 3 X 3 
matrix '/I (A,E 2) written as 

D'/I = - fllJl, (3.6) 

where 

(3.7) 

and a(A,E 2
) and b (A,E 2

) are complex functions defined on 
E 2 X C satisfying 

lim a(A,E 2) = 1, lim b (A,E 2) = O. 
,(->0 ,(->0 

Integrability ofEq. (3.6) requires 

Dfl+flA fl=O 

(3.8) 

(3.9) 

on the solution submanifold which restricts further the func
tions a and b to satisfy 

a2 + Ll 2b 2 - a = 0 (3.10) 

and 

Da =Ll*Db. (3.11) 

With this choice we now have a connection I-form which is 
integrable because of the field equations (3.1) and which sat
isfies 

limfl= W (3.12) 

Using Eqs. (3.6) and (3.12), we see that the matrix P can be 
identified as 

P(E 2
) = lim '/I(A,E 2

). 
,(->0 

(3.13) 

Except for the condition given by Eq. (3.5) the function 
B (A,E 2) is arbitrary, with different choices leading to differ
ent functions a and b and hence to a different linear eigenval
ue problem. But, as wiII be seen later, its choice is crucial for 
the explicit integration of a Backlund transformation using a 
solution of the "matrix Riemann problem." In theory, given 
a proper function B (A,E 2) Eqs. (3.10) and (3.11) can be solved 
for a and b satisfying the conditions given in Eq. (3.8). These 
functions together with the definition of the connection 1-
form fl, given in Eq. (3.7), determine the linear eigenvalue 
Eq. (3.6) completely. 

We are now at a position in which we can apply the 
inverse scattering transform technique of Belinskii and Zak
harov to the problem under consideration. For this purpose 
we assume the knowledge of a particular solution Po of(3.1) 
in terms of which we construct the corresponding connec
tion I-forms Wo = - (dPo)P 0- I, flo = a Wo + bLl * Wo, and 
hence the function '/Io{A,E 2), by solving Eq. (3.6). A transfor
mation of the form 
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(3.14) 

definesanewmatrix IJIleadingtoanewsolutionP [usingEq. 
(3.13)] of(3.1}. where. by Eq. (3.6). the matrix X is restricted 
to solutions of 

(3.15) 

Even though the above procedure guarantees that P is a 
solution to Eq. (3.1). it does not yet provide solutions to SAS 
Einstein-Maxwell equations. To represent SAS Einstein
Maxwell fields. the new matrix P must also satisfy the sym
metric space property (2.16) and must be Hermitian. These 
additional conditions. which can be demonstrated easily to 
be consistent with the field equation (3.1). put additional re
strictions on the matrices IJI and X. This. the so-called reduc
tion problem. will be the subject of the next section. 

4. THE REDUCTION AND INTEGRATION 

In order for a solution P of (3.1) to represent SAS Ein
stein-Maxwell fields. it must be consistent with the parame
trization given by Eq. (2.14). This means that the matrix P 
should be Hermitian (P = P t) and. furthermore. must satisfy 
the symmetric space property 

(yP)2 = I. (4.1) 

where y is given in Eq. (2.17). It can easily be shown that 
these conditions restrict the connection I-form W to satisfy 

WP - PW t = O. yW + Wty = O. (4.2) 

which in turn imply that we should have 

a (A)P - pa t(A) = O. ya (A) + a t(A)y = O. (4.3) 

With these in mind. if we now reconsider the linear eigenval
ue equation (3.6) and Eq. (3.15) for X. we find that 

PylJl(r) = IJI(A)J. IJIt(X)y=ylJl-I(A). (4.4) 

and that 

(4.5) 

where J is a 3 X 3 matrix satisfying DJ = O. J 2 = I. and r: 
A __ r(A.E 2) is a fractional linear transformation on the com
plex A plane with ~ = I leaving the function (J (A.E 2) invar
iant. The functions a(A.E 2) and b (A.E 2) transform under r as 

a(r.E2) = 1 - a(A.E 2). 

(4.6) 
b (r.E2) = - b (A.E 2). 

leaving conditions (3.10) and (3.11) invariant. 
The remaining problem is explicit construction of the 

matrix X. satisfying the requirements in (4.5) with a given Po. 
This can be carried out as done by Belinskii and Zakharov. 1.2 

Zakharov and Mikhailov. 12 Mikhailov and Yarimchuk. 13 

and Eri§ and Gurses 15 once the local coordinates on E 2 and 
the set of functions I (J.a.b J are fixed. For the integration of 
SAS Einstein-Maxwell equations a convenient choice is the 
one given by Belinskii and Zakharov. namely. 

L1 = p. (J (A,p,z) = p21U - A 12 - z. 

a(A,p) = p2/(A 2 + p2). b (A,p) = A I(A 2 + p2). (4.7) 

r= _p2IA. 
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Whether this set is unique or not. or whether a different 
choice satisfying all the requirements mentioned above leads 
to different solutions to the field equations is still under in
vestigation. 

For the N-soliton configuration it is assumed that the 
matrix X (A,p,z) is of the form 

2N R. 
X=I+ L -'-. 

i~IA-Il, 
(4.8) 

where the scalar functions Il, are the roots of the equation 

(J (p,,p,z) = - Wi (consts) (4.9) 

and the matrices R i are independent of the complex spectral 
parameter A. The above form for X together with Eq. (4.5) 
implies that 

P=x(O)Po' (4.10) 

For reasons that will become clear later we shall choose the 
2N poles of X to be related pairwise as 

IlN+k =r(pk)' k= 1.2 •...• N. (4.11) 

The unknown matrices Ri will be determined using Eqs. 
(3.15) and (4.5). Since R, are independent of the spectral pa
rameter A. it suffices to consider these equations at the poles 
A = Ilk and look at the residues at these points. Considering 
the relation XX - I = I at the poles A = Ilk' we get 

RkX-I(Pk) = o. k = 1.2 ..... 2N. (4.12) 

displaying the fact that the matrices Rk are degenerate. 
Equation (3.15) evaluated at A = Ilk gives 

(DRk - RkaO)X-II,(~l'k = O. k = 1.2 ..... 2N. (4.13) 

which. using the fact that the matrix IJI 0- I satisfies 

DIJI 0- I - IJI 0- lao = O. 

shows that we have 

Rk = Mk IJI 0-I(Pk)' k = 1.2 .... ,2N, 

(4.14) 

(4.15) 

where, for the moment, the matrices Mk appear to be arbi
trary except that they have to be degenerate because of(4.12). 
To determine M k • we consider the two reduction conditions 
given by Eq. (4.5). The first condition. when evaluated at 
A = Ilk' requires that X - I should have poles at A = Ii k and 
that 

2N RkyR;y 
Rk + L _ = 0, k = 1,2, ... ,2N. (4.16) 

'~l Ilk -Ili 

On the other hand, the second condition ofEq. (4.5) requires 

2N RkPoR; 
RkPO + L =0. k=I,2 .... ,2N. (4.17) 

i~l r(pk)-Ili 

Since the 3 X 3 matrices Mk are degenerate, writing 

Mk = mknk + PkqL k = 1.2, ... ,2N, (4.18) 

Eqs. (4.16) and (4.17) reduce to two systems oflinear algebra
ic equations which must consistently be solved for the col
umn matrices m k' n k. P k' and q k' The consistency of the two 
systems, apart from the particular ordering of the poles Il i as 
given in Eq. (4.11). requires that we should have 

Jtnk =nN+k, Jtqk =qN+k' k= 1.2, ... ,N, (4.19) 

which can equivalently be written as 
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(4.20) 

With these conditions, Eqs. (4.16) and (4.17) become identi
cal. Hence, using anyone of these equations, we obtain the 
following set of linear algebraic equation: 

I ( 1 _ ) [(n;Siknk )mi + (q;Siknk)Pi ] 
i=1 Ili -Ilk 

= y(t/l1;{J.lk))-lnk , 

2N 1 L [(n;Sikqk)mi + (q;Sikqk)Pi ] 
i= I Ili - Ilk 

= y(t/l1;{J.lk))-lqk , 

where 

(4.21) 

(4.22) 

By use of these equations we determine the column vectors 
m k andpk in terms of the column vectors nk and qk. 

So far the vectors n k and q k which have been choosen as 
constant vectors by Belinskii and Zakharov as a particular 
solution ofEq. (4.13) appeared to be arbitrary. We shall show 
that their choice is indeed the unique solution. Using Eqs. 
(4.15), (4.18), and (4.14) in Eq. (4.13), we obtain 

(Dn!)t/lo-l{J.lk)X- I IIl=ltk = O. 

Knowing the fact 

n!t/lo-l{J.ldx- I IIl=ltk =0, 

then (4.23) can be written as 

(4.23) 

(4.24) 

Dn! = Hkn!. att!. =Ilk' (4.25) 

where Hk 's are I-forms (not matrix-valued). Applying D op
erator (t!. = Ilk) to (4.25), we get 

(4.26) 

Since DAD = 0, then Hk = Drk III =ltk' where 
rk [ = rk(E 2

)] are arbitrary functions. Hence n! in Eq. 
(4.25) can be solved exactly as 

(4.27) 

where nOk 's are constant vectors. On the other hand, it can be 
shown from the linear set (4.21) that the vectors m k 's are also 

scaled by the factors eYk. Hence the degenerate matrix Mk 
given in (4.18) and the new solution P does not contain these 
functions. The same results are also valid for the vectors qk 
and Pk. Therefore we do not lose any generality by taking nk 
and qk as constant vectors. 

5. CONCLUDING REMARKS 

The symmetric space property and hence the a-model 
formulation of the SAS Einstein-Maxwell problem may lead 
to some other new results. One of them has recently been 
given by Mazur. 16 He, independently, using such a formula
tion, proved the uniqueness of the Kerr-Newman black-hole 
solution. Einstein-Maxwell field equations for space-times 
admitting only one Killing vector formally look like the field 
equations given in Eq. (2.1). The crucial difference is that the 
differential operators are functions of the metric variables 

1493 J. Math. Phys., Vol. 25, No.5, May 1984 

for the former case. Nevertheless, generalizing the differen
tial operator Din (3.4), there is a hope oflinearizing the E-M 
field equations for space-times admitting a non-null Killing 
vector. Work along this direction is in progress. 

Although in this work we concentrate on soliton solu
tions for SAS Einstein-Maxwell fields, the procedure can be 
applied with minor modifications to every field theory which 
can be formulated in the framework of harmonic mappings 
of Riemannian manifolds provided that the configuration 
space is a Riemannian symmetric space and the base mani
fold is effectively two-dimensional. Recently,1O it was shown 
that there is a close relationship between static axially sym
metric self-dual SU(3) Yang-Mills and SAS Einstein-Max
well fields. Thus, the solution generation technique present
ed here may also be used to obtain the monopole or the 
instanton solutions for SU(3). Furthermore, since the dimen
sion of the matrices may be arbitrary, static axially symmet
ric self-dual SU(N) Yang-Mills fields can be treated as well. 
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APPENDIX 

Choosing the complex tetrad I-forms as 

WI = F -I(d€ + 2fP dl/J), w2 = F -I(dE + 2l/J dfP), 

(AI) 
w3 = 2F -1/2 dl/J, w4 = 2F -1/2 diP. 

The line element (2.3) for the configuration space can be 
written as 

(A2) 

The connection I-forms are 

Wl
l = -W

2
2 = - !w l + !w2

, 

I 4 1 4 
W3=W2= -2W , (A3) 

W
2

4 = w3 
I = - ~W3, 

W
3

3 = w\ = - !w l + lw2
• 

Using these, the tetrad components of the curvature tensor 
are found as 

R ' I R ,2 R '3 R ,4 1 
- 112 = 212 = 334 = - 434 = 2' 

(A4) 
R ' I - R 1\ - R ,2 - R ,2 - R ,3 

134 - 314 - - 234 - 423 - 123 

- R ,3 R ,4 R ,4 1 
- - 312 = 214 = 4\2 = 4' 

while the nonzero components of the Ricci tensor are 

R'\2= -a' R'34=a· (A5) 

Hence, R ' = - 6 is the curvature scalar. Hence we have 

R ~B = - ~~B (A,B, ... = 1,2,3,4), 
where 

o 
o 
o 
-1 

Eri§, GOrses, and Karasu 

(A6) 

(A7) 

1493 



                                                                                                                                    

therefore (M' ,g~B)' is an Einstein space. In addition to this 
property we have 

R GBCDR 'G AEF + R ~GCDR 'G BEF 

+ R ~BGDR 'G CEF + R ~BCGR 'G DEF = 0, (A8) 

iantly constant. This in turn means that M' is a Riemannian 
symmetric space. For this case the two properties together 
mean that M ' is a harmonic space in the sense of Walker. 17 
Thus M' has eight Killing vectors, 1'p = hp A a/ayA 

meaning that the Riemann curvature tensor of M' is covar
I 

(/-l,V,oo., = 1,2,00.,8), With {yA} denoting the set [~,"E,<p,(jj J 
these are 

. a . a 
1'1 =1- -1-, 

a~ iTe 
'n. a .d; a 

1'2 = 1'Y - - 1'Y-= 
a<p a<p' 

.2 a -2 a 'n. a ,d;- a 
1'3 = -it:- - + lE- - -1'Y~- + 1'Y~-=, 

a~ iTe a<p a<p 

a - a a a 
1'4 = - 2<P - - 2<P - + - + -=, 

a~ iTe a<p a<p 

2 
'n. a 2·d; a . a . a 1'5 = 1'Y - - 1'Y - + I - - I -=, 

a~ iTe a<p a<p 

2 ·n. a 2·d;- a .( 2n. 2) a '(2d; 2 -) a 1'6 = - 1'Y~ - + 1'Y~ - + I ~ - 'Y - + I 'Y - ~ -=, 
a~ iTe a<p a<p 

1'7 = 2<P~!.... + 2(jj"E!.... + (~+ 2<P 2) ~ + ("E + 2(jj 2) ~, 
a~ iTe a<p a<p 

a _ a a - a 
'I's = 2~-+ 2~-+ <p-+ <p-=. 

a~ iTe a<p a<p 

These Killing vectors satisfy the SU(2, 1) algebra 

where 

- C\6 = C\5 = C\s = C\7 = - C 5
24 = C\s = - C 6

27 , 

C 6
34 = - C 6

6S = C\6 = - C 7
35 = - C\s = C 8

13 = 1, 

C 1
1S = -C33S=CS47=Cs56=2, 

C 145 = - C 367 = 4, - C 246 = C 257 = 6. 

The corresponding Killing I-forms rP = h p A dyA are given as 

1'1 = - iF -2{!C + <p(jj"E} d~ + iF -2{~C + <p(jjd dE + iF -2(jj{E d<P - iF -2<p~"E d(jj, 

r = ~ iF -2<p(jj d~ - ~ iF -2<p(jj dE - ~ iF -2(jj (~ + "E) d<P + ~ iF -2<p (~ + "E) d(jj, 

r = ! iF -2 d~ - ! iF -2 dE + iF -2(jj d<P - iF -2<p d(jj, 

1'4 = _ ~ F -2{"E(<P + (jj) + 2<P(jj 2} d~ - ! F -2{~(<P + (jj) + 2<P 2(jj} dE, 

+ l F -2{C + ~"E + 2~(jj 2} d<P + ! F -2{C + ~"E + 2"E<P 2} d(jj, 

r = -! iF -2{€,((jj _ <P) + 2<P(jj 2} d~ + ! iF -2{~(<P - (jj) + 2<P 2(jj} dE, 

- ! iF -2{C + ~"E - 2~(jj 2} d<P + ! iF -2{C + ~"E - 2"E<P 2} d(jj, 

1'6 = a iF -2(<P + (jj) d~ -1 iF -2(<p + (jj)dE + ~ iF -2{(jj 2 - !(~ + "E)} d<P - ! iF -2{ <p 2 - ~(~ + "E)} d(jj, 

1'7 = -IF-2(<P - (jj) d~ + 1F-2(<P - (jj) dE +! F-2{(jj 2 + !(~ + "E)} d<P +! F-2{<p 2 + !(~ + "E)} d(jj, 

(A9) 

(AW) 

(All) 

~ = ~ F-2{"E + <p(p} d~ + ~ F-2{~ + <p(jj} dE +! F-2(jj {€' - d d<P +! F- 2<p {~-"E} d(jj. (AI2) 

They satisfy the Maurer-Cartan equations 

drP + ! CP aPr" 1\ rP = 0. 

Using these, the line element of M' can be written as 

d'S2 = 1 'Y1 rP®1'v 
2 ·'J-lV ' 

d'S2 = _1'1 ®r - ~ r®r - 41'4 ® 1'7 

_ 4r ®1'6 + 1'S ®1'S. 
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(A13) 

(AI4) 

We now define a Lie algebra valued connection I-form 
Was 

W=XprP, 

whereXp is the 3 X 3 matrix representation of the generators 
of the group SU(2, 1) satisfying 

[Xp,xv] = capvXa' 

Since the group metric 1] pv can also be written as 
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1J~v = ~tr(X~Xv + X,X~). The line element (A2), or, equiv
alently, (AI4), can also be written as 

dS,2 = 1 tr(W® WI, (AIS) 

where, written out explicitly in terms of the Killing I-forms, 

( 

-!ir+~ 

W = .j2( - r4 + ir) 
_ r1 

.j2(ir6 + r7) 

~ir 

.j2(ir4 - r) 

because of the Maurer-Cartan equations (AI3). The curva
ture 2-form ofthis connection vanishes identically, i.e., 
dW + W/\W=O. 
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In an exp~icit, ~nified, and cov~riant formulation, we study and generalize the exceptional vector 
pro~ucts m R o~ Zve~gro~ski, Gray, and Kleinfeld. We derive the associated general quadratic, 
CUbIC, and qU~rtl~ G2 m~anant algebraic identities and uncover an octonionic counterpart to the 
d = 4 quatermomc duahty. When restricted to seven dimensions the latter is an algebraic 
statement of absolute parallelism on S 7. We further link up with the Ogievetski-Tzeitlin vector 
product an~ obtain explicit te~s~r forms of the SO(7) and G2 structure constants. SO(8) 
tran~formatl~ns ~elated by Tnahty are characterized by means of invariant tensors. Possible 
phYSIcal apphcatlons are discussed. 

PACS numbers: 04.50. + h, 11.30.Pb, 02.40.Ky 

I. INTRODUCTION 

In the past few years spurred by the experimental suc
cesses of QCD on the one hand and of the minimal grand 
unified theory, the standard electroweak model, on the oth
er, there have been renewed and vigorous searches! for a 
geometric, truly unified, theory of all basic interactions. The 
favored approach has been a Kaluza-Klein type reduction 
of d = 11, N = 1 Supergravity.!,2 While a realistic theory is 
still out of reach, 3 these attempts have revealed novel, exotic 
structures. They free particle theorists from the confines of 
four-dimensional space-time. Indeed, the peculiarities4 of 
high~r dimensional geometries (specifically, octonionic geo
metnes) may suggest some unusual physical mechanisms 
and generate new insights into the possible geometries of 
dynamics of some generalized space-times. From the view
point of mathematical physics, the above endeavor has made 
most conspicuous the possibly central role played by octon-
. 15 d h . Ions' an t elr attending exceptional groups and geome-
tries. 6 

The search for physical relevance of non associativity is 
not new.7,8 Yet the current emergence of octonions in Ka
luza-Klein supergravity is singularly remarkable as the oc
tonionic structure is rooted in the very fabrics of the geome
try of extended space-time and its dynamics. A telling 
illustration of this phenomenon is the geometrical Higgs 
mechanism due to Englert9 and others. 10 There spontaneous 
compactification of d = 11 supergravity into a Riemannian 
product of an anti-DeSitter space-time and S7, an internal 
seven-sphere of the imaginary unit octonions, is achieved via 
the rank 4 Kalb-Ramond gauge field. The latter's potential 
fields are identified as the left (or the right) fully antisymme
tric parallelizable torsions on S 7. The existence of these tor
sions was attributed by Cartan and Schouten 7 to the nonas
sociativity of the octonions. In a recent note, II we have made 
this connection 12 to octonions most explicit by giving a pure
ly algebraic form of Englert's solutions. Namely at the poles 
of S7, the Cartan-Schouten13 torsions are simply given by 
the Cayley structure constants. The rank 4 gauge field 

.) Alfred P. Sloan Foundation Fellow. 

stren~th, which i.s notably dual to the torsion, is given by the 
assoclator of the Imaginary octonionic units. Thus the seven
dimensional duality and the resulting geometric Higgs 
mechanism 1,10 are manifestly linked to the lack of associati
vity and the alternativity of the octonions. 14 

Moreover from Refs. 9 and 11, we realized that the dis
covered duality9 between the potential and the field strength 
of the rank 4 tensor abelian gauge field must be the residue of 
a more perfect duality in eight dimensions. We recall that for 
ad = 4 Riemannian manifold M, it is well known 15 that the 
nonsimple nature of their holonomy group, the norm group 
of the quaternions, 0(4) = Sp(l)XSp(l) = S3 XS3, giving 
any d = 4 space a quaternionic structure, is the raison d 'etre 
of the duality structure of Euclidean gravity and gauge fields 
over M. The existence of (anti-) self-duality is connected to 
that on R 3, the tangent space to S 3, of a vector cross product, 
the Grassman-Gibbs product, alias Hamilton's quaternion 
multiplication. The situation is more subtle in R 8 (Ref. 16) as 
0(8) = S 7 xs 7 X G2 which suggests a more subtle and exotic 
form ~f duality mediated in part by the exceptional group G2• 

In trymg to uncover this exceptional duality we realized, as 
E. Calabi 17 did long ago, that the full algebraic and geomet
ric implications of the Cayley-Graves octonions is most ap
propriately seen in terms of invariants of the Cayley space, 
the R 7 -space of the pure imaginary octonions, and of the 
eight-space with its unique Triality Principle. In other words 
the invariant tensor identities and the duality we seek should 
be described by generalized vector cross products,8 the 
d = 7,8 space analogs of Grassmann-Gibbs vector product 
in R 3,16 the space of the imaginary quaternions. 

In mathematics, vector cross products on manifolds 
have been an active research topic. 18 The motivations are at 
least threefold. Firstly, vector products generalize the funda
mental notion of almost complex structure. Secondly, the 
existence of a vector product on a manifold induces unusual, 
almost complex, structure on its submanifolds. 17 Thirdly, 
they provide an approach to the exploration of that terra 
incognita which are the Riemannian spaces with exceptional 
holonomy groups G2 and Spin (7).19,20 In our view the above 
reasons go hand in hand with the current focus by physicists 
(and mathematicians alike) on the holomorphic interpreta-
. 15 f' ttOn 0 mstantons and on the various exotic geometries 1,4 
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begotten and suggested by Kaluza-Klein compactification 
of d = 11, N = 1 Supergravity. This perspective certainly 
provides a strong inducement to seek the implications ofvec
tor cross products on exceptional manifolds. Our work is a 
step in this direction. 

Our paper is organized as follows. Along with introduc
ing our notation, Sec. II lists the properties of octonions rel
evant to our work. The links between octonions and the 
groups SO(8), SO(7), G2, and SU(3) are merely stated with 
some explicit new connections to be subsequently worked 
out. We then illustrate the workings of the principle of Tria
lity in R 8 by giving a new derivation of the three Moufang 
identities. Sections III, IV, and V present our main results. 
Making primary use of a fundamental G2 invariant self-dual 
numerical tensor, we give a compact, unified, covariant, and 
explicit formulation of various allowed r-fold vector cross 
products in R 8. Central to our formulation is a novel octon
ionic duality structure paralleling the self- (anti-self-) duality 
in four dimensions. This connection between vector cross 
product, i.e., generalized almost complex structureS and 
duality parallels that between complex structure and four
dimensional duality.5 Specializing to the seven-dimensional 
submanifold this duality induces the dual algebraic structure 
on S 7 observed in Ref. 9 and accounted for explicitly in Ref. 
11 in terms of octonions. After defining various vector cross 
products and their generalizations, we compute the most 
general corresponding quadratic, cubic, then quartic G2 in
variant tensorial identities in R 8. A linkup is achieved with 

k· 21 G 18 d KI . the cross products ofZvengrows 1, ray, an em-
feld. 22 In particular the latter product is given an eight-di
mensional covariant extension. We then make contact with 
and explicate the Ogievetski-Tzeitlin vector product23 and 
as a by-product new explicit formulas for the G2 and SO(7) 
transformations and structure constants are obtained. Sec
tion V applies our formalism to SO(8) transformations relat
ed to Triality; they are characterized by invariant tensors. 
Section IV concludes our study. 

II. OCTONIONS 

To define our notations we list the features of the octon
ion algebra as far as they are of relevance to our work. We 
refer for proofs to Freudenthal et al. 6.14 We recall that a 
division algebra is a linear algebra A , x, YEA with a multipli
cative norm N E R, the real number field, such that 

N(x,y)=N(x)N(y), N>O, 

N(x) = ~x = O. (2.1) 
According to the celebrated Hurwitz'sl4 theorem, there are 
only four such division algebras, the real, the complex, and 
quaternion numbers fields, R, C, H, and n, the ring of the 
Cayley-Graves numbers or octonions. The importance of 
the first three number fields and function theories over them 
particularly in supersymmetric theories of matter coupled 
gravity is quite clear.24 The relevance of octonions to super
gravity is under intensive study. I 1,12 The division ring n is 
said6,25 to be a R-module with an additive canonical basis 
{ea I = {eo,el' I, I-l = 1,2, ... ,7. We will henceforth let Greek 
indices run from 1 to 7 while Latin ones run from 0 to 7. The 
ring structure is given by 

eo the unit element in n, (2.2) 

1497 J. Math. Phys., Vol. 25, No.5, May 1984 

(2.3) 

[ea ,ep ] = 2tPapyey, (2.4) 

{ea ,ep I = - 2/)aP' a, /3, r = 1,2, ... ,7. (2.5) 

The Cayley structure constants tPapy in the multiplication 
law eaep = - Dap + tPafJyey, i.e., Eqs. (2.4) are antisymme
tric in (a, /3, r) and nonzero and equal to unity for the seven 
combinations (or cycles) 

(123), (246), (435), (367), (651), (572), (714). 

The tP apy are read off by cyclic permutation from the mne
monic triangle (123) on a circle with the seven points 8,26 
labeled in the order (1243657). In fact there are 480 ways of 
exhibiting the octonionic multiplication table! 

An octonion may be written in the standard form 
x = xa ea ,x E n. The involution is the conjugation x_x, the 
conjugate x = xaea with ea = (eo, - e). We define, respec
tively, the scalar and vector part ofx as Sc(x) = !(x + x) = Xo 
and Vec(x) = !(x - x). The inner product of x and y is 
(x,y) = Xa ya and the norm of x is Ixl = (XX)1/2. Nonassocia
tivity is clear from the multiplication table Eqs. (2.3 )-(2. 5). n 
is alternative in that if x, YEn they obey the left and right 
alternativity conditions: 

xy2 - (xy)y = 0 (2.6a) 

and 

(2.6b) 

respectively. Since power associativity holds for any alterna
tive algebra xn xm = xn + m for any x En. In our work three 
other completely antisymmetric objects are constantly used. 
If x, y,u,v E n they are in addition to the commutator 

[x,y] = (xy - yx) = - [x,y] 

and the associator 

[x,y,z] = (xy)z - x(yz) = - [x,y,z], 

(2.7) 

(2.8) 

since only the purely vectorial parts of these octonions con
tribute. [x, y,z] is fully antisymmetric in (x, y,z) because of 
alternativity. We also have the Kleinfeld product22: 

K(x,y,u,v) = [xy,u,v] - y[x,u,v] - [y,u,v]x, (2.9) 

which, despite appearance, is totally antisymmetric in x, y, 
u, and v. We refer the interested reader to a list of handy 
octonions formulas in a paper of Yokota. 27 

Leaving details to be filled in later, we recall that closely 
connected with octonions are the orthogonal groups SO(8) 
and SO(7), the norm groups of the octonions and the pure 
imaginary octonions, respectively, and the simply connected 
compact exceptional Lie group G2• The latter plays the cen
tral role in our work, being the automorphism group of n. 
Namely if x, YEn and A E R and if g E G2 and is nonsingu
lar, then g satisfies the following defining relations 
g(x + y) = gx + gy, g(XA ) = (gx)A" and g(xy) = g(x)g(y). We 
then deduce that g(eo) = eo for any g E G2. Hence the auto
morphisms of n leave each real number fixed while preserv
ing the norm and the multiplication table; they can be viewed 
as a topological transformation group of the six-sphere 
S6 = SO(7)1S0(6) = G2/SU(3), the identity component be
ing the group G2• SU(3), a maximal subgroup of G2, is con-
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nected to n in that it consists of all elementsg E G2 such that 
g(e7 ) = e7 and acts transitively on S6 = G2/SU(3) 
= SO(7)/SO(6). 

Ifwe now let 71 be a R -submodule of elements generated 
additively by the pure imaginary units ea (a = 1,2, ... ,7), then 
71 is also a G2-R -module. We then see that n is decomposable 
into a direct sum of two G2-R-modules, n = R EB 71, R being 
the real number field, the subspace spanned by the identity 
element. Thus eight-space has a natural 7 + 1 decomposi
tion. 71, the seven-space of pure imaginary octonions, also 
bears the name of Cayley space. 17 

With a more explicit treatment to be given in Sec. III, 
we only mention that the Lie algebra ofSO(7) of 71 consists of 
all R-homomorphisms A of n obeying 

A (eo) = 0, (2.10) 

and 

(A(x),y)+(x,A(y))=O 't/X,YEn. (2.11) 

Ifwe denote by Gap (a, /3 = 1,2, ... ,7, a#/3)theR-homomor
phisms are given by 

(2.12) 
Gap(e y ) = 0 for r#a, /3, 0<r<7, 

and the 21 elements of Gap (1 <a </3<7) are the additive base 
in SO(7). 

The G2 subalgebra ofSO(7) is made up of all A En such 
that 

A (xlv + xA (y) = A (xy) for any x, YEn. (2.13) 

The G2 algebrag2 is a G2-R-module with the group operation 

(xA )(y) = x(A (x-Iy)), (2.14) 

where x E G2, A Eg2, andy E n. 
Finally we consider SO(8), the norm group of n. The 

workings of its Triality Principle could be nicely exhibited by 
an embedding of SO(8) within the group F4 • So we consider 
the 26-dimensional representation of F4 through the 3 X 3 
matrix8 

J=(; ~ !), 
bar 

where a, /3, and r are scalar and a,b,e E n with 
a + /3 + r = Tr(J) = O. 
Ifwe now define8 the Jordan associator by 

[A,B,C ]=(A.B ).C - A.(B.C), 

(2.15) 

(2.16) 

whereA·B = HA,B landA, B, and Care octonionic Hermi
tian 3 X 3 matrices, the infinitesimal action of F4 on J is given 
byl4 

OJ = [HI ,J,H2 ], (2.17) 

with Tr HI = Tr H2 = O. ThereforeF4 has 2X26 = 52 pa
rameters and has 0(8) as a subgroup. 

Under the F4 action, we have the invariants 

Tr J = a + /3 + r, 
;Tr(J 2

) = ;(a2 + /3 2 + y) + lal 2 + Ib 12 + lel
2
, 

Det(J) = a(3r - alal 2 
- /3lb 12 - rlel2 + 2 Sc(abe). 

The 0(8) invariants are a, /3, r, lal 2, Ib 12, lel 2, and Sc(abe). 
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Now let J X J = J -I Det(J) so that J.(J X J) 
= I Det(J). We find 

(

flr - lal
2 

ha - re ea - /3h ) 
J XJ = ab - re ra -Ib 12 eh - aa , (2.18) 

ae - /3b be - aa a/3 - !e1 2 

which also transforms like the 26-dimensional representa
tionofF4 • ThusJ XJ = OisanF4invariantconstraint. LetK 
be such thatK XK = 0, Tr(K) = 3 then 

(

r-Ilb 12 r-Iha h) 
K = r-Iab ~-llaI2 a =AA T

, 

bar 

(2.19) 

where A T = (r-I/2h,r-I/2a,rl/2), lal 2 + Ib 12 = y(3 - r). 
With r being an 0(8) invariant, we can take 

lal = Ib 1= l,r= l,andA T = (h,a,l) is covariant under the 
0(8) subgroup. We have for r = 1, 

K~ (a: 7 D (2.20) 

The SO(8)/G2 transformations can be written as a combina
tion of K' = LKL -I and K" = MKM -I with 

L ~ C 1 ) M ~ C m:J 12.21) 

where Iml = III = 1 so thatL andM each has seven param
eters. With e = ha we can expand K, K " and K" about the 
identity I: 

K-I~ G ~ ~} 
K' -I~ (~ 

e' 

b) C lei Ib) 0 a' = lei 0 I; , 
b' a' o bl al 

(2.22) 

K" -I~ (~ 
e" 

b") C mem mbm') 
0 a" = mem 0 mam2 , 

b" a" o m 2bm m2am 0 

or we have 

a' = la, b' = bl, e' = h 'a' = lei, 
(2.23) 

from which it is apparent that e" = mem is a SO(7)1G2 trans
formation, e' = lei is a SO(8)1S0(7) transformation with the 
others being all different SO(8)/G2 transformations. Now let 
us define the operations 

TI(x) = lx, T2(x) = xl, 
(2.24) 

and 

RI(x) = mxm2
, R 2(x) = m2xm, 

(2.25) 
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We verify that 

T2(b) T](a) = T3(ba) = T3( ab) or T](a)T2(b) = T3 ( ab ), 
(2.26) 

R2(b) R](a) = R3(ba) = R3( ab) or R](a)R2(b) = R3( ab), 
(2.27) 

which is a statement of the Principle of Triality, ]4 namely 
given anactiond3 ofSO(8) onflwitha,b E fl, then there exist 
two unique (up to a sign) others d] and d2 E SO(8) such that 

(2.28) 

along with a cyclic permutation symmetry of the action of 
d]> d2, and d3• Thus consider the transformation Eq. (2.26); it 
is equivalent to 

(la)(bl) = 1 ( ab)1 = I (ab )1, (2.29) 

which is just one of the three Moufang identities. ]4 Now 
since the F4 invariants are also invariant under the discrete 
symmetric S 3 group of permutations of three objects a, b, 
andc we have 

T3(a)T](b) = T2( ab) and T2(a)T3(b) = T]( ab), (2.30) 

which translate into 

(lal)(lb) = (ab)1 = 1 (ab), (al )(Ibl) = ( I ab ) = (ab)1. 
(2.31) 

These are recognized as the remaining two Moufang identi
ties: (yaylz =y[a(yz)] andz(yay) = [(zy)a]y, a,y, and 
z E fl.]4 Therefore the latter are seen in a new light as conse
quences of the Triality Principle. 

We will not perform a similar exercise for the R;, 
i = 1,2,3 defined above. It suffices to mention that the Tria
lity formulation given above provides a compact and elegant 
basis for the detailed study of parallellism on exceptional 
manifold such as S7 = SO(7)1G2• A more detailed account 
will be the topic of another work. This concludes our brief 
summary on octonions. 

III. VECTOR PRODUCTS, OCTONIONIC DUALITY, AND 
IDENTITIES 

An r-fold vector cross product in Rn is a multilinear 
map Pr : R nr = Rn XR n x ... XR n ~Rn such that if ( , ) is a 
nondegenerate bilinear form in Rn, for every set of vectors 
(a],a2, ... ,ar) E R nrwe have the conditions (a) Pr(a],a2, ... ,ar )a; 
= 0, i.e., every vector is orthogonal to P" and (b) 

Pr (a],a2, ... ,ar) = det( (a;,aj ) ).It was proved28 thatR n admits 
an r-fold vector cross product only in the following cases: 

(1) r = 1 and n even, 
(2) r = n - 1, 

(3) r = 2 and n = 3,7, 
(4) r = 3 and n = 8. 

(3.1) 

Explicit expressions for these vector products are 
known. 2

] With also an eye on possible future physical appli
cations our first task is to put them in a covariant form so as 
to facilitate subsequent generalizations. Thus the usual "vec
tor product" in R n corresponds to r = 2, n = 3 in Cases (2) 
and (3). This twofold product is obtained by identifying R 3 
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with the pure quaternions and for any two vectors a,b E R 3 

we have P2(a,b ) = ab - a·b = Vec(ab ). Or it suffices to take 
for a and b two basic imaginary units ea and ep , then 
P (e e ) = E P e is just another expression of the remarka-2 a' pay y 3 

ble existence on R 3, the tangent space of three-sphere S , of 
multiplication table of the imaginary unit quaternions eaep 

= - 8ap + Eapyey (a, f3 = 1,2,3). In the same vein, in the 
case of r = 2, n = 7, we identify R 7 with the pure Cayley 
numbers and the basic twofold productP2(ea ,ep ) = if!apyey is 
again just a statement of the existence of a multiplication 
table Eq. (2.4) on R 7, the tangent space of S7. The kernel of 
the cross product is encapsuled in the Cayley structure con
stants, the basic algebraic objects throughout this work. We 
should mention that the existence of vector cross products in 
Cases (2) (r = 2,n = 3) and (3) is tied in a one-to-one way to 
the following sequence of celebrated theorems of K-theory29: 
( 1) The sphere S'" is parallelizable if and only if m = 1, 3, or 
7, this property is induced by the multiplication of complex 
numbers, quaternions, and octonions, (2) R n admits the 
structure of a real division algebra if and only if, n = 1, 2, 4, 

2 6 d . or 8, respectively, (3) among the spheres only SandS a mit 
an almost complex structure. 

Proceeding to the threefold vector products, we observe 
that for octonions Case (4) ofEq. (3.1) has a four-dimensional 
analog in Case (2) for r = 3,n = 4. In fact the vector product 
is givenS by the Hodge star operators of the associated bilin
ear form, of signature (2p,n - 2p). Their (anti)automorphism 
groups are (0(2p,n - 2p)) SO(2p,n - 2p) (0<2p <4). Here 
for a given bilinear form, say of signature (0,2) or (2,0), the 
autormorphism group is then 0(4), there are precisely two 
anti-isomorphic threefold vector products. We easily recog
nize in them the self- and anti-self-duality structure of Rie
mannian four-space. 15,30 To give a new parallel treatment to 
the octonionic threefold product, we must first consider in 
Cayley space not just the G2 invariants, the structure con
stants if!aPy but also what we call ll the "Cayley curvature" 
constants rpapyp' They are defined by the basic associator of 
any three imaginary units 

[ea,ep,ey]=2rpapypep' (3.2) 

= 1 1ft [aP Ift;jpep ' (3.3) 

where the G2 invariant fully antisymmetric four-index object 
rpaPYP is given through the identity 

rpapyp = (8py8ap - 8ay8pp ) + lftaPa Iftypa (3.4) 

and the square bracket antisymmetrization ranges through 
all the elements of the symmetric group. Moreover rp and if! 
are dual to each other in seven-dimensional space as shown 
by the fundamental relation 1

]: 

rpapyp = - il Eapypallvif!allv, 

if! apy = -.b E apypUIl v rp pUll v , 

= -! E apypallv if! paA.if! IlVA. . 

(3.5) 

(3.6) 

(3.7) 

The proof ofEqs. (3.5) and (3.6) is given by merely reading off 
the following suitable variant of Cayley's multiplication ta
ble: 

2 4 

4 3 

6 5 

3 

6 

7 

6 

5 

5 7 

7 

2 4 
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and 

3 
7 

5 

657 1 

243 

7 124 

243 6 

2 

6 

3 

5 

(3.9) 

This table reads as follows: Each row is a cyclic permutation 
of the first row, the columns in the first rows give the struc
ture constants or half the commutators of the imaginary 
units ea , e.g., e l e2 = e3, e2e4 = e6, etc., while the columns of 
the remaining rows give half the associator of the ea , e.g., 
Ue3,e7,e5] = - el· Therefore they determine the lPapyp' e.g., 
iftP123 = 1, lP4567 = - 1, etc. 

Now we make the crucial observation that from the 
numerical tensors tPaPr and lPaPrp in Cayley space, we can 
construct a natural self-dual four-index totally antisymme
trical tensor/abed (a,b,c,d = 0,1,,,.,7) in eight dimensions. 
The basic object is defined by 

/apro = - /oaPr = tP aPr' (3.10) 

/aPrp = lPaPrp = - if €aPrpI'V(7tPI'V(7 (a,/3,y,p = 1,2,,,.,7), 

from which we verify the self-duality property 

/abed = -if €abcdlmnp hmnp· (3.11) 

The nonzero components of/abcd are 

fol23 =/0246 =/0435 =/0367 =/0651 =/0572 =/0714 = 1,(3.12) 

~567 = iJS71 = hl72 = /5214 = h423 = /1346 = /2635 = - 1. 
(3.13) 

Similarly we can define an anti-self-dual tensor f' abed by 

/' oaPr = - Ioapr' /' aPrp = /aprp . (3.14) 

In complete analogy to the quaternionic case,30 we now in
troduce the skew symmetric tensor octonion units e'ab,eab 
through 

e'ab =!(eaeb -ebea), eab =!(eaeb -ebea)· 

These tensors satisfy the relations 

eab = if/abedecd' e'ab = - if/'abede'ed' 

(3.15) 

(3.16) 

namely, eab(e'ab) is a skew tensor in d = 8 space which, with 
respect to the numerical tensor /abed (/~bcd) is like a four
space tensor which is self-(anti-self-)dual with respect to the 
Levi-Civita symbol €aPro' To emphasize the fact that self
(anti-self-)duality here is with respect tolobed(f'abcd) we call 
the eab (e' ab) self-(anti-self-)coupled tensor in eight dimen
sions. We also have 

lobed = - Sc(eabecd )' 
(3.16a) 

Making use of the Kronecker symbol 0 ~ to raise indices, we 
derive the following fundamental identity obeyed by the 

/abed: 

rbcd/ijkd = (o~oJ - o;or)o% + (OrO) - oJono~ 

+ (o~o; - o}o~)ot 

1500 

+ rbijo% + /bCijO~ + raijot 

+ rbjkO~ + /bcjkO~ + rajkof 

+ r b kiD) + /bC kiD; + r a kiOJ. (3.17) 
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In an obvious abbreviated notation, it also reads 

/ abedl'.. = o[aoboel + !/[ab .. Dc] 
J ijkd 'J k 4 Iv k ]. (3. 17a) 

Self-duality tells us that lobed has 35 components 

!(8X7x6X5)-if, 

an irreducible 0(8) tensor. However the existence of the 
identity Eq. (3.17) cuts down the number of independent 
components of/abed to 2 X 7 = 14 nonzero elements [as seen 
from Eqs. (3.12) and (3.13)], which are G2 invariant. 

and 

By contraction we obtain from Eq. (3.17) 

(3.18) 

(3.19) 

rbe"!abed = 336. (3.20) 

Recalling the definitions/oaPr = - tPapr and/aPrp = lPaPrp' 
we derive for the tP's and lP'S the following seven-dimensional 
algebraic identities: 

(3.21) 

aPrT m _ o[alY!.orl .,,aPr.,, + 1 lap orl lP 'rI'V(7T- I' v (7 -'I' '1'1'1'(7 .. lP [1'1' (71' 

~PrlPI'VUY = ~l'v8'; - ¢fll'vo~ + tPa
V(7ot; 

- ¢fl 1'(7 o~ + ~ (71' tit - ¢fl (71' o~ 
_ l'Tda cB] 
- 2lr" 11'1'0'(71' 

lP apyr lP I'vyr = 4(0~ tit - o~ot;) + 2qJ ap 1'1" 

~PrlPl'vPr = 4~l'v' ~prlPl'apr = 0, 

~PrtPl'pr = 68~, ~PrtPaPr = 42, 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

aPrr _ 2A £a aPrT - 168 (327) lP lP I'Prr - 'ff} I' ,lP lP aPrr -. . 

Also we recover the key duality connection Eqs. (3.5) and 
(3.6). From Eq. (3.21), we further derive 

tPa[p YtPl'v]r = 2tPap rtPl'vr + 2tPal' YtPvPr 

or 

lPaPI'V = if tPalP YtPl'v]r = j(tPaP rtPl'vr 

+ tPal'rtPvpr + tPavrtPPl'r)' 

which upon insertion into Eq. (3.21) gives 

(3.28) 

(3.29) 

oal'0Pv - oavopl' = tPaprtPl'V r - iftPalP rl/ll'vlr' (3.30) 

= tPap rtPl'v r - j(tPaP rtPl'vr 

+ tPal'rtPvpr + tPavrtPPl'r)' (3.31) 

alias Eq. (3.4). We observe that if the tP are replaced by the 
structure constants CaPr of a Lie algebra, then CalP rCl'v]r 
= 0 is a statement of the Jacobi identity, i.e., of the associati

vity property and the second term in Eq. (3.30) vanishes. The 
left-hand side of Eq. (3.30) is modulo a multiplicative con
stant the Riemann curvature of an Einstein space, the Lie 
group space in an orthonormal frame. However there is no 
seven-dimensional Lie group space, Eq. (3.30) only holds 
true in seven-dimensions31 for the conformally flat round 
seven-sphere with its standard Einstein metric. It gives the 
orthonormal frame components of the Riemannian curva
ture of S7. 
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An alternative expression for the left-hand side of Eq. 
(3.30) is 

oa!'opv - oavop!, = !f/JapYTf/J!'vrT - !(tPaPYtP!'vr 

+ tPa!' YtPvpy + tPav YtPp!'y)· (3.32) 

The above relations exhaust the quadratic identities. In a 
previous work!! some of these seven-dimensional identities 
have been used to obtain an explicit, purely algebraic solu
tions to the Englert solutions on S7. 

Moving on to cubic identities satisfied by the/abed' we 
shall evaluate the rank 6 tensor Tabedeg = i~bj i~dk i;g;' 

Making use ofEq. (3.17) twice we find 

Tabedeg = 4[ Oae(ObgOde - ()be{)dg) - ()be((jagOde - OaeOdg) 

- Oad(ObgOee - ObeOCg) + Obd(OagOee - OaeOeg)] 

- 0 ac ibdeg + t> be iadeg + 0 ad ibeeg - 0 bd iaeeg 

- 0 ee idgab + t> de Icgab + 0 eg ideab - 0 dg Iceab 

- 0 ea /gbed + 0 ga J.bed + 0 eb /gaed - 0 gb J.aed . 
(3.33) 

We also verified that the Tabedeg obey the identity 

Tabedeg + Tedegab + Tegabcd = 3 Tabedeg = 3 Tedegab = 3 Tegabed 
(3.34) 

from the cyclic symmetry of ab, cd, and eg in the definition of 
T. As before we work out the special cases in seven dimen
sions. They are 

tPaputPu/tP!,va = 3tPpyv, 

a u A 
CfJ pyuCfJ !'VA CfJ Tp<Z 

(3.35) 

(3.36) 

= &' [{)p!' OypOVT + Op!, f/JYTPV + OTPf/Jp!,vr + {)wf/Jvpyp 

+ !(tPp!'vtPyrp + tP!'TPtPVPy + tPrPytPp!,v)] , (3.38) 

where &' stands for antisymmetrization of J.l and v, f3 and r, 
T andp. 

IV. GENERALIZED VECTOR PRODUCTS 

In terms of the above basic invariant tensors eab and 
/abed' we can now give a unified covariant formulation of the 
twofold, threefold, and finally new fourfold products in eight 
dimensions. Given two octonions a and b with components 
a l and bn we can define two antisymmetric double products 

al\b=albneln =ab-(a,b), (4.1) 

where (a,b ) = Sc(ab) = Sc(ab) = !(ab + ba) and 

(4.2) 

As to the triple products, let us define the entities eabe 

= iabeded and e' abc = - i' abeded' They are completely anti
symmetric. We have the following defining relations: 

e aPy = tPapy + f/Japypep' 

e'aPy = tPapy - f/Ja{Jypep ' 

(4.3) 

(4.4) 

e opy = - tPpypep ' e'opy = - tPpypep . (4.5) 

On the other hand, recalling Eq. (3.15), let us consider the 
octonionsEabe = e a e be , where 
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E apy = tPafjy + tPpyp tPaupeu 

= tPafjy + f/Japypep + oafjey - t>yaep, (4.6) 

Eoafj = tPapyey , EafJo = - tPaPpep ' Eaop = - tP{3apep . 

Hence we can write 

e a{3y = !(Eapy + Epya + E yap ), 

eopy = MEopy + Epyo + E yo{3)' 

Also 

E apy = eaPy + oapey ..:.... oayep. 

Consequently, 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

e apy = ea(epey ) - ea{)py + epOya - ey{)aP' (4.11) 

eopy = eo (epe y ) - eOopy + e{3oyO - ey{)op· (4.12) 

Finally in light of the above we can write the following sym
metrical formula: 

eabe = !(eaebe + ebeea + eeeab ), (4.13) 

= ea(ebee) - eaobe + ebt>ea - ecoab =iabeded' 

Similarly we introduce 

E'apy = tPapy - f/Japypep - Oya e{3 + opyea , 

= (ea e{3)ey - e y t>a{3' 

From which it follows that 

e'aPy = j(e'apey + e'{3yea + e'yaep) 

= (eaep)ey - eaopy + epoya - eyoap · 

On the other hand 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

E'opy = - tPpypep = (eoep)ey - eOopy + epoyO - eyoop . 

Hence 

e'abe = j(e'abee + e'beea + e'eaeb) 

= (e"eb )ee - ea{)be + eb{)ea - ec{)ab 

= - i'abeded' 

(4.19) 

(4.20) 

With the above constructed fundamental tensors, it is an 
easy matter to define natural triple products for any three 
octonions a = aiel, b = blel , and c = clel' They are 

P3(abc) = alb mcnelmn = frmnpalb mcneP 

= a(bc) - a(b,c) + b (c,a) - c(a,b ), 

P' 3(abe) = alb mene'lmn = -I' Imnpalb me"eP 

= (ab )c - a(b,c) + b (e,a) - c(a,b ), 

P3(abe)-P'3(abe)= - [a,[;,e] = [a,b,c]. 

(4.21) 

(4.22) 

(4.23) 

They are precisely the two triple products defined by Zven
growskj2! and Gray!8 expressed here in terms of the tensors 
/abed andf'abed' That as in four-space there are two such 
products is connected to the twofold orientability of eight
space. 8 

The above noted relation8 between vector product and 
curvature as exemplified by Eq. (3.30) leads us to seek four
fold vector products in eight-space. It is given by 

E abed = eaebed = hedleael = ibeda + ibed,eal> (4.24) 
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with 

SC(Eabcd) = !(eaebcd + ebcdea) = - fabed' (4.25) 

Thus SC(Eabcd ) is totally anti symmetric and self-dual. In fact 
we can define a totally antisymmetric tensor as 

eabcd = !(Eabcd - !E[bcd Ja) 
= !(Eabcd - E bcda - Ecdba - Edbca)' (4.26) 

To see the usefulness of the Eabcd , we are led to analyze the 
perhaps less familiar Kleinfeld function,22 Eq. (2.9), which is 
a totally antisymmetric homogeneous function of four oc
ton ions x, y, z and w. First we compute K (x, y,z,w) when all 
four octonions are purely vectorial. There is no loss of gener
ality in taking them as unit vectors. So we consider 

Ka/3yti = K (ea ,e/3,ey,eti ) 

= [ea ep,ey,eti ] - ep [ ea ,ey,eti ] - [ep,ey,eti ]ea · 
(4.27) 

By Eqs. (2.4) and (3.2) we get 

K a/3y/j = - 2( tPaPp CfJ aytip + tPaPp aytip + ~ap CfJ /3y/jp )e a . 
(4.28) 

By way of the identities Eq. (3.23), we find 

-!KaPyti = tPa/3yeti - tPaPtiey + tPay/jep - tPpytiea' 
(4.29) 

Equation (4.29) is a d = 7 tensor since a composition offour 
purely vectorial octonions is again purely vectorial. Next we 
turn to the instance when one of the octonion units is eo = 1. 
Then 

K a/3yo = [eae/3,ey,eo ] - ep [ea,ey,eo ] - [ep,ey,eo lea = 0, 
(4.30) 

and 

Ko(3y/j = Kaoyti = Ka(3oti = O. (4.31) 

Since Ka(3yti vanishes whenever two of the octonions in its 
arguments are equal, K a(3oo = 0, Kaooo = 0, and Koooo = O. 
Consequently, in all cases K is a pure octonion. 

Having made the above remarks, we can now seek the 
eight-dimensional form of the Kleinfeld function. We have 

lKa(3y6 = foa(3ye6 - foa(3/je y + foay/je(3 - fO(3y/jea , (4.32) 

lKa(3yo = O. (4.33) 

Using the fact that eab = ~(eaeb - ebea) with eo = eo, ea 
= - ea for a = 1,2, ... ,7, then eoa = + ea and we have 

lK a(3y/j = foa/3y e o/j - foa(3/j e oy + foay/j e op - fO(3y/j e oa . 
(4.34) 

Hence an eight-dimensional totally antisymmetric general
ization of Ka(3y/j is 

Habcd = - fmabcedm + fmabdecm + fmadeebm + fmdbceam' 
(4.35) 

or 

(4.36) 

It is readily checked, after some algebra, that indeed 

(4.37) 

and 

(4.38) 
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Note that H abed = 0 whenever abed correspond to the 14 
nonzero values offabed' Finally the connection with the co
variant fourfold cross product is as follows: 

H k1mn = Vec(Eklmn - E 1kmn - Emlkn - En1mk ). (4.39) 

Equation (4.39) in this symmetrical form is therefore the 
d = 8 covariant generalizations of the Kleinfeld antisymme
tric quadruple product. Since we have found!! the Kleinfeld 
product and its properties to be most useful in computing 
nonassociative differential geometry on the seven-sphere, we 
expect the H abed ,Eq. (4.39), to play at least an equally impor
tant role in the elucidation oflocal structure of d = 8 geome
tries. 

As a final topic we wish to make contact with yet an
other vector cross product due to Ogievetski and Tzeitlin. 23 

The latter authors introduced their product in order to rep
resent the automorphisms of the Rosenfeld algebras, auto
morphisms which appear in the adjoint representations of 
exceptional groups. Thanks to this vector product, their re
sulting octonionic 3 X 3 matrix formulation of exceptional 
grand unified gauge theories is compact and simplified in an 
essential way. We begin by defining two operators Ea and 
Ea(3 acting on vectorial octonions by 

and 

EaPx= [Ea,Ep]x+E![ea.e,,]x, 

where 

[Ea,E(3]x = H e(3'[ e(3'x]] - H ep' [ea,x]], 

E![ea.e,,]x = HH ea ,e(3 ] ,x]. 

We then define a vector product of Ea and Ep: 

Ea I\E(3 = Ea(3 = [Ea,Ep] + El[eu.e,,]. 

These operators can be represented by tensors 

Eae}L =![ e(3,el-'] = tPal-'vev' 

Ea(3el-' = LaPl-'vev' 

where 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

L a(3llv =2(oal-'0Pv - oavO(3I-') - CfJa(3l-'v' (4.47) 

which is the tensor analog of Ea I\E(3 = Ea(3. Using the iden
tity Eq. (3.4) we can also write 

L a(3l-'v = 3 (oal-' o(3v - Oavo(3l-') - tPa(3)" tPl-'v),,' (4.48) 

which coincides with the Ogievetski-Tzeitlin form. 23 More
over we can also verify that 

Ea(3el-' = - ~ [ea ,ep,el-' ] + ! [ [ea ,ep ] ,el-' ], (4.49) 

which is the standard G2 transformation associated with the 
octonions ea and ep . Hence 

DG, el-' = Ea(3e}L = LaPl-'vev (4.50) 

is the infinitesimal G2 transformation of the octonion unit el-' ; 
there are 14 independent Ea(3(tPa(3yEy = 0). 

Since we know how Ea acts on the unit el-' we can com
pute the commutator of Ea(3 and Ey. We find 

[Eap,Ey ]el-' = (2tPy}La D(3)" - 2tPYI-'PDa)" 

- 2tPy(3A oal-' + 2tPya)" D(31-' 
+ CfJa(3)"vtPyI-'V -CfJa(3l-'vtPy)"v)e)". (4.51) 
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On the other hand 

LapyvEyell = L apyv tPYIl). e)., 

which coupled with the identity Eq. (3.23) yields 

[Eap,Ey] = LapyyEy 

with, as corresponding tensor identity, 

LaPIlYtPy).y - Lap).ytPylly = LaPyvtP~y, 
or more compactly, 

L apy." - 0 [Il 'f'y).Jy - • 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

Then tensors L apllV are associated with G2 while tPapy are 
associated with SO(7)/G2 so that together the Eap and Ey 
form the 21 generators ofSO(7). Now let the octonion units 
undergo a 21-parameter infinitesimal 0(7) rotation. We have 

8R ell = {Japell = RaPllyey = 8all ep - 8Pll ea . (4.56) 

Therefore the tensor associated with the anti-Hermitian op
erators l1aP ofSO(7) reads R apily = (8all 8py - 8pIl 8ay ). We 
then find 

[l1ap,l1pa ]ep = (SaPpaK).{JK).)ep 
= (8ap l1pa - 8pp l1aa 

+ 8pa{Jap - 8aal1pp)ell' (4.57) 

from which the structure constants of 0(7) read 

SaPpaK). = !..of(8ap8PK8a).)' (4.58) 

where..of stands for antisymmetrization of a and{3,p and (T, 

andKandA. 
The 14 generators of the G2 subgroup ofSO(7) are given 

by 

Eap = !LaPK).I1K). = WaP - ~((JaPK).{JK).· (4.59) 

The seven operators Ea ofSO(7)1G2 are now extracted from 
11K). by means of the structure constants tPYK).' i.e., 

Ey = !tPYK).I1K).. (4.60) 

Indeed with this definition we obtain 

Eyell = tPyllyey, (4.61) 

which coincides with the operators introduced above. Also 
we find 

Eapep = Lappyey, (4.62) 

and thus recover our previous definition. We further note 
that due to Eq. (3.25), 

tPyapLa{3IlY = 0, (4.63) 

which shows the orthogonality ofthe SO(7)1G2 and G2 gen
erators. 

Finally either by evaluating [Eap,Epa ] ell directly or by 
way of the identities involving tPapy and ({Japy8 we can obtain 
the tensor form of the G2 structure constants. Since 

[Eap,Epa ] ep = [3(8ap Epa - 8ppEaa 

+ 8paEap - 8aaEpp) - tPaPKtPpa).EK). ] ell , 
(4.64) 

we extract the Lie product 

Eap A Epa = CaPpaK).EK).' (4.65) 

with 
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[where ..of has the same meaning as before, see Eq. (4.58)] 
representing the G2 structure constants in tensor form. We 
can also write 

CaPpaK). = 3SaPpaK). - !(tPaPK tPpa). - tPap). tPpaK)' (4.67) 

where Saf3. aK). are the 0(7) structure constants in Eq. (4.58). 
From the ~bove we can further derive an identity involving 
L apily . Thus, on the one hand, we have 

[Eap,Epa ]ep = LpallyLapvyey - LappyLpavyey. (4.68) 

On the other hand, we have Eq. (4.65); therefore we deduce 
that 

LpapyLapvy - LaPllyLpavy = CaPpaK).LK).py, (4.69) 

corresponding to the Lie algebra of G2• Of course, equipped 
with the formalism developed above we can pursue the 
course charted by Ogievetski and Tzeitlin23 toward the re
maining exceptional groups F4 , E6 , E7 , and E8 of grand uni
fied theories. 

V. DECOMPOSITION OF SPIN(8) INTO S~ X Sr X G2 AND 
TRIALITY 

In this section we shall apply the formalism developed 
above to the decomposition of the group Spin(8) into Spin(8)/ 
Spin(7) = S7 plus Spin(7)1G2 =.I 7 plus G2 • Moreover, the 
coset space Spin(8)1G2 can be further decomposed into gen
erators associated with S I and S ~ which corresponds, re
spectively, to the left and right action of a unit octonion on a 
fixed octonion. We shall also characterize 0(8) transforma
tions in Triality by means of the tensors/and/' of Sec. III. 

The 28 generators of the Spin(8) Lie algebra obey 

[Jab ,Jed ] = SabedmnJmn' (5.1) 

where 

S - 8n 8[a 8b J _ 8a 8b 8n 
abedmn - [d c J m - e m d 

- 8~8;',,8~ + 8~8;',,8~ - 8~8~8~. (5.2) 

Here the Latin indices range from 0 to 7. The Spin(7) subal
gebra is represented by the 21 generators Jap , where the 
Greek indices range from 1 to 7: 

(5.3) 

with 

S -8Y 8[a[jtlJ apyopy - [0 yJ Il . (5.4) 

The coset Spin(8)/Spin(7) is associated with the generators 

Ma = Jcco = - Joa • (5.5) 

Indeed we have 

[Ma ,Mp] = Jap , [Jap,My] = 8ayMp - 8pyMa 
(5.6) 

which, together with Eq. (5.3) constitute the Spin(8) algebra. 
Let us consider a specific generator, say J\2 of Spin(7). 

We can write 

J 12 = j(J12 + J54 + Jd + j(2J\2 - J54 - Jd. (5.7) 

Note that the index 3 is missing on the right-hand side. Thus, 
one can define 

. K3 = J 12 + J54 + J67, r 12 = 2J\2 - J54 - J67, (5.8) 

so that 
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JJ2 = j(K3 + rd· (5.9) 

The general definition reads 

Ky = !tfa(3yJa(3' r a(3 = 2la(3 - ~({'a(3p<Jpu' (5.10) 

where tfa(3y and its dual ({'a(3pu have been defined by Eqs. (2.4) 
and (3.2). This splitting corresponds to the decomposition 

Ja(3 = (jJa(3 + i({'u(3puJpu) 

+ (jJa(3 - i({'a(3puJpu) = j(KaP + r a(3)' (5.11) 

where 

Ka(3 = Ja(3 + ~({'a(3puJpu = tfa(3yKy. 

So, for instance, we have 

K'2 = K54 = K67 = K3 
and 

r 12 + r 54 + r67 = 0, 

The latter being just a special case of 

(5.12) 

(5.13) 

(5.14) 

tfa{3yraP=O. (5.15) 

It follows that there are seven-generators Ky and 14 indepen
dent generators r a{3 which add up to those of Spin(7). It has 
been shown previously26 that raP are the elements of the Lie 
algebra of G 2 and that K yare the elements of the coset space 
Spin(7)1G2 =.I 7. We recover these results directly by going 
over to the octonionic representation of the operators Jab 
acting on the units ea (a = 0,1...,7) in the ensuing manner: 

Japey = ° (r#a, r#/3), (5.16) 

Jyoey = eo, JYOeo = - ey' 

Jyoep = ° (p#o,p#r)· 
Introducing the full octonion 

X = eaXa = Xo + eaXa = Xo + x (x = VecX), (5.17) 

we find the following representations of the various genera
tors of Spin(8): 

(a) Spin(8)1Spin(7) = S7: 

MuX=JuoX= -![ea,xj. (5.18) 

(b) Spin(7)1G2 =.I 7 (~S7): 

KyX = !tfa(3yJapX = H ey,x] = H ey,x]. (5.19) 

(c) G2: 

raPX = - H ea ,ep,x] + H [ea,ep ],x] :::::Eapx. 
(5.20) 

Hence, using Eq. (5.11) we find 

Japx = j(tfa(3yKy + r a(3)x = !tfa(3y [ey,x] - ! [ea,e(3'x] 
(5.21) 

for the Spin(7) generators. For completenes<; and future ap
plications in connection with S LR , we also derive the form 
of the left and right octonion multiplication in terms of Jab' 
Making use of Eqs. (5.18) and (5.19), we readily find 

(My + Ky)X = - Xe y' (My - Ky)X = - eyX. (5.22) 

Thus: 

Xe3 = - (J30 + JJ2 + J54 + J67 )X, 
(5.231 
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Observe that My and K yare associated with unit octonions, 
so are My +Ky. In the latter case, sinceey(Xey) = (eyX)e y, 
the operators My + Ky and My - Ky commute. They cor
respond to the independent seven-spheres S ~ and S I. In 
this manner the decomposition ofJab intoMy +Ky andra(3 
mirrors that of the Spin(8) group space into S ~ xS I X G2 • 

We are now equipped to given an 0(8) covariant formu
lation of the above Spin(8) decomposition. Let us define two 
kinds of couplings for the second-rank skew symmetric ten
sorS(Uab in R 8 by use of the self-dual tenSOr/abed and the anti
self-dual tensor/, abed introduced in Sec. III. 

(S.24) 

We may call them, respectively, sharp-coupled and fiat-cou
pled to (U ab' Using the decomposition of/and/, into tf a{3y and 
tf a(3yo' we obtain the following formulas for the sharp and fiat 
couplings: 

(5.25) 

S7(Spin(8)1Spin(7)): M~ = K y , M~ = - K y , (S.26) 

.I7(Spin(7)1G2): K~ = 3My + 2Ky, 

K~ = - 3My + 2Ky • (S.27) 

At this point, we define the operators 

S~=!(My+Ky)' S~=~(My-Ky), (S.28) 

which, for each r, are commuting generators in Spin(8)1G2 

associated, respectively, with S1 and SI. From Eqs. (S.26) 
and (S.27) we find 

S1 :(S~)11 = 3S~, 

SI:(s~)· = 3S~. 

The remaining couplings define the new operators 

(S.29) 

(S.30) 

.I ~ = - (S~)· = !(3My - Ky) E.I ~, (S.31a) 

and 

.I~ = (S~)11 = - !(3My + Ky) E.IL (S.31b) 

which are clearly associated with the infinitesimal forms of 
b " = m 2bm (.I ~ ) and a" = mam 2 (.I I) of Eq. (2.23) when 
the unit octonion m is near unity. These transformations 
satisfy the relations 

(.I ~)Il = -.I~, (S.32a) 

(S.32b) 

Consequently S ~, .I ~ , and G2 are eigenstates of sharp cou
pling with respective eigenvalues 3, - 1, and - 1; whileSI, 
.I I, and Gz are eigenstates of fiat coupling with the same 
respective eigenvalues 3, - 1, and - 1. We can also define 
the mixed coupling transformation: 

(U' ab = !((U!b + (U~b)' 
We obtain 

M'y = 0, K'y = 2Ky, r'u(3 = - r a(3' 

(S.33) 

(5.34) 

(My ± Ky)' = ± 2Ky' (3My ± Ky)' = ± 2Ky. (5.35) 

It follows that the S 7 = Spin(8)/Spin(7), .I 7 = Spin(7)1G2 

and G2 transformations are eigenstates of mixed coupling 
with eigenvalues, respectively, given by 0,2, and - 1. This 
discussion then completes our covariant treatment of the 
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decomposition Spin(8), Spin(8) =S1 xSIG2, and intoS 7, 
~ 7, and G2 in terms ofthe tensors/andf'. 

We close this section by stating results connected with 
Triality.lfwewritethetransformations T; andR; (i = 1,2,3) 
ofEqs. (2.26) and (2.27) in infinitesimal form, to each gener
ator C E Spin(8) are associated two other transformations 
A E Spin(8) and B E Spin(8) such that 

A + B + C = O. (S.36) 

Let n = Spin(8) and define 

A = ~(n - n ~), B = !(n - nil), 
(S.37) 

C = - n + n ' = - n + ~(n II + n ~). 
Then A, B, and C are in Triality. We prove this feature by 
letting n range over all elements ofSpin(8). 

(G2,G2,G2 ) Triality: Let n = r a{3 E G2• Then 

A = B = r a{3 E G2, C = - 2ra{3 E G2 (S.38) 

so that the G2 space has self-Triality. 
(S 1 ,s I ,S 7) Triality: Let n = My E S 7 = Spin(8)1 

Spin(7). Then 

A = !(My + Ky) = S~ ES1, 

B = !(My -Ky) =S; ESi, 

(S.39a) 

(S.39b) 

C= -MyES7. (S.39c) 

Now let n = - S~. Using Eqs. (S.31a) and (S.29) we find 

1 (My +Ky 3My -Ky) 7 
A = - - + = -M ES 

2 2 2 Y' 

(S.40) 

B = _ J.. (My + Ky _ 3My + 3Ky) R 7 =SyES R , 
2 2 2 

and by use ofEq. (S.3S) we obtain 

C= !(My +Ky) -Ky =S; ESI. (S.41) 

Therefore, the new triple (A,B,C) is a cyclic permutation of 
Eqs. (S.39). 

Finally, upon choosing n = - S; we get 

A =S;, B = -My, C=S~, (S.42) 

which gives yet another permutation of Eqs. (S.39). 
Thus, we have shown that the generators associated 

with S 1, S I, and S 7 = SO(8)1S0(7) are in Triality. They 
correspond to the integrated transformations T I , T2, T3 of 
Eq. (2.24). We now turn to the infinitesimal form of the Tria
lity relations for R I , R 2, and R3 ofEq. (2.2S): 

(~1 ~ I ~ 7)Triality: Let n = Ky E ~ 7 = Spin(7)1G2. 

Then 

A = !(Ky -K;) = !(Ky + 3My - 2Ky) =~~E~1, 
(S.43a) 

B = ~(Ky - K~) = !(Ky - 3My - 2Ky) =~; E~I, 
(S.43b) 

C = - Ky + K'y = - Ky + 2Ky = Ky E~7, (S.43c) 

where use has been made of Eqs. (S.27), (5.31), and (S.34). 
Alternatively, we could have taken n = ~ ~ and obtain 

(S.44) 
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Finally the choice n = ~ ~ yields 

A =~;, B=Ky, C=~~. (S.4S) 

In all cases we obtain a permutation of the original (A,B,C) 
operators ofEq. (S.43), showing the Triality of the transfor
mations ~( ± 3My - Ky) andKy associated with the integral 
operators R; of Eq. (2.2S). 

Since we let n range over all elements of the Lie algebra 
Spin(8), we have covered all cases ofTriality and have shown 
thatA,B,C as defined by Eq. (S.37) correspond to three trans
formations ofSpin(8) in Triality. They are, respectively, the 
anti-self sharp coupled, flat coupled, and mixed coupled ele
ments of the Spin(8) Lie algebra. 

Finally we remark that Spin(8)/G2 can have as basis 
either My ± Ky or ± 3My - Ky. The latter corresponds to 
Spin(8) = ~ 1 x~ I X G2 and is a G2 invariant decomposi
tion. 

VI. CONCLUDING REMARKS 

In this work we have explicated the rich G2 invariant 
algebraic structure underlying the existence of various ex
ceptional vector cross products in eight dimensions. We 
have exhibited the intricate weaving of the notion of cross 
products, hence of generalized almost complex structure l8 

and duality. In four dimensions the deep connection between 
complex, quaternionic structure, and duality 15.30 has en
riched particle theory with fundamental structural insights 
and novel nonperturbative physical mechanisms in gauge 
and gravity theories. So a natural question is the following: 
Does there exist an eight-dimensional counterpart of this 
connection between the exceptional duality given here and 
an octonionic homomorphic structure? Along with the other 
works, 12,10,32 our own octonionic analysislJ of Englert's so
lutions and recent advances on Clifford analysis33

•
25 suggests 

an affirmative answer to the above query. So besides the ap
plications mentioned in the Introduction, we envision that 
the rich octonionic symmetry laid bare here may well em
body the analytic solutions to some interesting d = 7 or 8 
differential equations governing the physics of Kaluza
Klein theories. 
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APPENDIX 

For completeness we give here the Triality structure in 
the commutation relations of SO(8) as reduced with respect 
to G2 • 

We have already decomposed 0(8) with respect to the 
basis Ma E SO(8)1S0(7) and Ja{3 E SO(7) viz. Eqs. (S.6) and 
(S.3). We have further decomposed SO(7) into SO(7)1G2 and 
G2 represented, respectively, by the generators Ky and ra{3 
with the constraint being 1/Ja{3yr a{3 = 0 [see Eqs. (S.lO)
(S.12)]. Thus we find in the basis My, K y, r a{3 for 0(8): 

[Ma,M{3] =j(1/Ja{3yKy +ra(3)' (AI) 

[Ka,K{3] = - 1/Ja{3yKy + r a{3' (A2) 
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(A3) 

to which we add the commutation relation of raP given by 
Eq. (4.66), 

[r afJ,rplT ] = CaPPlTKArKA' (A4) 

We have seen thatS: = !(Mp +Kp), S~ = !(Mp -Kp), 
and - Mp form a triple of operators in Triality. We obtain a 
form for the 0(8) commutation relations with Triality sym
metry if we set 

Ap = S:' Bp = S~, Cp = - Mp (Ap + Bp + Cp = 0). 
(A5) 

Further we introduce the alternative triple of operators in 
Triality given by 

Up = I: = !(3Mp - Kp), 

Vp = I~ = - ~(3MI' + KI')' 

WI' = KI' (UI' + Vp + Wp = 0). (A6) 

We have the following relations: 

UI' =BI' -CI" VI' =CI' -AI" WI' =AI' -BI" (A7) 

AI' = - j(V1' - wl')' BI' = - j(WI' - ul')' 

cl' = - j(Up - Vp ). (A8) 

In the (U, V, W,r) basis, the 0(8) commutation relations take 
the highly symmetrical form [with the addition of the G2 

commutator Eq. (A4)]: 

[Va'Wp] = - tPapyUy - WaP' (A9) 

[Wa,U(3] = - tPa(3y Vy - !rap , 

[ Ua, Vp ] = - tPapy Wy - !rap , 

[Ua,Up ] = -tPapyUy + raP' 

[Va,vp] = - tPapy Vy + r a(3' 

[Wa' W(3] = - tPapy Wy + r a(3' 

(AlO) 

(All) 

(Al2) 

(A13) 

(AI4) 

In the (A,B,C,r) basis, together with Eq. (A4) we obtain 

[Ba'Cp ] = jtPapy(By - Cy) - ir a(3 = !(tPaPy Uy - !rap ), 
(AI5) 

[Ca,A(3] = jtPaPy(Cy - Ay) - iraP = j(tPa(3Y Vy - !ra(3)' 
(AI6) 

[Aa,Bp] =jtPa(3y(A y -By)-ir a(3 = j(tPa(3yWy -!rap ), 
(AI7) 

[Aa,Ap] = jtPapy(By - Cy) + jraP = j(tPa(3YUy + raP)' 
(AI8) 

[Ba ,Bp] = jtPapy(Cy - Ay) + jraP = j(tPaPy Vy + r a(3)' 
(AI9) 

[Ca,C(3] = jtPapy(Ay - By) + jraP = j(tPa(3y Wy + r a(3)' 
(A20) 

Aa +Ba + Ca =0. (A21) 

In both the (U, V, W,r) and (A,B,C,r ) bases, the Triality sym
metry ofthe 0(8) commutation relations is manifest. 
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We discuss the unresolved problem of proving rigorously that in the classical limit Ii---+O, the 
quantum-thermodynamic entropy functional tends to the classical entropy functional. We state 
rather restrictive conditions that define the general problem of finding a complete classical phase
space representation of quantum kinematics. Whether the problem admits of solutions remains an 
unresolved question. We discuss a physically interesting attempt to relate the structure in the 
classical limit Ii---+O of the well-known Blokhintzev, Wigner, and Wehrl phase-space functions to 
the spectral expansion of the quantum state operator. 

PACS numbers: 05.30. - d, 02.50. + s 

I. INTRODUCTION: PHYSICAL CONTEXT OF THE 
PROBLEM 

The purpose of this paper is to discuss the problem of 
proving that in the classical limit Ii---+O the quantum-thermo
dynamic entropy functional 

s(p) = -kTrplnp 

tends to the classical entropy functional 

s"l(W) = - kJ dq dp w(q, p)ln w(q, p), 
2trli 

(1 ) 

(2) 

where p is the quantum state operator and w a properly de
fined classical state function. As recently stated by Wehrl, 1 

"It is usually claimed that in the limit Ii---+O, the quantum
mechanical expression tends towards the classical one, how
ever, a rigorous proof of this is nowhere found in the litera
ture." 

In this paper, we state conditions that define the prob
lem of finding a classical phase-space representation of 
quantum kinematics. One such condition is that a properly 
defined classical state function w (the definition of which 
may involve limits as Ii---+O) should be such thatscl(w) = s( pl. 
Whether the problem thus defined admits of solutions re
mains an unresolved question which is worth further investi
gations. We gain some insight in the problem by studying the 
phase-space structure induced in the classical limit by the 
spectral expansion of the quantum state operator. 

Our interest in this problem arises for physical reasons 
essentially distinct from the traditional. Indeed, even the 
physical meaning that we assign to the mathematical objects, 
especially p and w, is entirely different from the convention
al. In our attempts to unify the laws of quantum mechanics 
and thermodynamics into a quantum thermodynamics,2.3 an 
underlying hypothesis has been that no layer of statistical or 
information-theoretic reasoning should be required to 
bridge the gap between mechanics and thermodynamics. In
deed, in our theory there is no such gap. Quantum thermo
dynamics is a nonstatistical theory concerned exclusively 
with a causal description of the individual quantum states of 
a system, including a single particle. 

A most important fundamental hypothesis2 of quan
tum thermodynamics is that the general mathematical re
presentation of the individual quantum states of a single iso
lated system cannot be in terms of the traditional state 

vectors I"') in the Hilbert space Jf'" of the system, but must be 
in terms of self-adjoint, nonnegative-definite, unit-trace op
erators p on Jf'" that are not necessarily idempotent. State 
operators p have the same mathematical properties (p t = p, 
p,>O, Tr p = 1) as the statistical or density operators consid
ered in traditional (von Neumann) quantum statistical me
chanics.4 But in quantum thermodynamics, their physical 
meaning is entirely different. The operators p represent indi
vidual states of a single system and not the index of statistics 
from a generally heterogeneous ensemble of identical sys
tems. Thus, for example, the entropy functional s( p), defined 
by Eq. (1), represents the entropy5 of the single system in any 
of its states, equilibrium and nonequilibrium, dissipative and 
nondissipative,3 and not a measure of statistical or informa
tion-theoretic uncertainty. 

With this background, the problem of studying the clas
sicallimit Ii---+O acquires for us a special physical meaning. 
The phase-space functions w(q,p) represent individual classi
cal states of a single system and not the index of statistics 
from a Gibbsian ensemble. The functional Scl(W) represents 
the individual classical entropy of the single system in any of 
its classical states, and not the Gibbsian index of probability 
of phase. 

However, we wish to emphasize that all the mathemat
ical observations reported in this paper may obviously be 
interpreted also in the traditional way. 

We restrict our discussion to the case of a single degree 
offreedom (e.g., a one-dimensional harmonic oscillator) so 
that the Hilbert space is Jf'" = L 2 (H) and the classical phase 
space is n = H2. 

The paper is organized as follows. Coherent states and 
three well-known phase-space maps are briefly reviewed in 
Sec. II, conditions defining a complete phase-space represen
tation of quantum kinematics are given in Sec. III, a discus
sion on the classical limit of the three phase-space maps is 
given in Sec. IV, and conclusions in Sec. V. 

II. COHERENT STATES AND PHASE-SPACE 
FUNCTIONS 

We denote the position and momentum operators by Q 
andP ([Q,P] = iM), and their eigenvaluesbyq andp so that 
Q Iq) = qlq) andP IP) = pIP)· The annihilation and creation 
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operators Z and Z t ([Z, Z t] = I) are then defined by the 
relations6 

Z=~l/2w(liJQ + iP), Q = ~fz/2w(Zt + Z), 
(3) 

Z t =~ l/2w(liJQ - iP), P = ~liJfz/2i(Z t - Z). 

We call the normalized eigenvectors Iz) of Z (Z Iz) = zlz») 
coherent vectors with "natural frequency" liJ. For each 
eigenvalue z of Z, we define the real variables x and y (with 
dimensions of position and momentum, respectively) by the 
relations 

x=~fz/2w(z* - z), z = ~l/2w(liJX + iy), 
(4) 

y=~liJfz/2i(z* + z), z* = ~l/2w(wx - iy). 

The representation of coherent vector Iz) in configuration 
space is 

(qlz) = (Whrli)I/4 

xexp[ - w(x - q)2/2fz + iyq/fz - ixy/2fz], (5) 

whereas in momentum space it is 

(plz) = (l/1rliw)I/4 

Xexp[ - (y - pf/2w - ixp/fz + ixy/2fzJ.(6) 

Withz = O(x = O,y = 0), Eqs. (5) and (6) give the representa
tions of coherent vector 10). Moreover, we have the well
known relation Iz) = W(z)IO), where W(z) is the unitary 
(Weyl) operator 

W(z)=exp(zZ t - z* Z) 

= W (x, y) = exp[i(yQ - xP )lfzJ. (7) 

We say that a system is in a coherent state if and only if its 
(individual) state operator is 

p=Pz =lz)(zl=p2. (8) 

These pure states are minimum uncertainty in phase space 
(.jQ.jp = fz/2). 

Several linear mappings from the set of self-adjoint op
eratorsA on JY'to the set of complex-valued functions on the 
classical phase space n have been considered in the litera
ture. 7 In our physical context, these mappings are attempts 
to find a phase-space representation of an individual quan
tum system. We will consider only three important exam
ples, namely, the Blokhintzev phase-space maps 

r(q,p;A )=21rli(qIA 1J')(plq) (9a) 

= II d::: e--illlq+rP)I"Tr(eiIlQlfiAeirPlfi), 

(9b) 

the Wigner phase-space map9 

g(q,p;A )= f I d:~T e~illlq+rp)l"Tr(AeiIIlQ+rPl/fi)(lOa) 
= f I d~1/ r(q + s,p + 1/;A )e2iS'Ilfi, (lOb) 

and the Wehrl phase-space mapl 

!(q,p;A )=(q,pIA Iq,p) (lIa) 
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= I I ~:; r(q + s,P + 1/;A )eiS'Ilfie ~ (",'5' + '1'1/2fiw, 

(lIb) 

where Iq,p) is the coherent vector Iz) with x = q andy = p. 
The Blokhintzev and the Wigner maps are not real (i.e., 
r* i=r andg* i=g), while the Wehrl map is real and nonnega
tive (i.e.,!* =!> 0). For every p and A, we have 

II d;:: r(q,p;p) = II d;:: g(q,p;p) 

= II d;:: !(q,p;p) = Trp = 1 

( 12) 

and 

II d;:: r*(q,p;A )r(q,p;p) 

= I I d;:: g*(q, p; A )g(q, p; p) = Tr Ap. (13) 

For the Wehrl map, instead, the relation 

I I d;:: !(q, p; A )f(q, p; p) = Tr Ap (14) 

holds for every A only for the special class of (Wehrl) statesp 
for which 

II dqdp 
p = 21rli !(q,p;p)lq,p)(q,pl· (15) 

The usual interpretation of these relations is that the 
maps r(q,p;p), g(q,p;p), and!(q,p;p) playa role analog to 
that of the classical phase-space state function, and the maps 
r*(q,p;A ),g*(q,p;A ), and!(q,p;A ) a role analog to that of the 
classical phase-space function associated with observable A. 
A discussion of the time evolution of r(q,p;p) under Hamil
tonian dynamics is given in Ref. 8. 

III. CLASSICAL REPRESENTATION OF QUANTUM 
KINEMATICS 

Ideally, a classical phase-space representation of a 
quantum system would be complete if it were possible to 
solve the following general problem. Given a system with 
quantum-mechanical Hilbert space JY' and classical-me
chanical phase space n, find two mappings w(q, p; p) and 
a(q, p; A ) that satisfy the following rather restrictive condi
tions. For every state operator p on JY', every well-defined 
self-adjoint operator A on JY', every point q, pin n, and every 
continuous real function F (t ) of the real variable t, 

(i) w(q,p;p) is real and nonnegative, 
(ii) a(q, p; A ) is real, 

(iii) f f d;:: F(w(q, p; p)) = Tr F(p), 

(iv) f f d;:: F(a(q,p; A ))w(q,p;p) = Tr F(A)P. 

Clearly, for F(t) = - kt In t if 0 < t<, 1 and F(t) = 0 else
where, condition (iii) implies that Scl(W) = s( pl. 

No rigorous solution to this problem is known. To the 
best of our knowledge, even the physically interesting ques-
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tion whether the problem admits of solutions, let alone to 
find them, remains unresolved. In what follows, we discuss 
the rudiments of an approach that may provide useful in
sight towards a resolution of the question. 

IV. CLASSICAL LIMIT OF PHASE-5PACE FUNCTIONS 

Let us consider the spectral expansion of the state oper-
ator 

(16) 

(17) 
j 

PjPk = 8jk~' (18) 

where I is the identity and Pj the projector onto the eigen
space belonging to eigenvalue wj , with degeneracy dj 

= Tr Pj' We readily verify that 

and similar relations hold for the mappings g and f 
Using the relations 

II d5 d?] f:" nnmeiSTJI" = 8 jnftn! 
21rli !> ./ nm' 

I I ~::: 5 nTfmeiSTJI"e - (cu's' + TJ')/2r.w 

if n + m odd, 

(19) 

(20) 

(21) 

(22) 

= {~'3 ... (n + m - 1) (litu)mI2(fi/w)n12 
2n + m 

if n + m even, (23) 

and the expansion 

00 00 _J_n_+_m_r I 5 n?]m 
r(q + 5, p + Tf; A ) = I I 

n=Om=O JqnJpm q,p;A n!m! 
(24) 

into Eqs. (lOb) and (lIb), we find 

00 J2nr I jnfin 
g(q,p;A)=r(q,p;A)+ I -- --, 

n=lJqnJpn q,p;A n! 
(25) 

f(q,p; A) = r(q,p; A) 

1·3···(2n - 1) wn - kfin 
4n ' 

(26) 

and, after some manipulations involving Relations (18) and 
(22), 

Relations (20) and (27) imply that the functions 
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r(q, p; Pj ) have overlapping supports which cover the whole 
phase space a, i.e., 

unj = a, 
j 

a/'ilk i=8jka j , 

where 

(28) 

(29) 

(30) 

However, the relative importance of the overlap is small. For 
example, Ifrjrk 12/lf111fJi I is of order fi2/djdk forji=k. 
Thus we conclude that, in the classical limit ~, the spec
tral expansion of the state operator p induces a partition of 
the phase-space a into disjoint cells aj each belonging to a 
distinct eigenvalue Wj of p. 

From Eqs. (25) and (26), it follows that if the Blokhint
zev map r(q,p;A), the Wignermapg(q,p;A), and the Wehrl 
map f(q, p; A ) each admit of a classical limit as ~, then 
they tend to the same map. Assuming that such limits exist, 
we introduce the following notation 

W(q,p)=lim r(q,p;p) = limg(q,p;p) = limf(q,p;p), (31) 
fl-.() fl-.() 11---.0 

a(q, p)=lim r*(q, p; A ) = lim g*(q, p; A ) = limf(q, p; A ), 
,,-.0 fl-.() fl-.() 

(32) 

aj(q,p)=lim r(q,p; Pj) = limg(q,p; Pj) = limf(q,p; PJ 
fl-.() fl-.() fl-.() 

(33) 

It then follows from Relations (20), (21), and (27) that 

W(q,p) = IWpj(q,p), (35) 
j 

(36) 

and, therefore, the functions aj(q, p) can only take the values 
o and 1, and have nonoverlapping supports covering the 
whole phase space. Thus the structure of the function W is 
such that 

F(w(q,p)) = IF(wj)aj(q,p) 
j 

in analogy with the general relation 

To proceed further, we conjecture that 

(37) 

(38) 

(39) 

We have no prooffor this. The conjecture is based only on 
some heuristic arguments. We first note that Relation (39) is 
consistent with the improper formal relations 

II d::: 1 = II d::: r(q,p; I) = Tr I = 2;dj , (40) 
J 
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II dqdp 1 = II dqdp "a.( ) 
21rl1 21rl1 £: J q,p 

(41) 

where we used that fact that r(q,p; 1) = 1 and Relation (34). 
Moreover, we note that it is consistent with the requirement 
that ifw(q,p) is to represent a classical state function, then it 
must be normalized and, therefore, 

II dqdp II dqdp 21rl1 w(q,p) = IWj 21rl1 aj(q,p) 
J 

(42) 

Finally, we observe that the conjecture and the normaliza
tion condition for w(q,p) would follow if there were a mean
ing to saying that the phase-space measure dq dp/21rl1 is in
dependent of fz so that the following relation would make 
sense at least for A in the trace class 

Tr A = II dq dp r(q,p; A) = limII dq dp r(q,p; A) 
21rl1 Ii-->O 21rl1 

= II dq dp lim r(q, p; A ). 
21rl1 Ii--o 

(43) 

If the conjecture could be proved, then from Relations 
(37) and (38) it would follow that 

II di:: F(w(q,p)) = II di:: ~F(wj)aj(q,p) 

= IF(wj)dj = Tr F(p), (44) 

which would prove that the function w(q,p) [Relation (31)] 
satisfies conditions (i) and (iii) of Sec. III and that, in particu
lar, Scl(W) = s( pl. In a similar manner, and with similar con
jectures, we would show that the function a(q, p) [Relation 
(32)] satisfies conditions (ii) and (iv). 

Because it is not clear whether Relations (39)-(43) admit 
of a rigorous justification, we conclude that the question of 
existence of solutions to the problem defined in Sec. III re
mains unresolved. 

v. CONCLUSIONS 
We have given restrictive conditions defining a com

plete classical phase-space representation of quantum kine
matics for systems with both a classical and a quantum de
scription. Whether such representations exist is an 
unresolved problem. We presented heuristic arguments in 
support of the usual unproved claim that s( p)-+Scl(W) in the 
classical limit fz-+D. 

We have observed that, in the limit fz-+D, the spectral 
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expansion of the quantum state operator p induces a parti
tion of the phase space {} into disjoint cells {}j each belonging 
to a distinct eigenvalue Wj of p. Over cell {}j' the classical 
state function w has the constant value wj • We conjectured 
that the phase-space volume of cell {}j equals the degeneracy 
dj of eigenvalue wj • Accordingly, the phase-space volume of 
the support ofw, i.e., of the complement of cell {}o belonging 
to the zero eigenvalue ofp, cannot be smaller than the value 1 
attained for every idempotent or pure state (p2 = pl. 

We conclude with a remark on dynamics, namely, on 
the distinction between conservation of volume in phase 
space and thermodynamic reversibility. It is true that the 
Liouville-von Neumann equation for the unitary evolution 
of p induces in the classical limit an evolution of w which 
preserves both the volume of the support ofw and the value 
of the entropy. However, it is seldom recognized explicitly 
that conservation of volume in phase space is not equivalent 
to thermodynamic reversibility. For example, we could con
ceive of non unitary evolution equations which preserve the 
volume of the support of w (i.e., equations that preserve the 
zero eigenvalues of p) but not the value of the entropy (i.e., 
such that the nonzero eigenvalues of p are not invariant). We 
believe3 this to be an interesting and physically important 
feature of a recently proposed 10 nonlinear quantum equation 
of motion for a single elementary constituent of matter. 
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A set of continuum and discrete eigenfunctions is constructed for linear half-space transport 
problems with single scatter albedos which are bilinear functions of position. For Holder 
continuous distributions incident upon the half-space, these eigenfunctions are proved to be half
range complete and the expansion coefficient of the continuum eigenfunctions is proved to be 
continuous. 
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I. INTRODUCTION 

In this article we examine some theoretical questions 
concerning the half-range completeness of a set of eigenfunc
tions arising from the half-space linear transport problem 
described by 

/l at{l(x,/l) + t{l(x,/l) = c(x) JI t{l(x,/l')d/l', x>O, 
ax 2 -I 

(1.1) 

t{l(0,/l) =g(/l), O</l<l, (1.2) 

1t{l(x,/l)I<Mo= sup g(/l), O<x<oo, -1</l<1. 
O';;;It.;;;I 

(1.3) 

We assume that the functiong( /l) is nonnegative and HOlder 
continuous for O</l < 1, and that the single scatter albedo c(x) 
is given by 

c(x)=cz+ L'" a(t)e-XI'dt, (1.4) 

with 

a(t)=s(cl-cz)e-sl/lt Z
, O<cl<cz<l, s>O. (1.5) 

Explicitly we have 

c(x) = (CIS + czX)/(s + x). (1.6) 

We note the inequalities C I <c(x) < Cz < 1, which ensure that 
the half-space is subcritical. This in tum implies that a 
unique bounded solution exists, and this solution satisfies 
the bound given by Eq. (1.3) (Ref. 1). 

This problem has been considered in two recent arti
cles. Z,3 In the first of these, z a set of continuum eigenfunc
tions is constructed which contains not only the usual delta 
and principal value functions, but also their derivatives. Ad
ditionally, a discrete eigenfunction is constructed, but only 
for C I' CZ, and s satisfying a certain algebraic condition. These 
results are unsatisfactory in several respects. First, the ex
tremely singular nature of the continuum solutions makes an 
accurate application of numerical methods a very difficult 
issue. Second, the fact that a discrete solution is constructed 
for only special values of C p CZ, and s places unphysical re
strictions on the class of problems that can be analyzed. 
Third, no completeness prooffor this set of eigenfunctions is 
given. 

In a subsequent paper,3 the same problem is considered, 

and progress is made on the first two of the above three 
issues. In particular, a new set of continuum eigenfunctions 
is constructed whose singular parts contain only the usual 
delta and principal value functions. Also, a discrete solution 
is constructed for all values of s if C I < CZ, and for an infinite 
denumerable set of values of s if C j > Cz. However, again, no 
completeness proof is given for this new set of eigenfunc
tions. The results in both of these papers, Z.3 as well as other 
articles containing results for transport problems with a 
variable c(x), have recently been reviewed by Larsen.4 

In the present paper, we return again to the problem 
defined by Eqs. (1.1)-(1.6), and forc j < Cz we are able to settle 
all three issues mentioned above. First, we construct a third 
set of continuum eigenfunctions whose singular parts, like 
those obtained earlier,3 contain only the usual delta and 
principal value functions. However, these eigenfunctions 
differ from the earlier ones in a crucial way, described later in 
Sec. II. Second, to this new set of continuum solutions we 
append the earlier discrete mode,3 but modified in a simple 
way. Third, for this set of continuum plus one discrete solu
tions, we prove half-range completeness on the range 
O</l < 1, and we also show that the expansion coefficient for 
the continuum modes [b (v),O< v< 1] is a bounded and contin
uous function of v. 

Our analysis significantly borrows from and relates to 
two other previous articles5,6 dealing with transport prob
lems given by Eqs. (1.1 )-( 1.3). In particular, our derivation of 
the continuum modes closely follows an earlier derivationS 
in which c(x) is given by Eq. (1.4) with Cz = 0 and a(t) arbi
trary. Also, our completeness proof is based upon the La
place transform technique used earlier6 to prove half-range 
completeness for a set of eigenfunctions arising from the ex
ponential atmosphere [c(x) = Co exp( - xis)]. Interestingly, 
it was shown in that paper6 that the expansion coefficient 
b (v) for the continuum modes is a highly singular function of 
v, whereas for the bilinear (a ratio of two linear functions) c(x) 
given by Eq. (1.6) we prove here that the expansion coeffi
cient is both bounded and continuous. This disparity is prob
ably due to the existence of a discrete eigenfunction for the 
bilinear c(x), whereas for the exponential c(x) no discrete 
mode was included in the analysis. 

The interest in eigenfunction analyses of linear trans
port equations with a variable c(x) commenced in the late 
1970's, with initial work focused on the exponential atmo-
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sphere,7 first introduced in the astrophysical literature. 8 The 
subsequent work reported for the bilinear c(x) was motivated 
by the fact that such a c(x) also yields a transport equation 
which is amenable to a singular eigenfunction treatment. 
Unfortunately, it appears at this time that these two func
tional forms for c(x), or slight generalizations of these forms, 
are the only functions c(x) for which eigenfunctions can be 
generated. In particular, no progress has been reported for a 
periodic c(x), of great interest in nuclear reactor analysis. 
There is one important and unfinished aspect of the present 
and all previous analyses of the transport equation (1.1) with 
a variablec(x). To date, no closed form solutions of boundary 
value problems have been constructed. This is due to the 
extreme complexity and nonstandard nature of the singular 
integral equations relating the expansion coefficients to the 
incident distribution g( f-t). In the present article, as earlier,6 
we prove that these equations possess a unique solution, but 
we do not explicitly construct the solution. 

An outline ofthe remainder of this article follows. In 
Sec. II we derive the new continuum eigenfunctions and in 
Sec. III we obtain the modified discrete mode. In Sec. IV we 
obtain an equation for the Laplace transform of the density 
[the integral over f-t of tP(x, f-t)). In Sec. V we use the inverse 
Laplace transform to obtain a representation for the density, 
and in Sec. VI we prove half-range completeness. Addition
ally, an appendix is included which gives some technical de
tails needed to obtain certain bounds on the Laplace trans
form of the density. 

II. CONTINUUM EIGENFUNCTIONS 
To construct continuum solutions to Eq. (1.1) with c(x) 

given by Eq. (1.4), we introduce the ansatz 

tPv(x,f-t) = Iv(f-t)e- XIV + f'" /3v(t,f-t)e- Xlw dt, (2.1) 

where 

1 1 1 
-=-+-, (2.2) 
(J) v t 

and 

f~ /1'( f-t)df-t = 1, (2.3) 

f~ 1 /3v(t, f-t)df-t = O. (2.4) 

We assume 0 < v < 1, and since 0 < t < 00, we have 

O<{J) = vt /(v + t) <v< 1. (2.5) 

Introduction ofEqs. (2.1H2.4) into Eq. (1.1) yields 

(1- ~)/v(f-t)e-xlv+ f'" (1- :)/3v(t,f-t)e-
XIW

dt 

= c2 e- xlv + ~ roo a(t )e- XIW dt. (2.6) 
2 2 Jo 

Equation (2.6) is satisfied if 

(1 - f-t/v)/v(f-t) = c2/2, 

(1 - f-t/{J)) /3v(t, f-t) = a(t )/2. 

(2.7) 

(2.8) 

Using Eqs. (2.3H2.5), we find that the solutions of the above 
two equations are given by 
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11'( f-t) = Adv)O(v - f-t) + c2v/2(v - f-t), (2.9) 

/3v(t, f-t) = [(J)a(t)/2) [1/({J) - f-t) - p({J))8({J) - f-t)), 
(2.10) 

where, for 0 < v < 1, 

A2(v) = 1 - (c2v/2)ln[(1 + v)/(1 - v)), (2.11) 

p({J)) = In [(1 + (J))/(1 - (J))). (2.12) 

Combining all of these results, Eq. (2.1) gives for the contin
uum solutions 

tPv(x,f-t) 

= (A
2
(v)O(V - f-t) + c2v )e - xlv + roo (J)a(t) 

2(v-f-t) Jo 2 

X [_1 __ 8({J) _ f-t)ln(1 + {J))]e - xlw dt. (2.13) 
(J)-f-t 1-{J) 

Equation (2.13) holds for a general class off unctions 
a(t ). Specializing this result to the form given by Eq. (1.5), we 
obtain 

tPv(x,f-t) = (A 2(v)8(v-f-t) + c2v )e- xlv 
2(v-f-t) 

S(C2 - cd roo (J)e - sl' 8( ) 
+ 2 Jo -t-2 - (J) - f-t 

X In( 1 + (J))e - xlw dt 
1-{J) 

+ sIc 1 - C2) roo {J)e ~ s' (_I_)e - xlw dt . 
2 Jo t (J) - f-t 

(2.14) 

Making a change in integration variables from t to (J) accord
ing to 

1 1 1 -=-+-, (2.15) 
(J) v t 

and defining 

Hv(f-t) = {01,' O<f-t<v<l, (2.16) 
O<v<f-t<I, f-t<0, 

the first integral on the right hand side ofEq. (2.14) can be 
written 

roo {J)e~sl' 8({J)-f-t)ln(1 + (J))e-xIWdt 
Jo t 1 - (J) 

= Hv(f-t) In(1 +f-t)exp(~-~-~). 
f-t I-f-t v f-t f-t 

Similarly, with the change of variables 

u = (x+s)(~+~-~), 
v t f-t 

and defining 

E (x) = p roo e - U du, 
1x u 

(2.17) 

(2.18) 

(2.19) 

the second integral on the right-hand side ofEq. (2.14) can be 
written 

roo {J)e ~ st(_I_)e - xlw dt 
Jo t (J) - f-t 

- ~ exp(: - ; - ; )E [(X + sl( ~ - ~)] . 
(2.20) 
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Combining Eqs. (2.14), (2.17), and (2.20) we obtain 

"'v(X,fl)=(Adv)I5(V- fl )+ c2v )e- xlv 
2(v-fl) 

s(c2 - cIl (s s X) + exp -----
'lJ.t v fl fl 

X{Hv(p)lnG~:)+E[(X+Sl(~ - ~)]}. 
(2.21) 

We note from Eqs. (2.1)-(2.4) that "'v(X,fl) satisfies the sim
ple (and, as we shall see, useful) condition 

f~ I "'v (x, fl)dfl = e - xlv, 0 < V < 1. (2.22) 

The continuum eigenfunctions derived ear1ie~ are giv
en by 

"'v (x, fl) = (AdV)l5(V - fl) + C2
V 

)e - xlv 
2(v-fl) 

(C2-cI)sH() [C1S(1 1) x] + v fl exp - - - - - - . 
C2Jl2 c2 V fl fl 

(2.23) 

These eigenfunctions have the same singular parts as those in 
Eq. (2.21), but different regular parts. It can be seen that 
these regular parts are simpler than those in Eq. (2.21). How
ever, these eigenfunctions do not satisfy the simple condition 
Eq. (2.22), and we shall see that the analysis in both Sees. III 
and IV depends upon the simplicity ofEq. (2.22). 

III. DISCRETE EIGENFUNCTION 

A discrete eigenfunction ofEqs. (1.1), (1.3), and (1.6) has 
been given earlier.3 To define this eigenfunction, we first in
troduce 

n = 1,2, 

An(Vn)=O, I<VI <V2<OO, 

O(v)= (" ~I(t) dt, l<v<v2' 
Jv, t A2(t) 

B(v) = e'9(v)/~A2(V), 1 <V<V2' 

{ 

- ~ exp{s[o (1) + 5.(1 - J..)]}, 
A(fl)= C2 C2 fl 

0, - l<fl <0. 

Then the discrete eigenfunction Ipo(x, fl) is given by3 

- IV, vB (v) "'o(x, fl) = A (fl)e - xiI' + -- e - xlv dv. 
I V-fl 

This implies 

II lpo(X,fl)dfl = II A (v)e- Xlv dv 
-I ° 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

+ ('" vB (v)ln(v+ l)e- Xlv dv. 
JI v-I 

(3.7) 

We see that the density (the integral over fl) corresponding to 
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this discrete mode contains a continuum part (that is, an 
integrand with exponentials decaying faster than e - X). 

We wish to construct a new discrete eigenfunction 
whose corresponding density does not contain a continuum 
part. To accomplish this, we define a new discrete mode 
"'o(x, fl) as 

"'o(x, fl) = Ipo(x, p) - fA (v)",v(x, fl)dv , (3.8) 

where the "'v (x, fl) are the continuum eigenfunctions defined 
by Eq. (2.21). Equivalently, we may write 

"'o(x, p) = fA (v)[ l5(v - fl)e - xlv - "'v (x, fl) ]dv 

+ ('" vB (v) e -xlv dv, 
JI V - fl 

(3.9) 

and then by Eq. (2.22) we have the desired result 

"'o(X,fl)dfl= vB(v)ln _v_ e- xlv dv.(3.1O) fl iV, ( + 1) 
-I I v- 1 

An alternate way to obtain a discrete mode with no 
continuum part for the corresponding density is to introduce 
the ansatz 

¢o(X,fl) = ~e -xlv dv + A (v,fl)e- XIV dv, i v, Ji( ) II 
I v-fl ° 

(3.11) 

with 

f~ I A (v, p)dfl = O. (3.12) 

Inserting Eqs. (3.11) and (3.12) into Eq. (1.1) one ob
tains, for a general c(x) ofthe form given by Eq. (1.4), 

iV' B(v)e- XIV dv + f (1- ~)A (v, fl)e- XIV dv 

=2 vB(v)ln __ e-xlvdv C IV, - (v+ 1) 
2 I v-I 

+- a(t) vB(v)ln ~ e-xIWdvdt. 1 100 

IV' (1) 
2 ° I v-I 

(3.13) 

We interchange the order of integration of v and t in the last 
term in Eq. (3.13), and change integration variables from t to 
(U according to 

(U = vt I(v + t). (3.14) 

We then interchange the order of integration of (U and v, 
relabel (U and vas v and u, and equate integrands in Eq. (3.13) 
for each value of v. This leads to the two equations for B (v) 
and A (v, p): 

- 1 iV, u
3 

(u + 1) ( uv )-A2(V)B (v) = - 2 In -- a -- B (u)du , 
2 v (u - v) u - 1 u - v 

(3.15) 

1 iV' u
3 

(u + 1) ( uv )-=- 2 In -- a -- B(u)du. (3.16) 
2 I (u - v) u - 1 u - v 

Specializing to aft ) as given by Eq. (1.5), Eq. (3.15) can 
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be converted, by differentiation with respect to v, to a first
order differential equation for B (v). The solution of this 
equation is 

B(v)= e-
slv 

exp [.3-.(C2-CI! rV

_
1_ ln(U+l)dU]. 

vA2(v) 2 JI uA2(u) U - 1 
(3.17) 

It can be seen that, aside from an overall multiplicative con
stant, B (v) is identical to B (v) as defined by Eq. (3.4). The 
corresponding function A (v, Il) follows from Eq. (3.16) as 

( 
e - slv e - slv II df.1,') 

A(V,Il)=K -8(V-Il)-- ---, , 
v(v -Il) v - I V-Il 

(3.18) 

with 

K = 1 - exp [.3-. (c2 - cI) r
v

, __ I_ln(U + 1) dU] . 
2 JI uA2(u) U - 1 

(3.19) 

In obtaining Eq. (3.18) from Eq. (3.16) we have appended the 
delta function 8 (v -Il) to assure that Eq. (3.12) is satisfied. 

IV. THE LAPLACE TRANSFORM OF THE DENSITY 

We define ¢ (x) as 

1 II ¢ (x) = - ¢(X,Il)dll, 
2 -I 

(4.1) 

where ¢(X,Il) is the solution of Eqs. (1.1)-(1.6). Aside from 
the factor one-half, ¢ (x) is just the density associated with the 
distribution function ¢(x, Il). In this section, we perform a 
Laplace transform of the problem defined by Eqs. (1.1 H 1.6) 
to obtain a suitable equation for ~ (z), the Laplace transform 
of ¢ (x). To do this we first define the transforms of ¢(x, Il) 
and ¢ (x) as 

¢(Z,Il) = 1'0 e-ZX¢(x,ll)dx, (4.2) 

~(z) = 1'0 e-ZX¢(x)dx. 

From Eq. (1.3) we have 

1¢(X,Il)I<Mo , 

and hence by Eqs. (4.2) and (4.3) we have for Re z > 0, 

I¢(z, 1l)1 <MoiRe z , 
I~ (z)1 <MoiRe z . 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

To proceed, we operate on Eq. (1.1) by the Laplace 
transform operator 

L = Sa'" e-ZX(o)dx, (4.7) 

and perform elementary operations to obtain 

(4.8) 

Since ¢l,z, Il) is analytic for Re z > 0, the bracketed term in 
Eq. (4.8) must vanish for - 1 <Il < 0 and z = - 1I1l. This 
produces the result 

1514 J. Math. Phys., Vol. 25, No.5, May 1984 

¢(O, -Il) = ~ [C2~ (~) 

+ i'" a(t)~(~ ++)dt], 0<1l<1. 

(4.9) 

Thus, from Eq. (4.6), the exiting angular distribution 
¢(O, -Il), ° <Il< 1 is an analytic, bounded function ofll. We 
now integrate Eq. (4.8) over Il, using the indentities 

~ 1 II ~ ¢ (z) = - ¢(z,ll)dll, 
2 -I 

(4.10) 

(4.11) 

Specializing the result to a(t) as given by Eq. (1.5), we obtain 
after elementary operations 

HI(Z)~(z)=H2(Z)_S(CZ-CI) r xo 

e-SU~(u)du, (4.12) 
Cz L 

where we have defined the functions 

HI(z) = [ A2( -liz) ]e- sz , 

l-A2(-lIz) 

G (z) = ~ II Ilt/J(O, Il) dll , 
2 -ll+llz 

Hz(z) = G(z)e- SZj[I-A2( - liz)] . 

(4.13) 

(4.14) 

(4.15) 

By inspection, the functions HI(z) and Hz(z) are analytic 
everywhere in the complex plane except for the branch cuts 
( - 00, - 1] and [1,(0). To proceed, we differentiate Eq. 
(4.12) to obtain 

~[HI(z)~(z)] = dH2(z) + s(CZ-cI) e-SZ~(z), (4.16) 
dz dz C2 

which is a first-order differential equation for ~ (z). To solve 
this equation, we introduce a new function 

R (z) = r ~dt= r l-Az( -lit) dt. (4.17) 
Jo c2H I(t) Jo czAz( - lit) 

The integrand in Eq. (4.17) is an analytic function in the 
complex t plane, except for the branch cuts ( - 00, - 1)] and 
[1,(0), and simple poles at t = ± lIvz. Therefore R (z) is an 
analytic function in the complex plane except for the branch 
cuts ( - 00, -lIvz]and[lIv2'(0). The pathofintegration in 
Eq. (4.17) is any simple curve from ° to z which does not 
intersect these cuts (and, of course, z itself must not lie on 
either of these cuts). 

Making use ofEq. (4.17), we rewrite Eq. (4.16) in the 
form 

=H~(z)exp[s(cl-cz)R(z)] . (4.18) 

To proceed, we use two results derived in the Appendix to 
this paper, namely [see Eqs. (AI4) and (AI9)], 

HI(z)=O(z-lIvz), Iz-llvzl<l, (4.19) 

exp[s(c I - cz)R (z)] = O(z - lIvzt, Iz - lIvzl<l, 
(4.20) 

where a > 0 is given by Eq. (AI5). Combining these two re
sults, we have 
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H1(z)exp[s(c1 - cz)R (z)] 

=O(Z-l/vZ)1+G, Iz-l/vz/<l. (4.21) 

Using this result, together with the fact that ¢ (z) is analytic in 
the right half-plane, we integrate Eq. (4.18) from l!vz toz 
along any curve not intersecting the cuts ( - 00, - l/vz] and 
[l/vz' (0), assuming thatz itself does not lie on either of these 
cuts. We find 

~ (Z)H1(z)exp[s(c j - cz)R (z)] 

= r H;(t)exp[s(cj-cz)R(t)]dt. (4.22) 
J1/V2 

We consider a point z in the left half-plane and not on the cut 
( - 00, - l/vzJ. At any such point, H 1(z) is, by inspection, 
analytic and nonzero, and the same is true for 
exp[s(c 1 - cz)R (z)]. Hence at this point ¢ (z) is also analytic 
and given by 

~ S~h H;(t)exp[s(c1 - cz)R (t)]dt (4.23) 
¢(z)= " . 

H1(z)exp[s(c1 - cz)R (z)] 

We conclude that ¢ (z) is analytic everywhere in the complex 
plane except for the cut ( - 00, - l/vz]. An integration by 
parts in Eq. (4.23), making use ofEq. (4.20), produces the 
following alternate and useful expression for ¢ (z): 

¢(z) = Hz(z) 
H](z) 

S~/v,Hz(t)R '(t )exp[s(c1 - cz)R (t )]dt 
+s(cz-cd . 

H1(z)exp[s(c1 - c2 )R (z)] 
(4.24) 

v. REPRESENTATION OF THE DENSITY 

In the previous section we showed that ~ (z) is analytic 
everywhere in the complex plane except for the cut 
( - 00, - l/vz]. In the Appendix to this paper, we prove 
three additional facts concerning ¢ (z) for z in the left half
plane and not on the cut. First, there exist constants M] > 0 
and a < 1 such that [see Eq. (A29)] 

/¢(z)I<M1//z+ l/v2 I
a

, Iz+ l/vz/<l. (5.1) 

Second, there exists a constant M z such that [see Eq. (A30)] 

(5.2) 

Third, the limiting values of ¢ (z) as z approaches the cut from 
above and below, ¢ ± (u) for - 00 < u< - l/vz, are contin
uous for all values ofu except possibly at u = - l/vz [where 
¢ ± (u) can be unbounded as in Eq. (5.1)], and there exists a 
constant M3 > 0 such that [see Eq. (A31)] 

1¢+(u)-¢-(u)I<M3/UZ, u< -1!vz' lul>l. (5.3) 

Using these results, it is a simple exercise to consider the 
inverse Laplace transform 

¢ (x) = -. ¢ (z)~X dz, y> - l/vz, 
1 fY+;oo 

21Tl y-;oo 
(5.4) 

deform the contour into the left half-plane (wrapping it 
around the branch cut in the usual manner), and argue that 
only the integrals along this branch cut contribute. Hence we 
have 
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1 I- lIv
2 ¢ (x) = -. a(u)eUX du , 

2m - 00 

where 

a(u) = ¢ +(u) - ¢ -lui. 

Making the change of variables 

V= -l/u, 

and defining 

b (v) = (l/21Tiv)a( - l/v), 

we can rewrite Eq. (5.5) as 

¢ (x) = f b (v)e- xlv dv + f'2 b(v)e- XIV dv. 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

We observe from Eqs. (5.6), (5.8), and the discussion above 
Eq. (5.3) that b (v) is a continuous, bounded function of v for 
o <v<l. 

Next we show that there exists a constant bo such that 

b (v) = bovB (v)ln(v + 1)/(v - 1), 1 < v < vz, (5.10) 

where B (v) is defined by Eq. (3.4). To do this, let t be a point 
on the cut satisfying - 1 < t < - l/vz. We let z approach t 
from above and below the real axis in Eq. (4.12), and take the 
difference between the two results. This gives 

H 1(t)a(t)=S(Cz-CdJ
t 

e-sYa(y)dy, (5.11) 
Cz - lIy, 

wherea(t) is given by Eq. (5.6) and we have used the fact that 
H 1(z) and Hz(z) areanalyticfor - 1 <z< - l!vz. We differ
entiate Eq. (5.11) with respect to t and solve the resulting 
first-order equation for a(t ) to obtain 

a(t)H1(t)exp(S(C I -cz) Jt e-
sy 

dY) = 21Tie'''I , 
Cz -lIv, Hj(y) 

(5.12) 
where 1] is a constant. Setting t = - l/v, y = - l/u, and 
using Eqs. (4.11), (4.13), and (5.8), we get 

b()_(CzVln[(v+I)I(V-1)]) {( 1 
v - 2VA

z
(V) exp S 1] --;-

+ (cz - cd IV 1 - Az(U) dU)} 1 
2 ' <v<vz· 

Cz y, Az(U) u 
(5.13) 

On the other hand, for any constant bo, Eq. (3.4) can be writ
ten 

hovB (v)ln[(v + I)/(v - 1)] 

= (czv In[(v + l)l(v - 1)]) 
2VAz(V) 

X exp[ln(~:O) +SB(V)], 1 <V<Vz. (5.14) 

The left-hand sides ofEqs. (5.13) and (5.14) will be equal only 
if the corresponding right-hand sides are equal. This in turn 
implies that one must be able to choose the constant bo such 
that the function F(v), defined by 

F(v) = _ (1] _ ~ + (cz - c1) (V 1 - Az(U) d~) 
V Cz Jv, Az(U) u 

+ [+In(~O) +B(V)] , (5.15) 
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is identically zero. This is possible ifand only if [see Eq. (3.3)] 

F'(v) =..!j AI(V) _ 1 _ (c2 - c l ) [1 - A2(V)]) (5.16) 
vU2(v) C02(V) 

is identically zero. Introducing the definition of An (v), 
n = 1,2 [see Eq. (3.1)] into Eq. (5.16), we find 

F'(v) = O. (5.17) 

Thus there exists a unique constant bo such that Eq. (5.10) 
holds. 

To summarize, we have shown that there exists a con
tinuous bounded function b (v) defined on 0 < v < 1, and a 
unique constant bo such that 

<p(x) = f b(v)e- XIV dv+ bof' vB (v) 

X In( v + l)e - xlv dv . 
v-I 

VI. HALF-RANGE COMPLETENESS 

(5.18) 

Let the function b (v) and the constant bo be as described 
in Eq. (5.18), and define the function 

X(X,Il)=2 f b(v)tPv(X,Il)dv+2botPo(X,Il)· (6.1) 

where tPv(x, Il) is the continuum eigenfunction derived in 
Sec. II, and tPo(x, Il) is the discrete eigenfunction derived in 
Sec. III. By construction, X (x, Il) satisfies the transport equa
tion 

Il aX~Il) + X(x,ll) = C~) J~ /(X,Il')dll ', (6.2) 

with c(x) given by Eq. (1.6). Further, by Eqs. (2.22) and (3.10), 
we have 

1 II 11 - X(x,ll)dll = b(v)e-XIVdv 
2 -I 0 

+ bo vB (v)ln -- e - xlv dv. l v, (v + 1) 
I v-I 

(6.3) 

Comparing Eqs. (4.1), (5.18), and (6.3) we conclude 

J~ I [tP(x, Il) - xIx, Il) ]dll = o. (6.4) 

We subtract Eq. (6.2) from Eq. (1.1) and make use ofEq. (6.4) 
to get 

Il a(tP
a
: X) + (tP - X) = 0, 

which has the solution 

where f( Il) is to be determined. Since both tP(x, Il) and 

(6.5) 

(6.6) 

X (x, Il) vanish as x increases without bound, we must take 

f(ll) = 0, - 1<1l'<0. (6.7) 

Introducing Eqs. (6.6) and (6.7) into Eq. (6.4) gives 

ff(ll)e-Xll'dll =0. (6.8) 

If we make a change of integration variables according to 
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Il = 11(7] + 1), 

Eq. (6.8) becomes 

i= (7]~ 1)2f(7]: Je-
X1J

d7] =0. 

(6.9) 

(6.10) 

Thus the Laplace transform of the function f[( 7] + 1) - 1]1 
(7] + 1)2 vanishes, which implies 

f(ll) =0, 0<1l<1. (6.11) 

Equations (6.7) and (6.11) in tum then imply 

tP(X,Il)=X(x,Il). (6.12) 

Thus, the unique solution of Eqs. (1.1 H 1.6) is given by 
Eq. (6.1). In particular, setting x = 0 gives the result 

g( Il) = 2 f b (v)tPv(O, Il)dv + 2botPo(0, Il), 0 <Il< 1. 

(6.13) 

This proves that the set of eigenfunctions derived in Secs. II 
and III is half-range complete on the interval 0 <Il< 1, and 
by the results in Sec. V we have that the continuum expan
sioncoefficient 2b (v) is continuous and bounded forO < v< 1. 

Finally we note that this simple half-range complete
ness proof depends explicitly on Eq. (6.3), which in tum de
pends upon the simple condition Eq. (2.22) satisfied by the 
continuum eigenfunctions developed in Sec. II. The contin
uum eigenfunctions derived earlier/ given by Eq. (2.23), do 
not satisfy a simple condition of the form ofEq. (2.22), and 
therefore the present half-range completeness proof is not 
applicable to them. 
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APPENDIX 

In this Appendix we obtain results, concerning the 
bounds and smoothness of certain functions, which are used 
in Secs. IV and V. For ease of notation, we define the func
tion 

5 (z) = { ~1T", 1m z> 0, 
- l1T", 1m z < o. 

First, from Eq. (4.11) we have 

A2(~) = 1 - C2 In(~) . 
z 2z l-z 

(AI) 

(A2) 

This function is analytic except for the two branch cuts 
( - 00, - 1] and [1,00), and A 2- I( - liz) is analytic except 
for the same two cuts and the two simple poles at 
z = ± I1v2• It is easily shown from Eq. (A2) that 

A2( ~ 1) = 1 _ i1T"~z5 _ ; + O(Z-3), Izl>1. (A3) 

From Eq. (4.17) we have 

R '(z) = [1 - A2( - lIz)]lc02( - liz), (A4) 

and based upon the properties of A2( - liz) we conclude that 
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R 'Iz) is analytic everywhere in the complex plane except for 
the two cuts ( - 00, - 1] and [1, 00 ), andthe two simple poles 
at z = ± 1/v2. For large Izl we have 

R 'Iz) = t /2z + 0 (Z-2), Izl > 1, (A5) 

and moreover the limiting values of R 'Iz) as 1m z goes to zero 
from above and below the real axis, [R /(u)] ±, are contin
uous functions of u except for the two simple poles at 
u = ± 1/v2. In the vicinity of z = - 1/v2, we have 

A2( - 1/z) 

= A2(V2) + ~A ~ (v2)(z + Ilv2) + 0 (z + 1/V2)2 

= VzA ~(V2)(Z + 1/v2) + O(z + 1/V2)2, (A6) 

and hence 

R'(Z)=( -1 )( 1 )+0(1), 
C2~A ~ (v2) z + 1/v2 

Similarly, 

R'(Z)=( -1 )( 1 )+0(1), 
C2~A ~ (V2) z - Ilv2 Iz-:J<1. 

(A8) 

The results of the above paragraph imply thatR (z), giv
en by 

R (z) = f R /(t )dt, (A9) 

is analytic everywhere in the complex plane except for the 
two cuts ( - 00, - 1/v2] and [llv2, 00), and 

R(z) = (t/2)lnz+ 0(1), Izl>1. (AW) 

In addition, the limiting values of R (z) as 1m z goes to zero 
from above and below the real axis, R ± (u), are continuous 
functions of u except for logarithmic singularities at the two 
branch points u = ± 1/v2. Near these points, we have 

R (z) = ( 1 ) In(z + ~) + 0 (1), 
C2~A ~ (v2) V2 

R (z) = ( - 1 ) In(z - ~) + 0 (1), 
C2~A ~ (v2) V2 

and hence 

exp[s(c l - c2)R (z)] = O(z - 1/v2t, 

where 

a = s(c2 - CI)/c2~A ~ (v2) > 0. 

Moreover, Eq. (AW) implies 

IZ+:J<I' 

(All) 

Iz- :J<I, 

(AI2) 

Iz + Ilv21<I, 
(A13) 

Iz - 1/v21<1, 
(AI4) 

(AI5) 

exp[s(c l - c2 )R (z)] = 0(1), Izl>1. 

Next, from Eqs. (4.13) and (A4) we have 

(AI6) 

1 _ (1 - A2( - 1/Z)) sz _ R '( )-'Z --- e -c2 Ze. 
HI(z) A2( - 1/z) 

(AI7) 

This function H 1- I(Z) is analytic everywhere in the complex 
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plane except for the two branch cuts ( - 00, - 1] and [1,00), 
and two simple poles at z = ± 1/v2. Near these points, we 
have 

--= +0(1), I (e -SIV')( 1 ) 
HI(z) ~A ~(V2) z + Ilv2 Iz+ :J<I, 

(AI8) 

IZ-:J<I, 

(AI9) 

and for large z we have 

1/HI(z) = [tc2/2z+0(Z-2)]tfz, Izl>1. (A20) 

The limiting values of HI -I(Z) as 1m z goes to zero from 
above and below the real axis, [H 1- I( u)] ±, are continuous 
functions of u except for two simple poles at u = ± 1/v2. 

Next, the function G (z), defined as [see Eq. (4.14)] 

G (z) = ~ II 11",(0,11) dll, (A21) 
2 -ll+llz 

is analytic everywhere in the complex plane except for the 
cuts (- 00, - 1] and [1,00). For Izl>1 we have 

1 II G (z) - - ",(O,Il)dll 
2z _I 

- _1 II ",(0,11) d 
2z2 + -I 11 -Ill z 

__ 1 ([ ",(0,0-) dll 
az -Ill + Z-I 

+ t ",(0,0:) dll + 0(1)) 
Jo 11 +z I 

= (Inz/az)[",(O,O-) - tP(0,0+)] + o (Z-2), (A22) 

and hence 

1 II Inz G(z)=2z ",(0,Il)dll+-2 (",)+0(Z-2), Izl>I, 
-I 2z 

(A23) 

where 

(A24) 

Moreover, the limiting values of G (z) as 1m z goes to zero 
from above and below the real axis, G ± (u), are continuous 
functions of u except for logarithmic singularities at 
u = ± 1. 

Finally, we consider the function H 2(z), defined as [see 
Eq. (4.15)] 

H 2(z) = [G (z)/[ 1 + A2( - 1/z) II e - sz . (A25) 

This function is analytic everywhere in the complex plane 
except for the cuts ( - 00, - 1] and [1,00). From Eqs. (A3) 
and (A22) we have 

H 2(z) = _1_ ( II ",(0,1l)d1l + 2 In z ("') 
tC2 -I z 

+ O(z-I))e- SZ
, Izl>l, (A26) 

and the limiting values of H 2(z) as 1m z goes to zero from 
above and below the real axis, H l (u), are continuous func
tions of u. 
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Combining Eqs. (A5), (AI6), and (A26) we deduce 

H 2(z)R '(z)exp[s(c i - c2 )R (z)] 

= O(e-sz/lzl), Rez<O, Izl>l, (A27) 

and hence 

If H2(t)R '(t)exp[s(c i - c2)R (t)]dt I 
= O(e-sRez/lzl), Rez<O, Izl>l. (A28) 

From all of the above results and Eq. (4.24), if; (z) is ana
lytic everywhere in the complex plane except on the cut 
( - 00, - l/v2]. In the vicinity of the point z = - l/v2 , we 
have [see Eqs. (A13), (AI8), and (4.23), whose numerator is 
O(l)atz= -l/v2] 

where a > ° is defined by Eq. (AI5). Also, by introducing 
Eqs. (AI6), (A20), (A26), and (A28) into Eq. (4.24), we con
clude 
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A I II lnz _ ¢ (z) = - ¢(O, f-l )df-l + -2 (¢) + 0 (z 2), 
2z -I Z 

Rez<O, Izl>l. (A 30) 

Moreover, the limiting values of if; (z) as 1m z goes to zero 
from above and below the real axis, if; ± (u), are continuous 
functions of u for - 00 < u < - l/v2• At the point 
u = - l/v2 , if; ± (u) can have a singularity of the type de
scribed by Eq. (A29). Finally, from Eq. (A30) we have 

if;+(u)-if;-(u)=O(u- 2
), u<O, lul>l. (A31) 

In obtaining Eq. (A31) we have used the fact that In z evalu
ated just above the cut differs from its value just below the 
cut by a term of 0 (1), namely 21Ti, for any value u. 
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Proof of the decoupling theorem of field theory in Minkowski space8
) 
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The decoupling theorem of quantum field theory is proved in Minkowski space. It states the 
vanishing property, in the distributional sense, of the renormalized Feynman amplitudes when 
any subset of the underlying masses are scaled to infinity. To prove the theorem we were able, in 
the process, to bound the corresponding integrals, in the € --+ + ° limit, by similar Euclidean 
integrals. All subtractions of renormalization are assumed to be carried out at the origin of 
momentum space with the degree of divergence of a subtraction coinciding with the 
dimensionality of the corresponding subdiagram. 

P ACS numbers: 11.10.Jj 

I. INTRODUCTION 

A rigorous proofl (see also Ref. 2) of the decoupling3 

theorem of field theory in Euclidean space, directly in mo
mentum space, is now available in the literature established 
in a model independent way. The usefulness of this result lies 
in the fact that renormalized Feynman amplitudes depend
ing, as a subset of their masses, on some "heavy" masses may 
be "neglected." The proofl of the theorem in Euclidean 
space is quite involved as it makes a detailed use of the intri
cacies of subtractions ofrenormalization. (It is important to 
realize that the proof in Ref. 1 holds true with a Minkowski 
metric as well as for € > ° with an i€ prescription in the de
nominators.) An earlier attempt was made to prove this 
theorem in Minkowski space as well. In the latter the 
theorem was proved4 only in the case when all the masses 
appearing in the amplitude become large and is, therefore, of 
limited applicability. To prove the theorem, we use an ele
mentary proof for the existence of the € --+ + ° limit of 
renormalized Feynman amplitudes, and we bound the re
sulting integrals in this limit by "similar Euclidean inte
grals." We then make use of our earlier results I already es
tablished in Euclidean space. We prove the vanishing 
property of the amplitudes in Minkowski space, in the distri
butional sense, when any subset of the underlying masses are 
scaled to infinity. We consider only nonzero masses. All the 
subtractions of renormalization are carried out at the origin 
of momentum space. The proof applies to theories with high
er spin fields and with derivative couplings as well. 

II. PROOF OF THE THEOREM 

The renormalized Feynman amplitUde (absolutely con
vergent for € > 0) may be written in the form 

FE(P,Il
I
,1l

2
) = 14" dK A (P,K,Ill, Il\UI D I-I, €>O, (I) 

where 

(2) 

QI = .I;"~ I ali p; + .I7~ I bli k;, P= (p~, ... ,p;");A is a po
lynomial in its arguments and, in general, the Ilj- I as well. 

-I Work supported by the Department of National Defence Award under 
CRAD No. 3610-637. 

Without loss of generality we take III = I Ill'"'' Ils J, 
112 = 11ls+ I , ... , ILL J, where the latter denotes the set of 
those masses we wish to scale to infinity. In terms of Feyn
man parameters (1) may be rewritten as6,7.5 

FE(P, Ill, 1l2) = 1 da N(a,P,IlI,1l2,€)[GE(a,P,IlI,1l2)] -I, 

(3) 

where 

GE(a,P,Il\1l2) = pUp +M2 - i€( p·Up +M2), (4) 

M2=Mi+ML 
s 

Mi = L a;1l7, 
;=1 

L 

M~ = L a;1l7, 
;=s+ 1 

U is a matrix rational in a, and continuous almost every
where inD, whereD = la = (al, ... ,aL ), a;>O, .If~ I a; 

(5) 

= I J. U may be extended6 to a continuous function every
where inDo N(a,P, Ill, 1l2,€) is rational ina, and is a polyno
mial in the elements in P, Il \ 112 in € and, in general, in the 
Ilj- I as well. t is some positive integer. 

We prove the following theorem: 
Theorem 

lim (lim TE(!;'TJ)) = 0, 
7]-00 £_+0 

where 

andf(P) E Y(R4m), 'TJ1l2 
= I 'TJlls+ I , .. ·,'TJIlL J. 

To prove the theorem we use the identity5 

[GE(a,P,Il I,1l2)] -1= -(p.Up+M2ft(t+ 1) f dAI 

X t dA [G,da ,P,Il\1l2)] -1-2 

J", 
+ (p·Up + M2)it(€ - 1) 

X [GI(a,P, Ill, 1l2)] -I-I 

+ [GI(a,P,Ill, 1l2)] -I, 
(6) 
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and substitute, in turn, the three expressions on the right
hand side of(6) for [G€] - 1 in (3). 

In general, A in (1) may be a polynomial in E:A = l:a (Et 
Aa. From the existence5

-
7 of the limit E ---'>- + 0 of T€(!;1J) 

with A in it replaced in turn by A a , we may without loss of 
generality suppose in the subsequent analysis that A is inde
pendent of E. 

We note 

p·Up +M2 < C , (7) 
IGI(a,P, pi, p2)11+ I [PE UPE + M2]' 

where Cis some positive constant, andpEUPE- p·Up 
+ pOUpo. Accordingly, when the second term on the right

hand side of (6) is substituted for [G€ ] - 1 in (3), we may 
bound the resulting integral in absolute value by 

C' 1 daIN(a,P, pi, p2,E) I [PEUPE +M2] -I. (8) 

In turn we may readily bound the integral in (8) by the 
expression 

C;; 1 da 14" dK IA (P,K,p\p2)i(tl aIDIE)-L 

= C" 14" dK IA (P,K,pl,p2)llII D ii: I « 00), (9) 

whereDIE = Q; + (Q~)2 + p;. The validity of the transition 
from (8) to (9) follows from the following analysis. By using 
the Lagrange interpolating formula, 8 we may introduce a 
finite number of distinct non vanishing values Et and write 

N (a,P, pi, p2,E) = L (E)a Na (a,P, pi, p2) 
a 

= L (Et L Ca (Et)N (a,P, pi, p2,En 
a 

Since 

N (a,P, pI, p2,E*)[ G€* (a,P, pI, p2)] - 1 

= C€. { dK A (P,K,pl,p2)(L aIDI€.)-L 
JRb I 

and 

IG£.(a,P,pl,p2)1/[ PEUPE + M2] <C;.' 

we may bound (E>O) 

IN(a,P,pl,p2,E)I[PEUPE +M2]-' 

«~ ~ (E)aICa(Et)IICEfIIC;rIIIC;'.I) 

X 14" dK IA (P,K,pl,p2)1 Ctl alDIE) -L. 

Upon integration of the latter on a, we obtain the bound in 
(9) for (8). Hence if we denote the resulting expression for 
F£ (P, pi, p2) when the second term on the right-hand side of 
(6) is substituted for [G£(a,P, pi, p2)] - 1 by F~) (P, pi, p2), 
we obtain (for all E>O): 

IF~)(P,p\p2)I<C" 14" dK IA (P'K,pl,p2)ll~\ D ii: \ (10) 

where 
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denotes a Euclidean version of F£ (P, pi, p2) in (1). The 
E ---'>- + 0 limit of F~) (P, pi, p2) (trivially) exists. Similarly 
when the third expression on the right-hand side of (6) is 
substituted for [G. ] - 1 in (3), and the resulting integral is 
denoted by F~) (P, pi, p2), we obtain for the latter the bound 
(for all 00) 

IF~)(P,pl,p2)I<C'" 14" dK IA (P,K,pl,p2)lli
l 
D ii: I, (12) 

and the limit E ---'>- + 0 of F~) (P, pi, p2) (trivially) exists. 
To handle the first term on the right-hand side of(6) we 

introduce7 a C(J ""-function X (x), 0< X(x)< 1, defined by 
X (x) = Oifx <j andx (x) = 1 ifx>~, and wesetx=poUpol 
( p·Up + M2). Accordingly, when the first term on the right
hand side of(6) is substituted for [G£ ] - 1 in (3), the resulting 
expression may be written as F~I) = F~li + FI)d, 

F~V(P,pl,p2) = - tIt + 1) ( da t dAI t dA N 
JD J~ );tl 

X (a,P, pi, p2,E)[ 1 - X(x)]( p.Up + M2f 

X [G,da ,P,pl,p2)] -1-2, 

F~~(P,pl,p2) = - tIt + 1) ( da t dAI t dA N In J£ )A
1 

X(a,P,pl,p2,E)X(X)( p.Up + M2)2 

X [G,da ,P,pl,p2)] -1-2. 

(13) 

(14) 

Due to the property of the function [1 - X (x)], we may use 
the following bound (~2=minj pi): 

[pUp +M2 - a (p.up +M2)1>[PUp +M21 

>j(p'UP + M 2
» ~2/3, 

in (13). Also by using the continuity property of U in D, we 
may use 

I 
p·Up +M2 I 

pUp + M2 - a (p.up + M2) 

,( I p·Up + M21 d + I PoUPo I 
"" pUp+M2 "" pUp+M2 

< [ 1 + C i~1 (:;1 (15) 

in (13), again due to the property of the function [1 - X (x)], 
where C is some positive constant and may be taken to be 
greater than one. Similarly we may also use the following 
bound in (13): 

I 
PEUPE +M2 1<[1 + 2C f (p;2]. (16) 

pUp +M2 - iA (p·Up +M2) i~1 ~ 

Accordingly, we may then derive the following bound for 
F~V (P, pi, p2) valid for all O<E< 1: 
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IF~V(P, JlI, Jl2)1 

[ 

m (p?f]'+2 
< 1 +2C L-2 

;=1 I!:. 

X If dAI f dAllL daIN(a,P, Jll, Jl2,€) I 

X [PEUPE +M2]-' 

<C(I)[ 1 + 2C ;tl (:rr+2 

XL,. dK IA (P,K,Jl I,Jl2)l
r
UI DiE I. (17) 

The € ---+ + 0 limit of F~I{ (P, JlI, Jl2) then follows by an ele
mentary application of the Lebesgue dominated conver
gence theorem. 

We now consider the integral F~~(P, Jll, Jl2) in (14). To 
this end we define 

n~(f)= -t(t+ 1) f dPf(P)i da t JR4m D JE 

XdA I II dA N(a,p, JlI, Jl2,€)(p.Up + M2)2 
A, 

XX(x)[G,da ,p,JlI,Jl2)] -'-2, (18) 

wheref(P) e Y(R4m). We also writeS
-

7 

N(a,P, JlI, Jl2,€) = L Nab (a,P, JlI, Jl2)(pO)aE', (11,) 
a,b 

L dalNab(a,p,JlI,Jl2)1 < 00. (20) 

We may then set 

Tt;dab(f) = - t (t + 1) f (p°),Y(P) i da 
JR'" D 

x t dAI II dA Nab (a,P, JlI,Jl2)(p.Up + M2)2 
J£ AI 

Xx(x) [GA(a,P, Jll, Jl2)] -'-2. (21) 

Using the identity 

[ 
m a ]'+ I 

X (PoUPo)-I.L p?-a ° 
1= I 'P; 

X [GA(a,p,JlI,Jl2)]-1 (22) (22) 

and the vanishing property off(p) at infinity together with 
all of its derivatives, we may integrate (21) by parts over P to 
rewrite the latter as (for € > 0) 

_ t(t+ 1) (J..)'+I f dPi da t dAIII dA 
(t + I)! 2 JR'" D JE A, 

X Nab (a,P, Jll, Jl2) [GA (a,P, JlI, Jl2)]-1 

X(p·Up+M2)2 {[.f aaoP? o~, 0]'+1 
1 = I 'P; P up 

X X(X)(pO)'l(P)}. (23) 
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The expression in the curly brackets may be rewritten as a 
finite sumS

•
7 

1 ,,; ( ° a)h ; (P) (24) 
( ° 0)' + I ..:::., X a P ,x, a , P Up ; 

wherethex ~ (pO ,x,a) maybe bounded by a polynomial inpo 
independent of a, and h ~(P) e Y(JR4m ). To take the limit 
€ ---+ + 0 of (23), we use in it the bounds 

lPoUpol-'«4V(PE UPE +M 2)-', (25) 

IPOUpOI-I<3/[p.Up + M2] (26) 

[recall the definition of X (x)], and hence 

I (pO UpO) - I( pO UpO) - , I 

<A (p.Up +M2)-I(PEUPE +M2)-', (27) 

whl~re PE UPE=P'Up + pOUpo. Also we may bound 

IGA(a,P, JlI, Jl2)1-1< 1/A (p.Up + M2). (28) 

Accordingly we may bound (23) in absolute value by 

C L, .. dP2; lii~(P)11 f dAI f ~ I 
i 

d 
lNab(a,P,JlI,Jl2)1 ( ) 

X a 2 <00, 
D [PEUPE +M ]' 

(29) 

and the latter exists for all O<€< 1, where C is some positive 
constant. The existence of the € ---+ + 0 limit of (23) then 
follows by an application of the Lebesgue dominated conver
gence theorem. Note that all of our analysis holds true 
whether Jl2 is scaled by a parameter "I> 1 or not. 

All told we then have 

where 

= T~{ (/;"1) + T~d (/;"1) + T~)(/;TJ) 
+ T~)(/;TJ), 

(30) 

T~{(/;TJ) = - tIt + 1) f dP f(P) f da t dAI II dA 
JR'" JD Jo A, 

XN(a,P,JlI, TJJl 2,0j[ 1 - xIx)] 

X (p.Up + M i + "12M ~ f 
X [GA(a,P,JlI, TJJl2)] -'-2, 

T~d(/;TJ) = -~ L f dP f da t dAI II dA 
(t - I)! a JR'" JD Jo A, 

XNaO(a, P, JlI, "I Jl2) 

X [GA (a,P, JlI, "I Jl2)]-1 

X( p·Up + Mi + TJ2M~)2 

{[ 
mal ]'+ I } X .L -a op? OTT ° X(x)(po)a f(P) , 

1= I 'P; P up 
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We also have the bound 

I Tgl(/;7]) + Tb2)(/;7]) + T~)(/;7])1 

<C1 14m dP If( P)I 14n dK 

L 

X IA (P,K,It I
, 7] ItZ)1 II D iIi;, (35) 

l~ 1 

f(P) E Y(R4m) 

where 

D iIi7l1 = Q; + (Q?)Z + C11t;, (36) 

{

I, 1= 1, ... ,s, } 
c1 = 

7]2, 1= s + 1, ... ,L, 
(37) 

and C1 is some positive constant. On the other hand we have 
from (29), 

I Tgd (/; 7]) I <C2 ~ 14m dP Iha (P) I 

XL daINao(a,P,It I
, 7] 1t2

)1 

X[PEUPE+Mi +7]ZM2]-t 

for some positive constant Cz, and ha(P) = ~i Iii ~(P)I 
EY(R4m). 

(38) 

On the other hand we may use the generalized La
grange interpolating formula6

•
8 and introduce distinct finite 

values P~t' for pO and write 

N aD (a,P, It 1, 7] ItZ) 

= I N (a,p,P~t" It 1, 7] ItZ)Aa(P~t')' (39) 
t' 

where the coefficients Aa (P ~t' ) are finite. We also use the 
continuity property of U in D to derive the bound 

I P~t' UP~t' +p.Up+Mi + 7]2M~ I 
pOUpo + p·Up + Mi + 7]2M~ 

m ( ° )2 
<1 +c' I P*t~i , 

i~1 I:!:. 

and the property of ha (P) to write 

Iha(P)I<Cla)[ 1 + C i~1 (p?f + C i~1 P7] -N, 

X [ 1 + C i~1 (p?)2 + C i~1 p; ] -N, 

(40) 

<Cla)[ 1 + C i~1 (P?)2] -N'[ 1 + C i~1 P7] -N, (41) 

for c> 0; and arbitrary positive integers NI and N2 which 
may be chosen as large as we please. We may then bound 
Tgd(f; 7]) in absolute value as 
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I Tgd(/;7])1 <C2 ~ Cla).f IAa(P~t') [1 + c' i~1 (P!~'i)T 

XlmdPo[l+cI(P?)2]-N, (42) 

X 13m d P [ 1 + C I P7] - N, L da 

X IN(a,P, P~t"ltl, 7] 1t2)1 

X [p.Up + P~t' UP~t' +Mi + 7]2Mn-t 

<C" ~ Cia) .f IAa( P~t,)1 [ 1 + c' i~1 (P!~'i)T 

X L3mdP[I+ci~IP7]-N' 

X 14n dK IA ( p,P~t' ,K, It 1, 7] 1t
2)llII D 7£;; 1 

(43) 

for NI sufficiently large, and where D 7£71 is identical to D1E7I 
with pO in the latter replaced by P~t'; C" is some positive 
constant. 

From (30), (35), and (43) we note that we have reduced 
our analysis}o one in Euclidean space and the vanishing 
property of To(/; 7]) for 7] -- 00 is then readily established 
from our earlier analysis. 1 To this end we consider first the 
integral 

14m dP If( P)I [ L4n dK IA (P,K, It I, 1t2)1 i( D iE7II] , (44) 

appearing on the right-hand side of (35), and use the well
known property9.10 ofthe following integral as a function of 
Pandltl,1t2: 

14n dK IA (P,K,It
I
,1t

2
)1/[l1 D iE7II. (45) 

For any P the integral in (45) is rigorously bounded by 7]-1 

times a polynomial in In 7] for 7] __ 00.
1 Quite generally we 

may repeat word for word the induction proof in Ref. 9 by 
applying in the process the Heine-Borel covering theorem 
for the P integral in (44) and investigate the property of the 
integral in (44) for 7] -- 00. To this end we know 1.9,10 that the 
integral in (45) may be bounded by a constant times 7] - 1 and 
some powers of the elements in P times arbitrary powers of 
the logarithm of these variables as well for 7] -- 00 and any of 
the elements in P large enough. Due to the very welcome 
property off(P) E Y(R4m) appearing in the P integrand in 
(44), the power counting criterion9 is trivially satisfied for the 
Pintegral in (44), and we may then find a constant b > 1 and a 
constant H> 0 such that for 7]>b the integral in (44) may be 
bounded above as 

14m dP If(P) I 14n dK IA (P,K, It I, 7] It 2) I ;[11 D lE~ 

< H X [polynomial in In 7]], 
7] 

7]>b,H>O. 

(46) 

We may repeat the above reasoning for each of the t ' 
terms in (43) for the P integral withp~t' fixed, and choos.ethe 
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positive integer N2 in (43) sufficiently large to conclude that 
we may find constants b

" 
> 1 such thae for TJ>b

"
, 

13m d P [ 1 + cit! p? ] - N, 1.n dK 

L 

X IA (P,P~",K,,u!, TJ ,u2)1 II D'IE;;! 
1= ! 

HI' <;-x [polynomialinlnTJ]' TJ>b", HI' >0. (47) 
TJ 

The proof of the theorem is then completed by taking the 
limit TJ -+ 00 in (46) and (47) and carrying out the finite sums 
over t' and a in (43). It is interesting to note that the upper 
bound rate of decrease in (46) and (47) is as for the situation in 
Euclidean space, ! 
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On the relation between complex manifolds and soliton theoretic 
constructions for self-dual fields 

Jurgen Burzlaff8),b) and J, E. M, HornosC),d) 
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We study the relation between the Atiyah-Drinfeld-Hitchin-Manin construction for self-dual 
fields, Ward's twistor method, and the Belavin-Zakharov and Forgacs-Horvath-Palla soliton 
theoretic methods. Starting from the vector spaces, in terms of which the Atiyah-Drinfeld
Hitchin-Manin construction is formulated, we calculate the transition matrices, in terms of 
which the twistor method is formulated, for the Belavin-Polyakov-Schwartz-Tyupkin instanton 
and the Prasad-Sommerfield monopole explicitly. Given the transition matrices, we show how to 
solve the inverse scattering problem a la Belavin-Zakharov and Forgacs-Horvath-Palla, 
respectively. 

PACS numbers: 11.15. - q 

1. INTRODUCTION 

In recent years different methods have been successful
ly applied to construct self-dual gauge fields, Atiyah, Hit
chin, Drinfeld, and Manin I (ADHM) solved the instanton 
problem for Euclidean Yang-Mills theory, in the sense that 
they reduced the self-duality equations to purely algebraic 
conditions. Using Ward's twistor method2 and an inverse 
scattering method, respectively, Corrigan and Goddard3 

and Forgacs, Horvath, and Palla4 have found static SU(2) 
Yang-Mills-Higgs n monopole solutions in the limit ofvan
ishing Higgs potential with the maximal number of degrees 
of freedom. The question of regularity, which remains un
answered in the latter two approaches, could be more easily 
decided with the method of Nahm5 who adapts the ADHM 
construction for instantons to monopoles. Nahm's method, 
on the other hand, does not yield explicit formulas for the 
gauge potentials. 

It is, therefore, of interest to understand the relation 
between these methods. A better understanding of the con
nections might even help to solve the main open problem 
which is the proof of regularity of the monopole solutions. A 
first step in establishing the connection between the ADHM 
and the twistor scheme was taken by Osborn6 who showed 
how to construct, in principle, certain vector spaces corre
sponding to self-dual fields and from these vector spaces, 
covariantly constant fields on anti-self-dual planes. For the 't 
Hooft and the Witten-Peng solutions, Osborn constructed 
the vector spaces explicitly. 

In this paper we construct the covariantly constant 
fields on anti-self-dual planes explicitly for the Belavin-Po
lyakov-Schwartz-Tyupkin (BPST) instanton7 and the Pra
sad-Sommerfield (PS) monopole. 8 From these fields we cal
culate the corresponding transition matrices and show how 
they lead to a linear system associated with the nonlinear 
self-duality equations. In this way we arrive at the soliton 
theoretic results of Belavin and Zakharov9 for the BPST in-

alMax Kade Foundation Fellow. 
bl Address after October 1982: Dublin Institute for Advanced Studies. 
c) Supported in part by CNPq Brazil. 
dl Permanent address: Instituto de Fisica e Quimica de S. Carlos, CP 369, S. 

Carlos (SP). Brazil CEP 06514. 

stanton and ofForgacs, Horvath, and Palla4 for the PS mon
opole. 

Thus starting from the ADHM method, we reproduce 
the solution to the inverse scattering problem via the twistor 
theoretic construction. 

2. GENERAL FORMALISM 

Following Ref. 6, we consider self-dual fields 

Fpv =F!v = !EpvpuFpu, jl,v, ... = 1,2,3,4, (2.1) 

where 

(2.2) 

holds with AI' an element of the Lie algebra of the gauge 
group G. For self-dual fields, the linear equations 

Daa, ¢a' = 0, a,a' = 1,2, 

Daa, = (Dpep)aa" Dp = Jp +Ap' (2.3) 

e = (iu,1 2 ), e = ( - iu,1 2 ), 

and 

(2.4) 

are consistent and their solutions span linear spaces. For 
G = SU(N) and topological quantum number n there are n 
linearly independent solutions t/f" and 2n + N linearly inde
pendent solutions fl. 

Given these solutions it is possible to construct covar
iantly constant fields on anti-self-dual planes So which are 
defined by homogeneous coordinates () = (17a ,Xa') and the 
conditions 

In fact, OJ = flu with u satisfying 

1/P'(a,a17a + b /3' X/3')u = 0, 

(2.5) 

(2.6) 

is covariantly constant on the anti-self-dual plane So. That 
means 

(2.7) 

holds for the two tangent vectors n, to the anti-self-dual 
plane. 
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Having found the above covariantly constant fields ac
cording to Ref. 6, we can calculate the transition matrix us
ing the formulas of Corrigan et al. 10 To this end we cover the 
space of anti-self-dual planes by two coordinate patches 

I _ (x 117]1 0) 
x{) - X 217]1 0' 7]1 =1-0, 

2 _ (0 X 117]2) 
x{) - ° X 217]2 ' 

Then the equation 

W/(X~) =gw/(x~), 

(2.8) 

(2.9) 

defines the transition matrixg, which depends on; = 7]117]2' 
V = iX 1/7J2' and J-l = ix 217]2 if wt(x) is homogeneous in e. 

From g we can extract the gauge potentials explicitly if 
it is possible to split g or any equivalent g in the following 
way: 

g[,u = i(X21; + X22 ), v = i(x ll + xl2; -I),;] 

= g(x,; ) = h -I(x,;)k (x,; ), (2.10) 

where h is a Taylor series in; -I and k is a Taylor series in ; 
and det h = det k = 1 holds. An equivalent transition ma
trix can be defined by 

g = AgE', (2.11) 

where A (fl, v,; ) = A (x,;) is a Taylor series in ; -I, and 
E (fl, v,;) = E (x,;) is a Taylor series in ; with det A 
= detE= 1. 

Now g can be split in the sense ofEq. (2.10) if g is of the 
special triangular form 

(2.12) 

with a Laurent series pix,; ) = p(fl, v,; ). The potentials are in 
this case explicitly given by the equations 

Aa,! - ;Aa'2 = - (Ja,! k - ;Ja'2k)k -I. (2.13) 

This completes the description of the twistor method. 
The pair of Eq. (2.13) is nothing but a linear system 

associated with the nonlinear self-duality equations since the 
consistency condition between them is the self-duality con
dition. Looked at in this way, Ward's twistor method which 
codes the self-dual fields in terms of the transition matrix g is 
a way to solve the inverse scattering problem. It yields k 's for 
which the right-hand side of Eq. (2.13) is linear in ; and, 
therefore, allows the construction of the ;-independent Aa'a 
in terms ofthese k 'so The consistency condition then guaran
tees that this construction leads to self-dual fields. 

3. THE BELAVIN-POL YAKOV-SCHWARTZ-TYUPKIN 
INSTANTON 

For the 't Hooft 1 instanton potential, 

AJl = WJle" - 8Jl" l z)a" In tP 

with 

1525 J. Math. Phys., Vol. 25, No.5, May 1984 

(3.1) 

(3.2) 

the vector spaces defined by (2.3) and (2.4) are explicitly giv
en by6 

{3' - 1/2 1 IZ 
€a'{3'tPia =tPiaa' =tP Jaa·(l/tP X-Yi ), (3.3) 

~1a'€{3a =Jijaa' =t5ij(X-Yi)aa' 

- t50j (A ~/A ~)(X - YO)aa" (3.4) 

{Jiaa' = tP -1I2(X - Yi )aa./lx - Yi 1
2

, i,j = 0,1. (3.5) 

For Yo = (0, AD) in the limit ,,10- 00, the 't Hooft 1 instanton 
solution reduces to the BPST instanton with A = A I and 

Y=Yl' 
It is straightforward to check that Eqs. (2.3) and (2.4) 

which, with all indices displayed, read 

(DJl fa tpi{3a' (eJl )a'Y = 0, (3.6) 

(DJl fa{Ji{3a' = - ~tpja{3,(eJlf'{3J Ji/3a' , (3.7) 

are satisfied by the functions (3.2)-(3.4). Equation (2.6) im
plies the equation 

j 2{,p' a'a ) {3'j - ° €a'{3'€ij/t- i\,.{ - Yj 7]a V -, (3.8) 

which holds for 

vf'o = (l/7J!)(X a' - y~'a7Ja)' vf'! = 0, (3.9) 

and 

(3.10) 
vi! - (A i 1Ao7J 1)(¥2 - Y6a7]a)' V~i = 0. 

We have constructed two fields Wal = {Jiaa·vf\1 = 1,2, 
which are covariantly constant on the anti-self-dual plane 
So. For Yo = (0, ,,10)' Al = A, Yi = Y these fields read 

(3.11) 

(x - Y)ll) 
Ix-YI 2 

(3.12) 

in the limit ,,10-00. 

Given WI and W2' we obtain the transition matrix g de
fined by Eq. (2.9) in terms of A, E', and g according to Eq. 
(2.11) as 

with 

A _ ( i#t 
(il#t);-I 

E' = (- (iI/f;); 
- il/f; 

- (; p ) 
g= ° ;-1 

(3.13) 

(3.14) 

(3.151 

p = I + A V/lx~ - YI2 Ix~ - y1 2
, tPm = tP (x;;'). 

(3.16) 

The reality condition is satisfied by g, 

..t:';At-) t( A A ;;:-1) 
.s11"'V'~ = g - v, - J-l, - ~ (3.17) 

for realxJl andYJl and the equivalentgis of the special trian-
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(3.18) 

(3.19) 

(3.20) 

with 

Po= 1 +"t2/Ix_YI2 

hold. A gauge transformation 

with 

k_k' = Tk, h-h' = Th 

1 ((X _ y)22 

T= Ix-yl (X_y)12 
(X _ y)21) 
(X_y)11 

(3.21) 

(3.22) 

(3.23) 

puts the gauge potentials into the familiar form of Ref. 7, 

A 'a'a = - ((x - y)2/((x - y)2 +"t 2))(aa'aT)r ~I. 
(3.24) 

We now look at the BPST instanton in the soliton theoretic context. We have found that Tk, with the T of Eq. (3.23) and 
the k of Eq. (3.20), solves the inverse scattering problem of Eq. (2.13) for the potentials (3.24). So does, of course, then any 
F= TkK(jt,v,;). For"t = 2 and 

1 (.A r ~I + 21 22r ~1) 2Yll ) --4 1#", Y +y '" - 2 '21Ar .llA 
y -IY V'" + ly # 

~(I:U + y21; + y22) , 
2 

(3.25) 

Freads 

F = uI - ;tA - ; -1A t (3.26) 

with 

u= 
Ix - Yl2 + 8 _ Ix _ Yl2 

4(lx - Yl2 + 4)1/2 ' f - 4(lx _ Yl2 + 4)1/2 ' 

(3.27) 

1 ( - (x ll _ yll)(X21 _ y21) (X21 _ y21)2 ) 
A = Ix _ yl2 _ (XII _ yll)2 (Xii _ yll)(X21 _ y21) . 

This is the solution to the inverse scattering problem for the BPST instanton by Belavin and Zakharov9 which we have 
recovered from our formulation in terms ofthe transition matrix (3.15). 

4. THE PRASAD-SOMMERFIELD MONOPOLE 

The gauge potentials for the PS monopole can be writ
ten in the form (3.1). 

c/J = (l/r)sinh (r)e i
' (4.1) 

holds in this case. The vector spaces defined by (2.3) and (2.4) 
are spanned by6 

with 

¢aa' = 1> 1I2aaa,lplc/J), (4.2) 
- ... 
..:1 'aa' = - iar8aa· - Xaa, , 

flaa' = c/J -1I2(eirX )aa' 

p = - (i/r)sinh (yr)e iyt
. 

(4.3) 

(4.4) 

(4.5) 

With fl given, the gauge potentials can be reconstructed 
using the formula 

AI' = LdY fl (x,l - y)al'fl C(x,y), (4.6) 

where 

(4.7) 
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I 
holds in our case. It is true, in general, that given the linear 
spaces explicitly, the gauge potentials can be calculated ex
plicitly. Thus the purpose of going from the Eqs. (4.2), (4.3), 
and (4.4) in the ADHM scheme to the transition matrix for 
the twistor construction cannot be to find the gauge poten
tials. The purpose is to yield a better understanding of the 
relation between these schemes which might be helpful be
cause in general the linear spaces are not given explicitly in 
the ADHM or in the ADHM-Nahm construction. 

It is, therefore, instructive to continue and calculate the 
fields 

{j)a = (dy flaa• v"' , 
Jo 

(4.8) 

which are covariantly constant on anti-self-dual planes if v 
satisfies Eq. (2.6). Equation (2.6) leads to the condition 

. a a a' a' (3' 0 lca,'Tf" yV - ca '(3'X V = (4.9) 

which admits the two solutions 

VI = CXP( - ~YXl/'Tfl) , (4.10) 
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(4.11) 

From the covariantly constant fields (4.8), we can again 
calculate the transition matrix g using (4.10), (4.11), and de
finition (2.9). The result of this calculation is g = A -lgE -I, 
with 

( 
(2(1 - e'VVJ1 /2 0) 

A = _ (v/2(1 _ e'W/2; -I (v/2(1 _ e'W /2 ,(4.12) 

E = ( - (jL12(1 - eI'))1/2; (2(1 - eI')ljl) I 12) 
_ (jL12(1 _ eI'))1/2 0 ' (4.13) 

and 

2(eI' - eV 1(jL - v)) 
;-1 . (4.14) 

We have recovered the transition matrix for the PS mono
pole. 11 

The discussion of the soliton theoretic description of the 
PS monopole proceeds along similar lines as the correspond
ing discussion for the instanton. Given the transition matrix 
g, k and h from Eq. (2.10) yield solutions to the inverse scat
tering problem of Eq. (2.13). This is true particularly in the 
gauge defined by Aa '2 = 0, i.e., for h '(; -I = 0) = rh = 1, 
k' = rk. In this gauge, Forgacs, Horvath, and Palla4 have 
given a solution to the same inverse scattering problem. 

1527 J. Math, Phys" Vol. 25, No.5, May 1984 

Their solution, therefore, differs from k ' by a matrix which 
only depends on jl, v, and;. This holds true not only for the 
PS monopole but for the whole 4n - 1 parameter family of n 
monopole solutions found in Ref. 3 and Ref. 4. 
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We study a model of scalar fields in four dimensions which has been introduced previously as a 
representation of gauge vectors in terms of scalar fields. We argue that conventional weak 
coupling constant perturbation theory is not renormalizable; however, strong coupling expansion 
based on the lattice formulation is specially well suited to the model. 

PACS numbers: 11.15.Ha 

The scalar field model we are going to consider has been 
introduced as a representation of gauge vectors in terms of 
composite scalar fields. 1-3 The model can be viewed too as a 
generalization of two-dimensional sigma models to four-di
mensional space-time. 

First we introduce the model and discuss its various 
classical aspects. It is defined at the classical level as a para
metrization of gauge vectors in terms of scalar fields as 
AI' = V + (x)JI' V(x); V+ V = IN, where V(x) is a rectangular 
matrix of K X N (K> N) size of complex scalar fields. The 
constraint V + V = I is needed to obtain the usual local gauge 
transformation, V' = VU + and A ~ = UAI' U + + UU +,1' . 

The explicit form of F!l' (V, V +) is rather cumbersome; 
however, there is a simple and important parametrization in 
terms ofproyector matrices P(X),4 PIx) = V(x)V+(x) from 
which we get 

F/1v = V+ [J/1P,JvP] V, 

and (I) 

Tr(F!v) = Tr!P [J/1P,JvP] j2. 

The matrices PIx) satisfy P + = P, Tr P = N and they 
are invariant under the local group transformation, 
P '(x) = P (x). It can be conversely shown that taking P as an 
independent variable subject to the constraints P + = P, 
P 2 = P, and Tr P = N, then we have P = V V + and 
V + V = I (N X N), The invarianceofP (x) under gauge trans
formations shows that beside F!v' there are more gauge in
variant terms that could be added to a Lagrangian. 

The case of the abelian group U( 1) is given by 
A/1 = C:(x)Ca,/1' C:Ca = 1. The Lagrangian becomes 

F!v = (Ca,/1C~v - C:/1Ca,v)2, (2) 

where we have identified Val (x) I N = I = Ca (x), a = 1, ... ,K. 
We want to show the equivalence of the previous repre

sentation with the proyector formalism and that there is a 
well-defined Hamiltonian. Using the basis of the 2 X 2 Her
mitian matrices, we have P = IpoI2 + Sa Pa' a = 1,2,3 
(sa = (Fa 12), where the conditions on the proyectors imply 
that Po = 1, p~ = 1. Thus we find 

F2 __ I( 2 2 _ ( )2) 
/1l' - 4 P,/1 p,l' P,I' p,l' . (3) 

Now we can check that the following form of AI' gives 
the same Lagrangian: 

alSupported in part by NSF grant PHY·78-24888 and CUNY Faculty Re
search Award 13956, 

This last form of A/1 can be derived also in terms of 
Ca (x) (a = 1,2) if we fix a gauge such that C I = P3 and 
C2=(PI +1J12)(1 +P3)-1/2. 

(4) 

In order to get a well-defined Hamiltonian, we solve 
explicitly the remaining constraints p~ = 1, using spherical 
coordinates, P = (sin 0 cos cP, sin 0 sin cp, cos 0). In terms of 
the angular variables we find 

F!v = - 1W/1 cP,l' - O,v cp,v)2 sin2 0 

and (5) 

AI' = -! i(1 - cos O)cp,/1' 

This last form of F!v allows an explicit calculation of 
the Hamiltonian. Note that the Lagrangian contains, at 
most, quadratic powers of the temporal derivative. In fact, 
the canonical momenta are well defined, from where the Ha
miltonian is given by 

H = (1T())T.l:i.....( cP ~ - O:CP,i) - 1 (1T()) 
1T '" sin

2 0 - O,iCP,i O,i 1T '" 
- 1..2 (0 i A. J - 0 J' cP i)2 sin2 O. (6) 

16~ , '1', " 

In general any proyector of size K X N could be used to 
represent a theory locally invariant under U(N) or SU (N). 
However, the explicit algebraic solution of the independent 
scalar fields of such a general proyector is quite a difficult 
task and for us is unknown if this general solution has been 
found, Instead we have chosen a case where the proyector 
space has the attractive feature of containing the same num
ber of independent variables associated with the canonical 
U(N) gauge vector model, namely 2N 2 independent compo
nents. This situation arises from considering a proyector of 
2N X 2N size to represent a U(N) locally invariant model. 

We already have shown the validity of this statement 
for the case ofU(I) and next it will be shown for the U(2) 
group. It can be shown from general arguments based on the 
unitary gauge fixing and separately on the algebra of proyec
tors, that proyectors of2N X 2N size that represent U(N) lo
cal invariance have only 2N 2 degrees of freedom. 

To study the nonabelian U(2) case using proyectors of 
·4 X 4 dimension is useful to work in the base of Hermitian 
matrices, where the proyector acquires the following form: 

P = (( 1 + t)(1 /2) + xa 
l' 

zO(I/2) + za sa 
F (/12) + za o 

sa ) 
(1_t)(I/2)+ya sa . 

(7) 
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The conditions derived from P 2 = P are satisfied by the fol
lowing solutions, with t =1= 0, 

x" = - (1I2t)(F z" + zOz"· + w· Zb Echo)' 

(8) 
)( o· -" 0-,,· . c· b ) 

ya = + (1I2t z £. + z £. - lZ Z Ecba' 

and the condition t 2 + x 2 + I~ 12 = 1, K = 0,1,2,3. 

At this point we have solved all the constraints associat
ed to the P 2 = P condition, and we still have the eight inde
pendent variables contained in ~ , which is the number of 
variables that corresponds exactly to the number of indepen
dent variables ofV(2) Yang-Mills gauge theory after fixing 
gauge. There are solutions with fewer independent variables. 
For example, we can establish the relation between this gen
eral solution and the particular solution given by Kafiev3 for 
the SV(2) group. That solution has four independent varia
bles, which correspond to t = - ¢J s, ZO = ¢J 4, z" = - i¢Ja, 
and ¢JA ¢JA = 1, A = 1, ... ,5. Further details related to the 
model resulting from this particular solution are given in the 
same reference. For completeness we give here the resulting 
Lagrangian, known as the Skyrme's model: 

- 4g2L =F~y 
= - C[(JJ1¢JA )2(Jy¢JB)2 - (JJ1¢JAJy¢JB)2], 

A = 1, ... ,n. (9) 

As we have seen previously, Skyrme's model is an im
portant special case for the V( 1) group if n = 3, C = ! and for 
the SV(2) group if n = 5, C = !. 

Next, we present some general remarks to show the 
problems related with renormalizability that we have found 
in the attempt to perform the weak coupling constant expan
sion of the Skyrme's model, which is a particular case of the 
class of models under consideration, though, these types of 
difficulties should be encountered in the general case as ~ll. 
We devote the final part to the lattice formulation of the 
Skyrme model. Our main goal there is to show that the 
strong coupling constant expansion of the generating func
tional is well defined in the sense of not containing divergent 
terms. The first significant term of the expansion is calculat
ed and is compared with the corresponding term of Wilson's 
model. 

To study the quantum properties of the model in the 
small coupling constant regime taking ¢JA as field variables, 
we would need a term like the conventional kinetic energy 
for the free scalar field, to take it as the unperturbed Hamil
tonian. Changing variables ¢A = ¢JA (pB), we can indeed 
generate a term ofthe type JJ1pA ayPB M~~, whereM~~ are 
constants; for example, shifting the variables as ¢JA = ¢ g(x) 
+ gpA (x), where ¢J g is a classical solution of the model. 
However, as we can see immediately, the model contains 
interactions of the type (ap)4, which are the very typical 
structures of the Lagrangian. Therefore, after changing var
iables we have the Lagrangian terms of type (ap)2, and 
!f(ap)4. Considering the canonical dimensions of p, the inter
action (ap)4 acquires a dimension (length)-8 which will be in 
conflict with the conventional criterion ofrenormalizability. 
This criterion is based on the fact that all known renormali
zable models in four dimensions only contain interactions 
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with canonical dimensions of (length) - a ,a<4. Moreover, if 
we try to eliminate the constraint ¢ 2 = 1 to obtain the inde
pendent field variables, we would necessarily get interac
tions which contain all power of the fields. These types of 
interactions are known to be nonrenormalizable since only 
up to the fourth power of a scalar field is acceptable in four 
dimensions to get a renormalizable model. 

However, the strong coupling constant expansion in the 
lattice formulation is very well suited to the model since it is 
finite term by term. The lattice formulationS is done in Eu
clidean space that is considered as the analytical continu
ation of Minkowski space. In analogy with statistical me
chanics, the generating functional is defined as 

Z = f D¢J exp( - (Jc(¢J )), 

where c = f L (Euclidean). 

(10) 

Next we consider the usual hypercubicallattice with N 
sites. The derivatives are replaced by finite differences of 
variables located at neighbor sites. 

a ¢J (x) = lima-.o(1la)[ ¢ (Xk - aJ1) - ¢J (xk) ]_(lIa) 
J1 (11) X(¢Jk+J1-¢Jk)' 

where a is the lattice spacing. Therefore, the lattice action is 
given by 

where 

L(aJ1 ¢~))-Lk =L(¢i+ J1 -¢Ji). (12) 

The cancellation of the lattice spacing parameter in four 
dimensions and the condition (¢ i ) 2 = 1 will guarantee the 
finiteness of the strong coupling constant expansion. The 
generating functional acquires the form 

Z = f )JI d¢Jk 8« ¢J i)2 - 1 )exP((J k~1 Lk). (13) 

A very important quantity that can be evaluated in the 
limit of N-oo (a-o) is thefree energy that is defineds in 
analogy with statistical mechanics theory by 
F = limN~oo (liN )In Z, from where all the statistical quanti
ties can be derived as for example the average energy 
E=aFla(J. 

The power expansion in (J = c14!f can be given system
atically with the use ofthe usual partial derivative technique; 

where Zo(j) = ((nI2) - 1)!In/2 _ 1 (j);il - (nl2)). 1m (x) is the 
modified Bessel function andj = (r r )1/2. Some additional 
formulas as well as the diagram technique can be found in 
Ref. 5. Note that the first term of the expansion which is 
proportional to (J can always be eliminated by adding an 
appropriate constant to the lattice action. Therefore, the first 
significant term of the expansion is proportional to (J 2 and 
the free energy up to this approximation is given by 

F=(J26(52/n + 268/n2 + 391n(n + 2)). (15) 

Now we want to compare with Wilson'ss formulation, 
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which up to the same order isFu(l) = 1.5/g4andFsuI2) = 3/ 
g4. In the Skyrme's model6 we would have for U( 1), P = 11 
8g2, n = 3, and for SU(2), p = 112g2, n = 5, from which we 
get FU(l) = 3.1(1.5/g4) and F SU(2) = 11.1(3/g4). 

As we can see, there is not agreement in the numerical 
factors; however, this comparison cannot be taken as final. 
To make a formal comparison between the type of model we 
have considered and the conventional gauge invariant model 
we have to take into account other terms that have been 
neglected up to now, as for example, the determinant coming 
from the variables change from AI' (x) to P (x), which may 
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modify the functional measure. This last problem is under 
investigation. 
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We investigate the most general local gauge invariant Lagrangian in the framework of classical 
field theory. We rederive essentially Utiyama's result. Our proof makes clear the importance of 
the so-called current condition. i.e .• the requirement that the Noether currents are not identically 
zero. This condition is of importance both in the general motivation for the introduction of the 
Yang-Mills fields and for the actual proof. Some comments are made about the basic 
mathematical structure of the problem-the gauge group. 

PACS numbers: 11.l5.Kc 

1. INTRODUCTION 

In recent years there has been increasing evidence that 
gauge theories l

,2 are a serious candidate for a unified theory 
of elementary particles. These theories rely on the so-called 
gauge principle which asserts that the invariance of the the
ory must be a local rather than a global one. This hypothesis 
strongly restricts the type of possible interactions between 
the elementary fields. The only paper which investigates the 
most general Lagrangian (in the framework of classical field 
theory) which satisfies the gauge principle is. to our know
ledge. that of Utiyama. 3 

In this paper we want to give an alternative proof to that 
of Uti yam a using the theory of first-order partial differential 
equations. The necessity of giving a new proof stems from 
two factors. Firstly, Utiyama's proof although essentially 
correct is based on some redundant suppositions. Secondly. 
one of the basic. although not explicitly stated assumptions 
of Ref. 3 is that the introduction of gauge fields is a necessary 
ingredient for realizing a local gauge invariance. This as
sumption is not true because one can construct Lagrangians 
with local gauge invariance but without gauge fields. 4 The 
peculiarity of these Lagrangians is that the Noether currents 
are identically zero. so a basic motivation for the introduc
tion of gauge fields is. besides the local gauge invariance, the 
requirement that these currents are not zero.5 Our proof ex
hibits clearly that this condition. beside its role in the general 
motivation, is very important in the elaboration of the proof. 

Let us state our main result. Given a simple Lie group G 
with n parameters. we define the so-called gauge group 

G = (g:Rd~G IgE'G'OO(Rd)J. 

Weare looking for the most general Lagrangian 

2'~.x.:"AJ.A~) A = 1, .... N; 

J = 1 .... ,M; f.l = O, .... d - 1 

which is invariant under the transformation 

~~X'A =~ +t5~, t5~ =si(T;)ABXB, 

A J~A ,J =A J + t5A J. t5A J = Si(Ui)JKA K + CJ,l-'is:1-' 

and satisfies the current condition. 

Following the terminology of Pauli6 we call the first 
transformation a gauge transformation of the first kind, and 
the second transformation a gauge transformation of the sec
ond kind. We want these transformations to be the infinitesi
mal form of some representation of the gauge group G acting 
on X's and A 's, respectively. (s's are the infinitesimal x-de
pendent parameters.) Imposing some natural requirements 
that 2' depends nontrivially on A's, and the gauge transfor
mation of the second kind is also nontrivial (these conditions 
will be formulated more clearly in Sec. 3) we find that the 
most general Lagrangian is of the following form: 
2' = 2"~, x;:,. F~v) and satisfies the relation (3.54). 
Here x;:, x! - A ~ (Ti)A pr and 
F k _Ak Ak + qkAiAj (Ai l' 

I-'V= I-',V - V,I-' 0.7 ij I-' v' I-' are some mearcom-
binations of the original A 's with the transformation law 
t5A ~ = 5 i.'7~jA ~ + 5 ~ . .'7 7jare the structure constants of 
the group G. and summation over the dummy indices is 
used.) The result can be generalized to a direct product 
between a semisimple and an abelian group. 

In Ref. 3. the same result is derived in two particular 
situations. 

A. 2' = 2'~.x.:,,A J). 

Our proof shows that the supposition that M = dn and 
the matrix C of elements CJ,I-'i is invertible. are not neces
sary. 

B. 2' = 2'(A J,A ~). 

The assumption that theA 's are a linear combination of 
the Yang-Mills potentials A ~ with the transformation law 
stated above. is not necessary. 

Our proof does not exclude a priori. terms of Pauli type 
XFX. and does not suppose that we have some additional 
invariance. like Poincare invariance. If this condition is im
posed. we prove that A ~ is a cuadrivector (for d = 4). 

The paper is organized as follows. In Sec. 2. we give a 
brief account on the theory of first-order partial differential 
equations. and we illustrate the method with the example of 
a global invariant Lagrangian. In Sec. 3. we derive our main 
result. i.e .• the most general form of a Lagrangian with a 
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local invariance. In Sec. 4, we try to exploit more completely 
the group structure of the theory. In Sec. 5, we draw some 
conclusions. Two lemmas are proved in the Appendix. 

2. THE CASE OF A GLOBAL INVARIANCE 

(a). First we give some details on the theory of first
order partial differential equations.7 We consider the homo
geneous system of equations 

(2.1) 

where'? is an unknown function of the independent varia
bles,u° (a = 1, ... ,s) and Da ==Xa °a/a,ut>. The given coeffi
cients Xa a are permitted to be functions of ,u's. We suppose 
that Eqs. (2.1) are linear independent (L1), i.e., if we have 
Aatu) so that 

then Ita = 0 for all a. 
If r>5, from the first s equations of (2.1) we get a.? / 

a,u° = 0 (use is made of the hypothesis of linear indepen
dence), so (2.1) has only the trivial solution'? = const. 

Let us consider the case r < s. It is easy to see that (2.1) 
has the following consequences: 

[Da,Dp].'£ = 0, a,/3 = 1, ... ,r, (2.2) 

and [Da,Dp ] is also a linear differential operator. 
We have r(r - 1)/2 new linear and homogeneous equa

tions which are a consequence of the system (2.1). If among 
these equations we have some which are LI with respect to 
(2.1), we adjoin them to the initial equations and iterate the 
procedure. There are two possibilities. 

It may happen that after a number of iterations we get a 
number greater than 5 ofLI equations, in which case only the 
trivial solution exists. 

It may happen that after a number of iterations we have 
a number smaller than s of LI equations (2.1 '), and the proce
dure (2.2) does not furnish new equations. The system (2.1') is 
of the form (2.1) and verifies 

[Da,Dp J =.'7 ~pDr' a = 1, .... ", r'>r. (2.3) 

We call such a system complete. A complete system can 
have a nontrivial solution. 

(b) Let .'£~,~) be a Lagrangian invariant under the 
global transformation 

~_X'A = T(g)ABXB. (2.4) 

Here ~ are some classical fields in Rd
, and T (g) is a 

finite-dimensional representation of a n-parameter Lie 
group G. The infinitesimal form of (2.4) is 

X,A = ~ + o~, o~ = ti(Ti)ABXB, (2.5) 

where t i are the infinitesimal parameters and Ti a represen
tation of the Lie algebra f:§ of G which corresponds to T (g). 
The matrices T; satisfy the relation 

[To 1)] =Y7j Tk, i,j= l, ... ,n, (2.6) 

where Y 7j are the structure constants of the group G. 
It is easy to see that the invariance condition of under 

(2.5) reads 
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We suppose that T (g) is a faithful representation, so that 
Eqs. (2.7) are LI. [If T(g) is not faithful, then the set 
H = ! gEG I T (g) = I} is a normal subgroup of G, so we can 
~uild a faithful representation of the group G / H by putting 
T (g)= T (g); gEG / H, 't/ gEg. One can see that the group' and 

" the representation relevant to our problem are G / Hand T (g), 
so we can consider that T(g) in the relation (2.4) is faithful.] 

Let us introduce the vector 

,u0 =~). a = 1, ... ,(d + lIN. 

The system (2.7) can be written in the form (2.1), with 
a-Ii), i = l, ... ,n, and 

X o y:o b • I 
Ii) = (I) bft, I = , ... ,n. (2.8) 

The constants 1(,,0 b which are different from zero are 

1(i)X" B = (Tj)A B , 1(/:1. B = D~(TJA B i = 1, ... ,n (2.9) x ~u 

(we are using the more transparent notation Y(" Il
u

llb == Y i a b)' 
Introducing the (d + l)N X (d + I)N matrices Y(" with 

components 1(,) Obit is easy to prove that 

[Dli),DIJ)] = [YliPY(J) ]Obftba~o i,j = 1, ... ,n. (2.10) 

But from (2.9) we get 

[Y(.),YIJd = Y 7j Y(k), i,j = l, ... ,n, 

so we have 

(2.11) 

[D('l'Dud =.'7 7jD(k)' i,j = l, ... ,n. (2.12) 

The system is complete and, for n«d + I)N, can have 
nontrivial solutions. 

3. THE CASE OF LOCAL INVARIANCE 

The Noether theoremS asserts that the existence of an 
in variance of the type (2.4), implies the existence of some 
conserved currents. In our case one can prove easily that the 
expressions 

:7f=a.'£ (Ti)ABXB, i = l, ... ,n, ft = O, ... ,d - 1 (3.1) 
ax! 

verify 

:7tll = 0, i = l, ... ,n, (3.2) 

if ~ is a solution of the Euler-Lagrange equation of motion. 
If one tries to promote the global invariance (2.5) of .'£ 

to a local one, i.e., t j,s become functions of x, then one gets 
identically 

:7f = 0, i = l, ... ,n; ft = O, ... ,d - 1 (3.3) 

(see Ref. 5). 
A way out of this unusual situation is to introduce in 

.?, beside the fields X, some "compensating" fields. These 
are the Yang-Mills fields. In fact let us suppose that the 
Lagrangian 'y~,x.:.,A J,A ~ j, A = 1, ... ,N; 
J = 1, ... ,M;,u = 0, ... , d - 1, is invariant under the transfor
mation 
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(3.4) 

A J_A,J =A J + t5A J, t5A J = Si(U;)JKA K + C{·I'S:I'.(3.5) 

We are going to prove that theA-type fields are LI com
bination of the usual Yang-Mills fields. 

We impose the following natural requirements. 
(a) The dependence of.!C' on A hS and A ~ 's is nontri

vial, i.e., we cannot find constants A J, not all of them zero so 
that.!C' does not depend onA = ~J!= 1 A JA J andA.1" 

(b) If~~~ 1.,1, JC{'I' = 0, for allil and i, then A J = 0 for 
allJ. The meaning of this condition is the following: Ifwe are 
in the opposite situation, we introduce new independent 
fields A J = ~~ ~ IliJJJ'A J' (det liJ :;;60) so that one of the 
new A's is ~~~ 1 A JA J. Then (3.5) tells us that this particular 
field has a first type transformation law, so we did not split 
the fields properly in the two classes from the beginning. 

This condition tells us that the M dimensional vectors 
C~ of components CJ·l'i span the whole RM

, so we have 
dn>M. We will see that in fact dn = M. 

(c) We suppose that (3.4) and (3.5) are the infinitesimal 
form of some representation of the gauge group G. It is evi
dent that if the Ti 's satisfy (2.6), (3.4) is the infinitesimal form 
of the following representation of G: 

~(X)_X'A(X) = T(g(X))ABXB( x), 

where T (g) is the representation ofG from Sec.2(b). Ifwe take 
in (3.5) S i = const, we obtain that Ui'S must satisfy a relation 
analogous to (2.6). 

(d) The group G is simple. This condition is of a techni
cal nature and can be relaxed. 

(e) The current condition prevents (3.3) being true. Ac
tually we will need a stronger assumption which we prefer to 
formulate and comment in the course of the proof. 

Now we proceed with the proof of the assertion stated 
in the Introduction. 

The invariance conditions are easy to find writing the 
variation of.!C' under (3.4) and (3.5), and equating to zero the 
coefficients of S :I'V ,S:I" and S i, respectively. One gets the 
following system: 

(3.6) 

a.!C' (T)A ,,B + a.!C' (U)J A K + CJ,I' a.!C' = 0 
a,r4 • BX aA J • K • aA J A ,I' .1' 

for all i,ll, (3.7) 

a.!C' (T)A ,,B a.!C' A B ax.:, i EX,I' + a~ (T;) BX 

+ a.!C' (U.)J A K + a.!C' (U.)J A K = 0 
aA J • K ,I' aA J • K 

.1' 

for all i. (3.8) 

Like in Sec. (2b), we can arrange so that (3.6)-(3.8) are 
LI. 

One can put the system (3.6)-(3.8) under the standard 
form (2.1), introducing the vector 
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I'.~@) a~ I, ... ,(d+ 111M +N). 

The coefficients Xa a are ofthe form 

Xa a = Ya abllb + Za a. 

Inspecting (3.6)-(3.8), we see that the constants 
Ya a b' Za a different from zero are the following. 

(3.9) 

(i) From Eq. (3.6), a = (i; Il, v) (! d (d + I) n values) 

Z A~ _ i:'UCJ,1J- I" (i;I',V) - up i + II"+-+v). 
(ii) From Eq. (3.7), a = (i;ll) (dn values) 

1(i;I')~> = 8.:(T;)AB' 

1(i; 1') A :'A K = 8.:( Ui)J K' 

Z A
J 

- CJ·I' (i;I') - i' 

(iii) From Eq. (3.8), a = (i) (n values) 

y. x::., - '"'V(T)A 
Ii) 8- UI' iB' X.V 

Y. A:" _ ,",v J A J J 
(i) AK - UI'(Ui ) K' 1(i) AK = (Ui ) K' 

.v 

(We have used again the more transparent notations 

Ya ab -Yal'"l'b, zaa=Zalla.) 

The index a takes (d + I)(d + 2)n12 values. The follow
ing comment is necessary: In deriving Eqs. (3.6)-(3.8) we 
have implicitly assumed that.!C' has a nontrivial dependence 
on all (d + I)(M + N) variableslla. The situation in which.!C' 

does not depend onllao, can be treated by adding to (3.6)-(3.8) 

the equation a.!C'lallao = o. So we assume from now on that 
.!C' does depend non trivially on all the variables Ila without 
losing the generality. 

We proceed now with the iterative program outlined in 
Sec. (2a). A simple calculation yields 

[Da,Dp] = - [Ya,Yp]\llb~-(YaZp - YpZat~, 
alla alla 

(3.10) 

where Ya is the (d + I)(M + N)X(d + I)(M + N) matrix of 
elements Ya a b' and Za the (d + I)(M + N) vector of compo
nentsZa a. 

Now, a simple but rather long calculation yields 

where the nonzero constants Y ~p are 

and 

y(k;v) _ Ylk;v) _ 8:.Y k (i;I'){Jl - - (J](i;I') - v ij' 

c;z- Ik) _ c;z- k 
..7' (.1111 - J' ij' 

Using (3.11) in (3.10) one obtains 

(3.11) 

[Da,Dp] =-Y~pDy-(YaZp - YpZa -Y~/3Zyt~, 
alla 

(3.12) 
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so the system (2.1) has the following consequences: 

(YaZp - YpZa - .'7~pZr)O a2' = 0. (3.13) 
ap,° 

Using the explicit form of Ya and Za' one obtains that 
(3.13) gives something nontrivial in the following situations: 

I. For a = (i; p,) and t1 = U; v): 

(U.)J CK.v a2' _ (U)J CK,J.'. a2' = ° (3.14) 
I K ) aA J } K I aA J 

~ tV 

for all i,j,p"v. 

II. For a = (i) and t1 = U; p" v): 

(Uj)JK( CK,J.'j ::; + tu++v)) = ° (3.15) 

for all i,j,p"v. 
III. For a = (i) and t1 = U; p,): 

[( U)J CK.J.' _ Y k.CJ.J.' ] a2' = ° 
I K ) I} k aA J 

(3.16) 

for all i,j,p,. 

An immediate consequence of(3.16) is that we have 

Uj 1=0. (3.17) 
Proof If we suppose the contrary, i.e., Uj = ° for all i, 

then (3.16) gives 

q k CJ.J.' a2' - ° I.' 11" .. 7 j}' k-- - lor a I,J,p,. 
aA J 

Now we apply the following lemma. 
Lemma 1: Given a simple n-dimensional Lie algebra 

with structure constants.'7 7j and Vk some n-dimensional 
vector so that Y 7j v k = ° holds for all i, j, then v k = ° for all 
k (see the Appendix for the proof). 

We get 

a2' 
CJ·J.'k-- = ° for all k andp,. 

aA J 

which inserted in (3.7) gives (remember that we supposed 
U;=O) 

:~ (T;)ABXB=O for all i andp" 
:x .J.' 

or Yf=O for all i and p" which is precisely what we want to 
avoid. • 

Another consequence of(3.16) can be obtained by using 
the following lemma. 

Lemma 2: If Z J (a2' faA J) = 0, then UjZ = ° for all i. 
Proof Denote/ = !JIZ J 1=0j. If/ = o then Z = ° 

and the proof is finished. If / 1=0, then we introduce in
stead of A J some LI combinations 
A J = l:J. ~ 1 Y;JJ'A J'(det Y; 1=0) so that 
A = l:JE/(lfz J)A J is one of the A 'so It is easy to see that 
zJ(a2' faA J) = Ois equivalent toa2' faA = 0, i.e., 2' does 
not depend onA. Let us differentiate (3.7) with respect toA. 
Keeping in mind that 2' does not depend on A, one gets 
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.J.' 
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(*) 

where Zj=Ujz. 
Analogously, differentiating (3.8) to A one gets 

Z{a.!.t' = ° for all i. (**) 
aA J 

If we suppose that there is an i so that Zj 1= 0, one can 
introduce/j = !JIZ{1=Oj andA j =l:JEJ,(lIZ{)Af. 
Then (*) and (**) tell us that a2' faAj,J.' = ° for allJl and 
a2' faA j = 0, respectively. This contradicts the hypothesis 
a. • 

Let us decompose the space RM in which Uj acts, in 
irreducible subspaces with respect to the representation U

j
• 

(The existence of this decomposition is assured by the Weyl 
theorem, see Ref. 9, p. 428.) 

RM = EB Vq , Uj = EB U:q) for all i. (3.18) 
q q 

From now on we consider that (3.5) is given in this form. 
We denote vlq) vi v, where vERM. Now the relations 

q 

UjZ = ° are equivalent to u~q)Zlq) = ° for all q and i. We 
have two possibilities: 

(1) Zlq) = 0, 

(2) Zlq)#O. 

In this situation U\q)Zlq) = ° tells us that Zlq) generates a 
one-dimensional linear subspace invariant under the irredu
cible representation U Iq), so Vq is one dimensional, generated 
by Zlq) and Ulq) = 0. 

Taking Z = U;Ct - Y ~Ct we can apply Lemma 2 
and the considerations that follow to (3.16). One obtains that 
we can have two types of indices q: 

(1) qEQ for which 

Ulq)Clq).J.' = Y kClq)J.'k' i,J' = 1, ... ,n, I/. = O, ... ,d - 1, 
I J I) I 

(2) qEQ / for which dim Vq = 1 and 

U\q) = 0, i = 1, ... ,n. 

(3.19) 

(3.20) 

We cannot have Q = 0 because (3.17) would be contra
dicted. Now we can draw some conclusions: if u~q),s and 
Clq)M;,S which are the building blocks of Uj and Cf from 
(3.5) do not fall into one out of the two categories from above 
then we get a contradiction and our problem does not have a 
solution. If we have for every q (3.19) or (3.20), the problem 
can have solutions and in the following we suppose that we 
are in this situation. 

Let us see what are the relations (3.14)-(3.16) in this 
case. We use the decomposition (3.18) and (3.19) and get 
immediately that (3.14) and (3.15) are equivalent to 

Y k. "(Clq)J.v a2' + I/.~v) = 0, 
I} £.J k a' " Iq)J r-qEQ :I'1.J.' 

ij = 1, ... ,n, p"v = O, ... ,d - 1, 

or, applying Lemma 1, 

22(Clq)J.v a2' + p,~v) = 0, 
qEQ k aA Iq)J,J.' 
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k = 1, ... ,n, f.l,v = O, ... ,d - 1. 

Combining (3.21) with (3.6) we get also 

" (C(q)J,V aY + f.l~v) = 0, 
~, k aA (q)J 

qEQ ,I' 

(3.21) 

k = 1, ... ,n,f.l,v = O, ... ,d - 1. (3.22) 

The relation (3.16) gives (remember that dim Vq = 1) 

" q k.C(q)1' a!£ = ° .. 1 ° d 1 ~ J IJ k a' A (q) , l,j = , ... ,n, f.l = , ... , - , 
qEQ' 1'1 

or applying Lemma 1, 

I C(q)l'k a!£ = 0, k = l, ... ,n, f.l = O, ... ,d - 1. 
qEQ' aA (q) 

Combining (3.23) with (3.7) we get 

aY (T)A xB +" a!£ ( U(q))J A (q)K 
a. r4 I B ~ aA (q)J I K 
A.I' qEQ ,I' 

(3.23) 

+ "C (q)J,1' aY = 0, 
fEQ I aA (q)J 

i = 1, ... ,n, f.l = O, ... ,d - 1. 

(3.24) 

Finally (3.8) becomes 

aY T A.fi a!£ (T)A.fi " a!£ 
al• r4 ( i) BA ,I' + al• r4 i BX + ~ a~ (q)J 
A~ A qEQ ~ 

X(U(q))J A (q)K +" a!£ (U(q))J A (q)K = 0, 
I K ,I' fEQaA (q)J I K 

i = 1, ... ,n. (3.25) 

Thus the system (3.6)-(3.8) is equivalent to (3.21)-(3.25). 
It is easy to see that the last one is complete. 

We analyze now in detail the relations (3.19) and (3.20). 
(1) We need the following lemma. 
Lemma 3: Given Uoi = 1, ... ,n an irreducible represen

tation of a simple Lie algebra ~ of dimension n, and n vec
tors Ci in the space of the representation, if the relation 

UiCj = Y ~jCk' i,j = 1, ... ,n 

holds, then we have the following two possibilities: 
(a) Ciare LI, 

(b) Ci = ° for all i. 
(See the Appendix for the proof.) 

Applying this lemma to (3.19) one obtains that the in
dices f.l can be split in to disjoint sets sff and flJ so that if 
f.lEsff, C (q)l'i are LI, dim Vq = n (Vq cannot be larger because 
it would contradict the irreducibility of U\q)), and if f.lEflJ, 
C(q)l'i = ° for all i. We cannot have sff #0 because in this 
case A (q) would have a transformation law of the first kind, 
contrary to the assumption b. If f.lEsff, then in the basis 
C(q)l'o the matrices U\q) have the form 

(U(q))k = Y k (3.26) 
l J '1' 

i.e., the adjoint representation. 
If f.l #f.l', f.l, f.l'Esff, then U\q) has the same form in the 

two bases C (q)l'i and C (q)I"i so it commutes with the transfor
mation matrix between the two bases. Because U\q) is irredu
cible, Schur's lemma tells us that the transformation matrix 
is proportional to the unit matrix in Vq , so we have in fact 
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C(q)l'i = A (q)I'C\q), i = 1, ... ,n;,uEsff. (3.27) 

The vector A (q)ERd is different from zero (this is equiva
lent with sff #0) and C\q),i = 1, ... ,n are LI and form a basis 
in V

q
• The relation (3.5) gives for the fields A (q) the following 

transformation law: 

oA (q)J = Si(U\q))JKA (q)K + C(q)J,l'iS:I" 

Using (3.27) we get 

oA (q)J = S i( U \q))J KA (q)K + A (q)I'C \q)S:I" (3.28) 

Because C \q) are LI in Vq, the n X n matrix C (q) of ele-
ments C(q)Ji is invertible, i.e., 3 C(q)- 1 iJ so that 

C (q)- 1 i C(q)J _ £i C(q)J C(q)-l i - £J (3.29) J j - Uj, i K - UK' 

We introduce instead of A (q)J some suitable LI combi
nations: 

A (q)i=C (q) - 1 iJA (q)J. (3.30) 

Then the transformation law for A (q)i is 

oA (q)k = S iy 7jA (q)j + A (q)I'S ~. (3.31) 

The vectors A (q)ERd are LI. [In fact, let us suppose that 
A (q) are not LI. Then (3.27) tells us that C(q)l'i are not LI, 
which contradicts (b).] Choosing convenient new combina
tionsA' (q)i = ~q'EQ9'qqA (q')i (det 9' #0) we can arrange for 
the A (q),s to be among the basis vectors of 
Rd:el"f.l = O, ... ,d - 1, where (el't = 0;. Let us define the 
sets CfJ = (f.l13 q so thatA(q) = el' j, and 
CfJ' = {O, ... ,d - 1 J \ C(J. Then C(J #0 is equivalent with 
Q #0 and we put by definition also 

A~==A(q)i if A (q)=el" f.lEC(J. (3.32) 

Then, the transformation law (3.31) becomes 
k icrk' k oA I' = S Y ijA ~ + S ,I" f.lECfJ, k = 1, ... ,n. (3.33) 

(2) For qEQ " (3.5) tells us (remember that dim Vq = 1) 

oA (q) = C (q)l'i5:1' ' (3.34) 

Now, the vectors C (q)ERd ® Rn of components C (q)l'i are 
LI, because otherwise (b) is contradicted. We can choose C (q) 

among the basis vectors of Rd ® Rn:el' ® E:I' = O, .. "d - 1, 
i = 1, .. "n, where el' are defined at (1) and Ei are given simi
larly by (E i)j = oj. Define the sets 

9' = {f.l13 Clq),3 isothatC(q)=e/-< ®Eij, 
and 

9'1' = (i13 C(q) so that C(q)=e/-< ®EiJ. 

If we denote 

B~==A(q) if Clq)=el'®Ei(f.lE9',iE9'I')' (3.35) 

then the transformation law of the B fields can be inferred 
from (3.34): 

oB ~ = S:I" f.lE9', iE9' I-" (3.36) 

We make the important observation that CfJ n9' = 0. [In 
fact, if f.lEC(J n9' then the fields A' ~ ==A ~ - B ~ for iEPflI' are 
seen to have a first kind transformation law which contra
dicts (b).] So we have Pfl ~ C(J'. 

From now on we study separately the situation d = 1 
and d > 1. The case d = 1 is studied for the sake of complete
ness. 
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A.d= 1.Because~#0,wehave'i~" =0and~ =0. 
DenoteA ~~ i, A ~.o==A i,x1> ~. Then (3.21), (3.24), and 
(3.25) become 

a2" 
-. = 0, (3.37) 
aA i 

a.!! (T)A :,B + a2" (T)A .,B 
a~ I B~ a~ I B~ 

+ a! yk.A J + a2" y kAJ = o. 
aA k IJ aA k IJ 

The relation (3.37) tells us that in fact 

(3.38) 

(3.39) 

2" = 2"~,~, A i). We rewrite 2" as 2"'(xA, X\A i) where 

? ~ -A i(Ti)ABXB. (3.40) 

Then (3.38) tells us that a2"'/aA i = 0 so that 
2" = 2"'~,?). After some computations (3.39) becomes 

a2"'(T)A -B a2"'(T)A.,B 0 (341) a? i BX + a~ i EX = , . 

which is of the general form (2.1) withXaa of the form (2.8). 
B. d> 1. After some computations, (3.21) and (3.24) can 

be brought to the form 

a2" 
I(epY'-.-+ (,u-v) =0, i= 1, ... ,n, ,u,v=0, ... ,d-1 

pE'6 aA ~.v 
(3.42) 

and 

i = 1, ... ,n, ,u = O, ... ,d - 1. (3.43) 

Choosing in (3.42),uE~, VEC(J' we get a2" faA ~.v = O. 
Choosing in (3.43),uE~' we get identically 

a2"(T.)A B=O (,P" 1 a.,A I BX , ,uE-u, i = , ... ,n, 
A.I" 

(3.44) 

i.e., 

Jf=O, i = 1, ... ,n, ,uEC(J'. (3.45) 

Remember now that we have started to solve our problem to 
avoid the unusual situation Jf==O, i = 1, ... ,n and for all,u. 
We think that (3.45) is sufficiently unusual to restrict our
selves to the situation C(J' = 0. (This is the strong form of the 
current condition alluded to before.) An important by-pro
duct of this supposition is ~ = 0, so we get rid of the un
wanted B-type fields. This is an important point so we re
mark that it will be desirable to find a stronger motivation 
for eliminating the B fields. Some propositions will be made a 
little later. 

The conclusion is that our problem has nontrivial solu
tions if and only if the second type of fields are LI combina
tions oftheA~, i = 1, ... ,n,,u = O, ... ,d - 1. These are the 
famous Yang-Mills potentials. Remember that from condi
tion (b) we have dn>M. Now we see that we have in fact 
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dn = M. Because C(J' = 0, (3.33) becomes 

c5A k = f: iy k A J + f: k k 1 0 d 1 I" !> IJ I" !> .1" = , ... ,n,,u = , ... , - . 
(3.46) 

One must not forget to verify that (3.46) is the infinitesi
mal form of a representation of the gauge group G. If Ui is a 
representation of ~, then define the matrices 

AI" ~ ~ Uj> ,u = O, ... ,d - 1. (3.47) 

It is easy to verify2 that (3.46) is the infinitesimal form of 

(Ok(g)AI")( x) = U(g( x))A1" ( x)U(g( X))-I 

(3.48) 

which is indeed a representation of G. 
From now on the analysis of the case d> 1 is greatly 

simplified by the fact that the structure on theA-type fields is 
completely determined as a LI combination of the Yang
Mills potentials. The technique to be used is essentially that 
of Ref. 3, adapted to a situation a little more complicated. 

Now (3.42) and (3.43) are 

a2" 
aA i + (,u-v) = 0, i = 1, ... ,n; ,u, v = O, ... ,d - 1, 

I".V 
(3.49) 

i = 1, ... ,n, ,u = O, ... ,d - 1. (3.50) 

Equation (3.25) becomes, after some computations, 

a2" (T)A B a2" y kA J a2" (T)A B 
a.,A I BX.I" + aA k IJ p.1" + a.,A i BX 
~.I" p.1" A 

a2" CT k A J - 0 . - 1 (35 + k J iJ I" - , 1- , ... ,n. . 1) 
aAI" 

The system (3.49)-(3.51) can be simplified a fa Utiyama. 
We define the covariant derivative 

x:. ~ -A~(Ti)ABr 
and the Yang-Mills field 

Fk ~k Ak + CIkAiAJ 
J.l,,- p,v - v.1J- t.7 ij J.l v' 

(3.52) 

k = 1, ... ,n, ,u,v = O, ... ,d - 1, (3.53) 

and we rewrite 2" as 2"'~, ~,F;v' A ~1".vl,A ;), where 
A ~I".vl = A ;.v + (,u-v). Then (3.49) is equivalent to a2'" / 
aA II".vl = 0 and (3.50) to a2"'/aA ~ = o. So we have 
2" = 2"'(xA,~, F;v)' After some calculation (3.51) gives 

a2"'(T)A.,B a2"'(T)A.,B a2'" CI k FJ - 0 
-- i B~;I" + -- i B~ + k 0.7 ij I" v - , 
ax:. a~ aF I"V 

i = 1, ... ,n. (3.54) 

This is our main result and now we make some com-
ments. 

and 

(1) From (3.52) and (3.53) it is easy to obtain 
... ,A . A B 
U~;I" = s'IT;) BX;I" 

"Fk -f:;CIkFJ u J.LV -!:I 0.7 ij J.LV' 

(3.55) 

(3.56) 

so the meaning of(3.54) is more transparent. It states that 
152'" = O. 
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(2) Let us introduce the vector 

a (~) dId -1) 
V = -1 ' a = 1, ... ,(d + I)N + 2 n. 

FJ1-v 

The system (3.54) is of the general form (2.1) with theXa a of 
the form (2.8). The nonzero coefficients 1('1 \ are 

1(,/"'xB = (TYB' 

1(,/'::' B = c5;(T;)AB , 
x.v 

It is easy to verify that 

[ 1(i), Y(Jl] = y t Y(k) , (3.57) 

so the system (3.56) is complete, in accordance with the com
pleteness of the system (3.21)-(3.25). The equations of(3.54) 
are LI. (In fact suppose the contrary; then there are 
Zi,i = 1, ... ,n not all of them zero so thatZ 'jr ~j = 0, i.e., the 
adjoint representation of G is not faithful which contradicts 
the simplicity of G.) Because (d + I)N + ~ d (d - l)n > dn for 
d> 1, (3.54) has a nontrivial solution. Moreover, (3.54) is of 
the same type as (2.7), so by solving the system (2.1) and (2.8) 
one solves the global invariance problem and the local invar
iance problem as well. This problem is partially solved (see 
for instance Ref. 10 and references cited there). 

(3) Let us suppose that the theory is also manifestly Lor
entz invariant (d = 4). The no-go theorem II tells us that the 
theory is invariant under the direct product G X.5t'. By Pro
position III, Sec. 2.7, p. 56 of Ref. 9 we know that the irredu
cible representations of G I X G2 are a tensorial product of 
irreducible representations of G I and G2, respectively. Be
cause the index i of A ~ is carrying an irreducible representa
tion of G (remember that G is simple so the adjoint represen
tation is irreducible) the indexfL must carry a representation 
of .5t'. This tells us that A ~ is a cuadrivector with respect to 

fL· 
Let us note that the Lorentz invariance is a good argu-

ment for excluding the B-type fields for otherwise the mani
fest Lorentz covariance would conflict with the gauge trans
formation (3.46). 

(4) The generalization to a semisimple group proceeds 
as follows. The arguments leading to (3.19)-(3.25) stay as 
they are because the Weyl theorem is valid for semisimple 
groups also. Now choosing convenient Ci's we can split 
(3.19)-(3.25) in a number of relations of the same structure, 
one set for every simple component of [§. The analysis given 
above applies for every simple component producing a 
Yang-Mills potential for each one. These can be recombined 
into a Yang-Mills potential for the whole algebra [§ . From 
now on the analysis goes through unchanged. 

(5) For an abelian group the result remains true but the 
proof is altered as follows. In (3.14)-(3.16) one must make 
y t = 0. An important consequence is that (3.17) is no 
longer true so we are not prevented from having 
Ui = 0, i = 1, ... ,n. The relation (3.16) becomes 
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(U.)J Ck,J1-. a.5t' = 0 . . 1 ° d 1 ,K J aA J ' lJ = , ... ,n, fL = , ... , - . 
(3.58) 

In analogy with the nonabelian case, we use Lemma 2 
with Z = Ui C'j and get 

Uk UiC'j = 0, i,j,k = 1, ... ,n, fL = O, ... ,d - 1. (3.59) 

Now we use the important result that the decomposi
tion (3.18) remains true for abelian groups and, moreover, 
dim Vq = 1. Equation (3.59) is then equivalent to 

U~)U\q)CJq)J1- = 0, i,j,k = 1, ... ,n, fL = O, ... ,d - 1. 
(3.60) 

for all q. Let us prove that U\q) = 0, i = 1, ... ,n for all q. Sup
pose there is an index q so that U(q)#O. Because U\q) are 
numbers we get from (3.60), 

C(q)J1-j = 0, j = 1, ... ,n, fL = O, ... ,d - 1, 

i.e., A (q) has a first kind transformation law, which contra
dicts (b). We have proved that 

Ui = 0, i = 1, ... ,n. (3.61) 

In conclusion, if U .. # 0 our problem does not have solu
tions. In the following we suppose that (3.61) is true. The 
relations (3.14)-(3.16) become identities so the system is 
complete. The relation (3.5) is in this situation 

c5A (q) = C(q)J1-iS :J1-' (3.62) 

The analysis following relation (3.34) can be repeated 
with the result that A (q) are LI combinations of the Yang
Mills potential A ~ : 

A (q)==:A ~ if fLEpj), iEpj) J1- and C(q) = e ®E i, J1-
(3.63) 

The transformation law of A ~ is analogous to (3.36): 

c5A ~ = S:J1-' fLEpj), iEpj) J1-' (3.64) 

which is the infinitesimal form of the finite transformation 

(o/i (g)A ~)( x) = A ~ (x) + i( x),J1- (i:Rd-+R). (3.65) 

[G is isomorphic with Rd and endowed with the additive 
composition law, so G = I g:Rd-+RnIgE'G' oo(JRd)} is also en
dowed with the additive composition law.] 

Now we can show that pj) J1- = 11, ... ,n} and 
pj) = I O, ... ,d - I} analogously with the nonabelian case (in 
the opposite case, i.e., 11, ... ,n} "pj) J1- #t/J or 
I O, ... ,d - I} "pj) #t/J, we contradict the current condition). 

From now on the analysis goes through unchanged (a 
minor modification is to put Y ~j = ° everywhere). 

It is easy to generalize now to G = A xS where A is 
abelian and S is semisimple. We have relaxed the condition 
as we have promised. 

4. THE GROUP CONDITION 

We know from the general theory of Lie groups (see for 
instance Ref. 12) that for a nonabelian Lie group, the com
mutator of two group transformations of parameters S; and 
S ~ must be a group transformation also of parameters 
GT k . . 

.Y' ijS 'I S)2' We must expect that something analogous take 
place for gauge groups also (the group condition). Berg-
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mann 13 has introduced this condition in the framework of 
general relativity. For gauge groups this was done by 
Schwingerl4 who supposed from the beginning that the A
type fields are LI combinations of fields 
A ~, i = 1, ... ,n, Jl = O, ... ,d - 1 with the transformation law 

Ak---+A,k =Ak +8A k 8Ak =f:i(t.)kAj +f:k I' I' I' 1" I'!> Ii I' !>,I" 
and proved that (ti)~ =.'T 7j • His argument can be general
ized as follows. Let us compute the commutator of two 
transformations of the form (3.5) of parameters S; and S~. 
We get 

(8182 - 8281)A J 

=.'T 7jS;S~(Uk)JKA k 

+ C~I'(.'T 7j s;sHI' + (UiC'j -.'T 7jCt)J 

X(s;s~L - (UiC'j + ~C1)J S;S~.!" (4.1) 

The group condition can be fulfilled by choosing 

U CI' - QT k CI' .. - 1 - 0 d 1 (4 2) i j -.J ij k, l,j - , ... ,n, Jl - , ... , - . 

[the last term from (4.1) is then automatically zero]. 
If(4.2) holds we can apply Lemma 3 and the analysis of 

Sec. 3 is greatly simplified. In the first place we get rid of the 
B-type fields without using the current condition. Secondly, 
we obtain that A J are LI combinations of the Yang-Mills 
fields without using the invariance of the Lagrangian under 
(3.4) and (3.5). In this way we arrive directly at the system 
(3.49) and (3.51) which after introducing~ andF~ v is equi
valent to the complete system (3.54). 

This analysis seems to indicate that most of the struc
ture of a local invariant theory can be obtained by a more 
careful analysis of the principal mathematical object-the 
gauge group. This analysis might require a more sophisticat
ed mathematical apparatus, so we think that our elementary 
approach has the advantage of simplicity. 

5. CONCLUSIONS 

We have rederived in a more systematic fashion the re
sult of Utiyama. Our proof disentangles the role of local 
gauge invariance and a space-time invariance (like Lorentz 
invariance) in the construction of the Yang-Mills theories so 
it can be used for constructing theories with other kinds of 
space-time symmetries. The "weak" point of our argument 
is the argument leading to the elimination of the B-type 
fields. We feel that this can be done by exploiting completely 
the group condition as indicated in Sec. 4. We think that it 
can be proved rigorously that there are only two types of 
representations of a gauge group: the "normal" type as for 
the X fields [see condition (c) in Sec. 3] and the Yang-Mills 
type, i.e., (3.48). Of course the argument based on Lorentz 
invariance is solid enough but the point is to use only the 
gauge invariance. 

The method can be used in other situations like gravity, 
supergravity, and Yang-Mills supersymmetry although 
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there are some problems. For instance in Kibble's approach 
to gravity, 15 we explicitly checked that "the algebra does not 
close itself," i.e., the group condition is not fulfilled. In the 
last two cases the computation must take into account the 
appearance of anticommuting c-numbers. 
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APPENDIX 

We want to prove Lemmas 1 and 3 from Sec. 3. It is 
convenient to recast them first into a basis independent 
form. 

Lemma 1: Given !f, a simple Lie algebra, and t:!f ---+ V 
a linear map so thatt ([x,y]) = 0 holds for every x, y from !f, 
then t = O. 

Proof Define [!f,!f] = IZE!f13 X,YE!f so that 
[x,y] = z). It is easy to prove thatthis linear subspace of !f is 
an ideal of !f, so from the simplicity of !f we have 
[!f,!f] = !f. So V zE!f,3 x,y E!f so thatz = [x,y]. Then 
t (z) = t ([x,y]) = 0, i.e., t = O. •. 

Lemma 2: Given !f and t as before and p a representa
tion of!f in V so that p( x)t (y) = t ([x,y]) holds for every x,y 
from !f, then t is either injective or t = O. 

Proof Define the linear subspace !f' of !f; 
!f' = IXE!flt( x) = 0). GivenxE!f,yE!f' we have 
t([x,y]) =p( x)t(y) = 0 so [X,y]E!f'. Then!f' is an ideal of 
!f. From the simplicity of!f we have!f' = !f or 
!f' = 10). •. 
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It is shown that static, spherically symmetric solutions of the massless Yang-Mills-Dirac 
equation which carry finite energy are trivial. 

PACS numbers: 11.l5.Kc, 03.50.Kk 

Static classical solutions with finite energy have led to 
exciting discoveries in the corresponding quantum field the
ory. A well-known example in particle physics is the magnet
ic monopole solution 1 and its fermionic fluctuation modes in 
nonabelian gauge theories.2 It revealed the existence of mag
netic monopoles as particles with half-integer fermion num
ber in a number of gauge theories. 

In this example one ignores the feedback of the spinor 
field onto the gauge fields because it is suppressed by the 
gauge coupling, which is assumed to be small in order to 
guarantee the validity of the semiclassical analysis. For the 
zero-energy modes this feedback happens to vanish exactly. 

It has been argued that in cases where more fermion 
representations of the same type couple to the gauge field, 
the influence of the spin or fields upon the gauge field could 
become important and might give rise to nonperturbative 
solutions even in the absence of fundamental scalar fields. 3

•
4 

It seems, therefore, worthwhile to investigate the possibility 
of static solutions with finite energy in the fully coupled sys
tem of Yang-Mills and Dirac equations. Some results are 
found in Refs. 5 and 6. 

If fermion masses can be neglected, one can expect to 
ease this hard mathematical problem considerably. Scale in
variance now becomes a strong tool which has been success
fully applied to the same problem in classical field theories 
without spinors.7 However, spinor fields present an obstacle 
for this way of reasoning because their classical field energy 
is an indefinite functional. 

To overcome this difficulty we have had to restrict our
selves to spherically symmetric configurations. Under these 
assumptions we prove that there are no static solutions of the 
coupled Yang-Mills-Dirac equations which carry finite en
ergy. 

We study SU(2) Yang-Mills (YM) fields minimally cou
pled to a bispinor field with the Lagranian density 

.Y = !F~vFaf'v + i tr[x+yDt"(af' + Af')X l. (I) 

The components A ~ of the gauge potential A I' are given with 
respect to a standard basis ofSU(2), 

[Ta' Tb ] = EabcTc' I <;a,b,c<;3. 

The spinor field X is compactly written as a 4 X 2 matrix. The 
internal algebra acts on it as follows: 

(TaX)ap = -(i/2)(Xua )aP' I <;a<;4, I <;{3<;2. 

The tilde indicates matrix transposition. The field strength 
tensor has the form 

F~V=;"A~ -avA~ +EabcAtA~. 

The Dirac matrices are chosen in the chiral representation 

° (0 r = 
I 

and the bispinor is given by its chiral components 

X = (X +). X ± = 2X2 matrices. 
X-

The Dirac equation which follows from (I) becomes actually 
a pair of Weyl equations 

(ao +Ao)X ± = +ai(ai +Ai)X ±. (2) 

The YM fields satisfy 

ajF{/ + EabcAbjFt;; = i tr[x! TaX + l 
+ i tr[x:+: TaX - J, 

(3) 
af'Ff'i + EabcAbf'Ff'i = i tr[x! dTaX + l 

-itr[x:+:dTaX_l· 

We have not bothered to write an explicit gauge coupling 
parameter in (I). In classical physics it can be absorbed by the 
normalization of the gauge potential and the spinor field. 

A static solution of(2) and (3) is one where all gauge
invariant quantities are time independent. There is then a 
gauge with time-independent gauge potentials and the 
spinor field has at most a stationary time dependence. As we 
announced at the beginning we concentrate on spherically 
symmetric solutions. Again this is understood in the sense 
that all gauge-invariant fields show this symmetry. It can be 
shown that the whole set of symmetric configurations is rep
resented by the ansatz2

•
8 

A O( )_ ~aH(r) 
a X -x , (4) 

r 

A i( )_ _ ~i I-K(r) ~a~i M(r) a X - Eai/'.- + X X 
r r 

+ (8ai _ xaxi) N(r), (5) 
r 

X ± (X, t) = eiEt
• r- 1 [g ± (r)l + p± (r)x. 0']. (6) 

The additional case 

A ~ = 0, A ~(x) = <Pa(r), 

which appears in the classification of spherically symmetric 
pure-gauge fields, spoils this symmetry in the presence of 
spinor fields which accentuate the radial direction in inter
nal space. The ansatz (4)-(6) still admits some gauge free
dom. A spherically symmetric gauge function 

g(x) = I cos A (r) + ix . 0' sin A (r), 

transforms the radial functions in (5) and (6) without chang-
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ing the general form of the ansatz 

K -+K cos 2A +Nsin 2A, 

N-+ -Ksin2A +Ncos2A, 

M-+M+2A " 

g ± -+ g ± cos A - ip ± sin A, 

p ± -+ - ig ± sin A + p ± cos A. 

This is used to choose the gauge condition 

N=O. 

(7) 

(8) 

Let us now recall the standard argument which forbids static 
solutions with finite energy in scale-invariant theories with
out spinor fields. In scale-invariant classical field theories 
there is a locally conserved current 

a/JxJJI'V) = 01'1' = 0, (9) 

where OI'V denotes the symmetrical gauge-invariant energy
momentum tensor. The resulting time independence of 

f dx3 {tO OO(x) +xieOi(X)J (10) 

can only hold if the energy vanishes, 

f dx3 e OO(x) = 0, (11 ) 

provided the integrals in (10) converge. If the energy integral 
is positive definite this could hold only for the trivial solu
tion. 

In the theory we are considering, the energy-momen
tum tensor 

e~V = - !trlx+yD[]I"(aV + A V) + yV(]I" + A I')]xl 

contains the indefinite part of the energy density 

e~ = Etrlx+xl - iA ~ trlx+Taxl 

(12) 

(13) 

(14) 

(15) 

due to the spinor fields. This forces us to go beyond mere 
symmetry arguments and have a look at the field equations. 

Note that the energy density of the YM field, 

e~M = ~(F~i)2 + !(Fg)2, (16) 

is strictly positive for all gauge fields inequivalent to zero. 
For physical reasons we are interested only in solutions 
where the YM fields carry finite energy 

f dx3 e~M(X) < 00. (17) 

Together with the contribution of the interacting spinor field 
it adds up to zero. 

It is straightforward to insert the ansatz (4)-(6) into the 
field equations (2)-(3). The Weyl equations become 

[ + H + 2ird / dr + 2iK ]p ± = - (M + 2Er)g ± ' 

[ + H + 2ird / dr - 2iK ]g ± = - (M + 2Er)p ± ' 
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(18) 

(19) 

and the YM equations reduce to 

- rK" + K (K 2 + M2 - H 2 - 1) 

= -2ir[g+p~ -g+p",+ -g_p,*- +g,*-p_], 

r(K2M)' _K2M 

= _ rK[lg+1 2 _ ~+12 -lg_12 + ~_12], 
2K2M = _ r[lg+ 12 + ~+ 12 _ Ig_12 _ ~_12], 
rH"-2K 2H 

(20) 

(21) 

(22) 

=2r [g+p",+ +g",+p+ +g_p'*- +g,*-p_]. (23) 

At first glance the combined system of 12 real equatIOns for 
11 real radial functions seems to be overdetermined. How
ever, Eq. (21) can be dropped since it follows from (22) and 
the Weyl equations (18) and (19). This redundancy reflects 
the gauge freedom which allowed for the gauge condition (8). 
Equation (22) eliminates the function M and one is left with 
10 differential equations for 10 functions. 

For any solution of the system (18)-(23) the substitution 

g ± -+ g;:, p ± -+ p;: , 
(24) 

K -+K, M-+ -M, H-+H 

defines a new solution, replacing the eigenvalue E by - E. 
The YM energy 

41T 1"0 dr r-- 2[(KH)2 + !(rH 1_ M)2 + (rk 1)2 

+(KM)2+W -Kf(1 +K)2] (25) 

remains invariant under this transformation. 
Using Eqs. (18) and (19) as well as their complex conju

gate counterparts, one finds two first integrals of the system 

g ± P'*± + g,*± P ± = C ± = const. 

The YM energy (25) can be finite only if 

C: = C++ C _ = O. 

This follows from Eq. (23) which reads now 

rH" - 2K2H = 2rC. 

For the first derivative H' one gets 

(26) 

(27) 

(28) 

H'(r)=H'(ro)+2Cln!:... +2(' dr'r,-2K 2H. (29) 
ro Jru 

Convergence of the expression (25) requires that the integral 
in (29) converges for r -+ 00. This can be seen using the 
Cauchy-Schwarz inequality 

L~ drr-2K2IHI.;;;(L~ drr- 2K 2H 2}/2 

x(L~ drr- 2K 2)1I2, 

combined with the estimate 

roo dr r-2K 2.;;;2ro- IK2(ro) + 4 roo dr K '2. 
J~ J~ 

With this observation one finds 

H (r) - rH '(r) = - 2Cr + o(r) (r -+ (0). (30) 

This asymptotic behavior leads to a divergent YM energy 
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unless the constant C vanishes. The YM charge density van
ishes because it is proportional to C, 

itr{x+Taxl = - 2Xar- 2
• C. 

The energy density (15) has now no explicit interaction term 

e~=Etr{x+xl. (31) 

For a solution with E>O, Eq. (11) requires 

e~M = O. (32) 

The gauge field is then equivalent to zero and the spinor field 
is a free zero-energy mode. This means the spinor field is 
constant in the A Il- = 0 gauge: 

X ± (x) = E ± 1, IE ± I = ILl, 
(33) 

AIl-=O. 

The contributions which come from opposite chirality can
cel each other in the YM current. 

A solution with E < 0 can be transformed into one with 
E> 0 by using (24). Since this substitution does not change 
e ~M' the new solution has to be trivial and so is the original 
one. 

The result may be summarized as follows: all static, 
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spherically symmetric solutions of the massless Yang
Mills-Dirac equations which carry finite energy are repre
sented by (33). The whole analysis applies also to the more 
general situation where n chirality + and m chirality -
isodoublets couple to SU(2) gauge fields. The 4-current on 
the right-hand side of the YM equations (3) represents now 
the contributions of all n + m Weyl spinor fields. If one 
takes instead ofSU(2) a gauge group of rank bigger than 1, 
then our analysis gets more complicated due to the increas
ing complexity of spherically symmetric fields. 
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We show that the reduction of the SU(n), SO(n), and SpIn) Yang-Mills equations in compactified 
Minkowski space by certain realizations of the SO(4) subgroup of the conformal group leads to 
systems of ordinary differential equations. The reduced systems are interpretable as Hamiltonian 
systems with symmetry constrained so that the momentum map equals zero. Explicit solutions 
for these systems are given. 

PACS numbers: 11.15.Kc, 11.30. - j, 02.40. + m 

1. INTRODUCTION 

The geometric interpretation of invariant gauge fields 
under smooth group actions, studied by Hamad, Shnider, 
and Vinet 1 (hereafter noted HSV), has been used to derive the 
dimensional reduction procedure,2 to solve pure-gauge3 and 
matter-coupled-gauge systems,4.5 and to determine invar
iant spinor fields with gauge freedom. 6 In this paper, we 
pursue this line of study with the investigation of solutions to 
the SU(n), SO(n), and SpIn) Yang-Mills equations invariant 
under the SO(4) subgroup of the conformal group of space
time C(3, 1). Such SO(4) invariant solutions have already 
been obtained for the SU(2) Yang-Mills equations by 
Luscher7 and Schechter8 and for Dirac spinors coupled to 
SU(2) gauge fields by Meetz9 and Doneux, Saint-Aubin, and 
Vinet.5 

The content of this paper is as follows. In Sec. 2, we 
present the calculation ofSO(4) invariant Yang-Mills fields 
under certain realizations of the SO(4) subgroup CC(3,1) 
acting simultaneously on tensorial and gauge indices. These 
realizations derive from embeddings of the isotropy sub
group SU(2) C SO(4) in the classical groups. In Sec. 3, we 
derive the reduced Yang-Mills equations and Lagrangian 
density. It turns out that the reduced equations expressed in 
a convenient gauge are interpretable as Hamiltonian systems 
with large symmetry groups constrained by the condition 
that the solution be contained in the kernel of the associated 
momentum map. The residual symmetry allows us to inte
grate the system explicitly by reducing it to a set of decou
pled anharmonic oscillators equivalent to the reduced sys
tems for the SU(2) gauge group. In the summary, further 
possible extensions of this work are discussed. 

2. SO(4) INVARIANT GAUGE FIELDS 

We shall use in the following many of the conventions 
and notations of Refs. 1-3 which, for completeness, are sum
marized here. Let X! - SiX S 3/Z2 be the conformally com
pactified Minkowski space, which is also identified with the 
group manifold U(2). For simplicity, we work on the twof~d 
covering SiX S 3, which is in any case diffeomorphic to M 
and permits an identification with U( 1) X SU(2), with points 
designated as P = (eN',v) where ei¢EU( 1) and vESU(2). The re
lation to Cartesian coordinates is given by 

(2.1) 

with the introduction of a coordinate set {7f,1l,'1,s} corre
sponding to ei

¢ = 1]5 + i1]° and v = 1]4 - i1] i
O"i (i = 1,2,3), 

where {O"i} are the Pauli matrices. We also define natural 
group actions on U(I)XSU(2): 

(a) left action of SU(2): 

L g : (ei¢,v)---+(ei¢ ,gv), where gESU(2); 

(b) right action of SU(2): 

Rg : (ei¢,v)---+(ei¢,vg), where gESU(2); 

(c) right and left actions ofU(I): 

(2.2) 

(2.3) 

L", (ei¢,v) = R", (ei¢,v) = (ei(¢ + '" I,v), where ei"'EU( 1); 
(2.4) 

(d) left action of SU(2)L X SU(2)R: 

L(g'.g): (ei¢,v)---+(ei¢,g'vg- I
), whereg,g'ESU(2); (2.5) 

(e) diagonal SU(2) subgroup action of 

SU(2)D =(SU(2)L X SU(2)R )D: 

(2.6) 

With the standard identification SU(2,2)1Z2 - SOo(4,2), 
the subgroup SU(2)L X SU(2)R C SU(2,2) is the twofold cov
ering of the subgroup SO(4)CSOo(4,2) acting on the 
(1]1,1]2,1]3,1]4) subspace. The isotropy subgroup of 
SU(2)L X SU(2)R at the reference points 
Po = (ei¢,I)EU(I)XSU(2) is equal to SU(2)D and its orbits in 
SiX S 3 form one stratum (i.e., all isotropy subgroups are iso
morphic), each being S 3, parametrized in the space of orbits 
bytheS 1 coordinate. Thus, X! -S 1 X SU(2)L X SU(2)R /SU(2) 
and following HSV, the SO(4) invariant gauge fields on 
SiX S 3 are determined by first specifying a group homomor
phism, denotedA-, of the isotropy group SU(2)D into the clas
sical gauge groups. 

Since SU(2) is a simple group, the problem of the deter
mination up to conjugacy of all its homomorphisms into 
SU(I + 1), SO(21 + 1), Sp(/), and SO(2/) (lEN) is related lo
cally to the classification of the AI subalgebras of the respec
tive simple Lie algebras A" R" C" and D,. For any Lie 
group, this problem reduces to the classification of all the 
simple three-dimensional Lie subalgebras of the simple Lie 
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algebras (see Mal'cev lO and Dynkinll
). However, by consid

ering the n-dimensional irreducible representation of AI 
(n = I + 1),Btln = 21 + 1),Cl andDtln = 2l),Mal'cev lOhas 
found that each inner conjugacy class of simple subalgebras 
of the classical algebras corresponds in a one-to-one manner 
to a "mutually contragredient" system of highest weights of 
permissible subalgebra representations constrained so that 
the sum of their associated dimensions is less than or equal to 
2n, with the exception of DI , where in general two classes are 
involved in this correspondence. The term permissible 
means that the unitary, orthogonal, or symplectic property 
of the n-dimensional irreducible representation must be re
spected by the system of subalgebra representations. But all 
the representations ofSU(2) are self-contragredient and the 
irreducible representations are either symplectic, having 
half-integer weights, or orthogonal, with integer weights. 
Finally, we recall that because of the self-contragredience, it 
is possible to have SU(2) representations which are both or
thogonal and symplectic when composed of two isomorphic 
representations (see Mal'cev, Ref. 10, Sec. 2, Theorem 4). 

We do not study all possible classes of homomor
phisms, limiting ourselves to the following cases: 

(i) For SU(n): the classes ofSU(2) embeddings given by 
the system of nlm irreducible representations Dj(g) of high
est weightj = (m - 1)12, where m,n, and nlmEN, gESU(2): 

A: (g,g)ESU(2)D---+l nlm ®Dj(g)ESU(n). (2.7) 

(ii) For SO(n): the system is formed of nlm block-diag
onal irreducible representations Dj(g) with integer highest 
weightj = (m - 1)/2, where m,n, and nlmEN. We exclude 
the orthogonal representations involving symplectic irredu
cible representations of SU(2). 

(iii) For SpIn): we choose a system of2nlm block-diag
onal irreducible representations of highest weight 
j = (m - 1)12. The above theorem of Mal'cev assures the 
symplectic property of the representations for odd m. 

The Lie algebra so(4)-su(2)L ffi SU(2)R admits a reduc
tive decomposition: SU(2)D + m, where SU(2)D consists of ele
ments ofthe form (t,t ) with t = t ;7;ESU(2), relative to a basis 
with commutation rules [7;.7j ] =cijk7k and 
m = ! (t, - t ) ItESU(2) ) . Hence, for each class of homomor
phisms A, the most general invariant gauge field is expressed 
by the formula (see Ref. 2) 

w = A. owf + (/>s' ow';: + wilo, (2.8) 

where (i)wf = 0 ;(7;.7;) andw1' = 0 ;(7;, - 7;) are the respec
tive projections of the (SU(2)D + m) decomposition of the 
pull-back of the Maurer-Cartan form on SO(4): 
wMC = (V-I dv,v,-I dv') [with V-I dv = 20;7;, v,v'ESU(2)] 
under the map 0": SU(2)D---+SO(4) given by aiv) = (v,e), which 
defines a convenient section of the principal bundle; (ii) A. 
represents the differential of the mapA at the identity taking 
SU(2)D into the classical Lie algebras, and (/>s' denotes a 
smooth family of linear maps (/>: m---+elassical Lie algebras, 
parametrized by S I, which satisfy the condition 

(/> (AdgoX) = Ad,qgo) (/> (X) "t/ XEm and "t/ goESU(2)D' 
(2.9) 

(iii) 0 ° is a I-form onS I andwo a smooth functiononS I with 
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values in the centralizer c< of the image A (SU(2)D) in the 
gauge algebra (the residual gauge algebra). We can, more
over, choose a gauge where w simplifies to 

w = A. owf + (/>s' ow1', (2.10) 

eliminating theS I part of the connection (2.8). We shall now 
determine the invariant gauge fields and their centralizer for 
each classical gauge group: 

(i) SU(n) 

The differential at the identity of the homomorphisms A 
[(2.7)] is 

A. :(7;.7;)Esu(2)D---+lnlm ®Dj(7;)Esu(n) 

with m = 2j + 1 and 7;ESU(2). Decomposing (/> as 

(/> 1-"- ] 

: m Esu(n), 

(/> n n 
mm 

(2.11) 

(2.12) 

where the (/> p.v are m X m matrices such that (/> p.v = - (/> !p., 
"t/ /-l,V = 1,oo.,nlm, and tr (/> = 0, the condition (2.9) for (/> 
implies that 

(/>p.v(Ad(g,g)X) = Dj(g)(/>p.v(X)Dj(g)t (2.13) 

"t/ /-l,V, gESU(2) and "t/ XEm. These linear relations have the 
following solutions for X = t;(7;, -7;)Em: 

(2.14) 

¢J p.v representing the ( /-l, v) element of a constant Hermitian 
(nlm) X (nlm) matrix H. In tensor product notation, 

(/>:(7;. - 7; )Em---+H ®Dj(7; )Esu(n), (2.15) 

whereHEH(nlm), the space of(nlm) X (nlm) Hermitianma
trices. Accordingly, Eq. (2.10) gives the resulting SO(4) in
variant SU(n) gauge fields for the homomorphisms A: 

w = H'(t/J) ®Dj(7;) 0;, (2.16) 

where {O;} is the left-invariant coframe on S 3 given above, 
H '=H + I n1m EH(nlm), and t/J is the angular coordinate on 
S I. We also compute the centralizer c< of the image 
A. (SU(2)D) in the Lie algebra su(n), consisting of elements 
cEsu(n) satisfying 

C = Ad" (go)c "t/ goESU(2)D' (2.17) 

It follows that for the homomorphism (2.7), 
c< = {cEsu(n)lc = r® 1m, rEsu(nlm)). 

(ii) SO(n) 

From A, we obtain the differential 

A. :(7;.7;)Esu(2)D---+lnlm ®Dj(7;)Eso(n), (2.18) 

with m = 2j + 1 odd. Constructing (/> as in Eq. (2.12), with 
the conditions (/>!v = (/> p.v' and (/> p.v = - (/> ~p., so that (/> be 
so(n) valued, we impose the further condition (2.9) and find 

(/>:(7;. - 7;)Em---+S ® Dj(7;), (2.19) 

where SE§(nlm) is a real symmetric (nlm)x(nlm) matrix. 
The invariant SO(n) gauge fields are thus of the form 

w=S'(t/J)®Dj(7;)0; (2.20) 
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withS'==S + In1mES(nlm). The associated centralizerC"-in 
so(n) is {c = F® 1m IFESo(nlm)}. Since H(nlm)-u(l) ED 

su(nlm), let us remark that if we carry out the decomposition 
ofH(nlm) into eigenspaces ofthe su(nlm) involutive auto
morphism of type AI (see Helgason 12), 

()(H) = H*, 'V HEJHI(nlm) 

(*: complex conjugation), we get the sum 

H(nlm) =;1 so(nlm)} ED S(nlm). 

(2.21) 

(2.22) 

As we can see, these two components are precisely the re
duced gauge algebra C"- and the linear space parametrizing 
the reduced gauge field. 

(ill) Sp(n) 

In order to perform this calculation, we distinguish 
between the even and odd m dimensions of the SU(2) repre
sentations in A: 

A:(g,g)ESU(2)D-12nlm ®Dj(g)ESp(n) = U(2n)nSp(n,q, 

wheregeSU(2) and m = 2j + 1. The SpIn) properties force A 
to respect Eqs. (2.23) and (2.24). 

A tA=I2n • 

(a) even m: A TJeA = Je, 

(2.23) 

(2.24a) 

J e is the symplectic form matrix chosen for convenience to 
be 

Je = I 2n1m ®Dj(U), 

where U = [ _ ~ ~]ESU(2) satisfies gTUg = U. 

(b) odd m: A TrA = J O (2.24b) 

with the symplectic matrix 

J O = [ 0 Inlm] ®Dj(U). 
-Inlm 0 

We next apply condition (2.9) and require that 4> have values 
in the spIn) algebra. This imposes the three restrictions (i) 
tr 4> = 0, (ii) 4> t = - 4>, and (iii) 4> T J"o + J"04> = 0, 
whether m is even or odd. 

These restrictions reduce the maps 4> to 

(a) For even m; 

4>:(1";, - 1";)Em_S ® Dj(1";), (2.25) 

SES(2nlm). Hence, the invariant gauge fields become 

w = S' ®Dj(1";)(); (S'==S + I). (2.26) 

(b) For odd m; 

r H Al . 
4>:(1";, - 1";)Em-l:-

A 
* Hj®Dl(1";), (2.27) 

HEH(nlm) and AEAC(nlm) (antisymmetric complex matri
ces). The invariant gauge fields are written as 

[
HI A] . . 

w = -A * H'* ®Dl(1";)()I (H'=H + 1). (2.28) 

The computation of the centralizer C"- yields 
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(a) For even m; 

C; = Ie = F® 1m IFEso(2nlm)}. 

(b) For odd m; 

~ = {e =F® 1m IF=L ~ ~ ] ESP(:} 
. ,rnlmXnlm t _ d T _ } I.e., YI,Y2E-u 'Yl - - YI' an Y2 - Y2 . 

In each case, there exists similarly to the SO(n) problem an 
involutive automorphism ofsu(2nlm) dividing the space of 
Hermitian (2nlm) X (2nlm) matrices into eigenspaces asso
ciated with the centralizer (C A) or the invariant gauge field. 
Namely, 

(a) A type AI involutive automorphism for even m; 

()(H) =H*, 

giving 

(2.29) 

(2.30) 

(b) A type All involutive automorphism for odd m; 

()(H)=JH*J-I, J= [0 Inlm] (2.31) 
- Inlm 0 

giving 

(2.32) 

3. YANG-MILLS EQUATIONS 

As we have seen in the previous section, the SO(4) invar
iant gauge fields may be expressed in a convenient gauge as 
the tensor product of a matrix function on S I:M '( "') and a set 
of I-forms on S 3 with values in an irreducible representation 
of the su(2) Lie algebra: 

(3.1) 

We have summarized in Table I the different M '("') for 
each classical group together with the associated centralizer 
C"- and its group equivalent CA. Inserting these fields in the 
pure Yang-Mills equations, 

D *Dw = 0, (3.2) 

we derive the following set of differential equations: 

M=2M(I-M2) (3.3) 

and 

[M,M] =0, (3.4) 

whereM==dM Id",andM'==M + 1. Alternatively, we can 
arrive at the same result by reducing the Lagrangian density 
!t' which equals 

!t' = k tr(F 1\ *F), (3.5) 

where k is a constant, F = Dw defines the curvature, • Fits 
dual, and w is the gauge potential. Choosing w to be of the 
general reduced form (with residual gauge algebra C"-): 

M. Legare and J. Hamad 1544 



                                                                                                                                    

TABLE I. Components of the reduced gauge potentials for the homomorphisms A. m is the dimension of the irreducible SU(2) components of A. 

Gauge group SU(n) SO(n) (odd m) 

M'(",) HEH(: ) SES(: ) 

Algebra 

centralizer {r® 1m IFEsu( : )} {r®lm1rESO(: )} 

c-t 
Group 

centralizer {A ® 1m IAESU(:)} {A ® 1m IAESO( : )} 

c< 

(J) = M'(t/J)®D+ri)(}i + r(t/J) ® lmdt/J, (3.6) 

this gives rise to a reduced Lagrangian density .!t'R : 

.!t'R =!tr((.@M)2_(I_M2)2) (3.7) 

with the covariant derivative.@ M = M + [r,M]. The vari
ational equations deduced from .!t'R are 

.@(.@M)=2M(1-M2) (3.8) 

and 

[M,.@M] = O. (3.9) 

Ifwe make a gauge choice such that r = 0, we recover exact
ly the system (3.3) and (3.4) introduced earlier, and the resid
ual gauge group consists of constant (type I) gauge transfor
mations. Before solving these equations, we shall give an 
interpretation of this system in terms of a Hamiltonian sys
tem with symmetry. 13 

Let us consider for the gauge group SU(n) the symplec
tic manifold T *H(n/m) - f (H,P )EH(n/m) X H(n/m II by the 
identification H(n/m)-H*(n/m) given by the inner product 
P·H = tr(PH) and symplectic form n = tr(dH AdP).Assug
gested by the reduced Lagrangian density, we consider the 
Hamiltonian 

.I;) = ! tr(p 2 + (lnlm - H2)2). 

It then follows that Hamilton's equations 

H = P and P= 2H(1 _H2) 

(3.10) 

(3.11) 

are equivalent to the SO(4) reduced Yang-Mills equation 
(3.3). Futhermore, the symplectic action ofSU(nlm) on 
(T*H(nlm),n): (H,P J----.(AHA t,A PA t),AESU(nlm), leaves 
invariant the Hamiltonian system. This symmetry group is 
exactly the reduced group of constant gauge transformations 
in C J... But a calculation shows that its "momentum" map
ping13 corresponds to 

J(H,P) = [H,P ] Esu*(n/m). (3.12) 

This means that the reduced Yang-Mills equation (3.4) fixes 
the momentum map value as zero, 

[H,H] = [H,P] = o. (3.13) 

For the (i) SO(n), (ii) Sp(n) (even m), and (iii) Sp(n) (odd m) 
reductions, respectively, we restrict to the symplectic sub
spaces: 
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Sp(n) (even m) Sp(n) (odd m) 

SES( ~ ) [ -~. :.];HEH(: ).AEAC

(:) 

{r®lmlrEso(~ )} {r® 1m IFESP(:)} 

{A®lmIAESO(~ )} {A ® 1m IAESP( : )} 

(i) f(S,P)ES(n/m)XS(n/m)] with n = tr(dS AdP), 
(ii) f (S,P )ES(2n/m) X S(2n/m)] with n = tr(dS A dP), 
(iii) 

{T - [ _ ~ * : * ]. P = [ _~',* 
IH,H'EH(:), A~ 'EA

C

(:)} 

A' ] 
H'* 

with n = tr(dT A dP). 
The Hamiltonian function (3.10) is defined on these sub
spaces and the same interpretation of the reduced Yang
Mills equations holds with regard to the corresponding sym
plectic action ofthe centralizers (i) SO(n/m), (ii) SO(2n/m), 
and (iii) SpIn/mi. 

Since there is a similar method of solution for each of 
the reduced systems studied, we only detail the procedure 
for the SU(n) Yang-Mills case and summarize the solutions 
for the remaining classical gauge groups. 

In the Hamiltonian formulation of the SU(n) system, we 
have seen that Hand P are commuting (n/m) X (n/m) Her
mitian matrices. There therefore exists an element 
U(t/J)ESU(n/m) which diagonalizes them simultaneously: 

H=UHDUt and P=UpDut. (3.14) 

It follows from Hamilton's equations (3.11) that the first de
rivatives of the diagonal matrices H D and P D satisfy 

HD = - [u,HD] +PD (3.15) 

and 

PD = - [u,PD ] + 2HD(1 - H~), 
where 

(3.16) 

U = Uu, (3.17) 

uEu(n/m), the U(n/m) Lie algebra. Splitting these equations 
into two parts by orthogonal projection (under the Killing 
form) onto the stabilizer [1 oCu(n/m) of (HD,PD) and its 
complement, we find that U(t/J)E[1o: 

[U,HD] =0 and [u,PD ] =0 (3.18) 

and 

HD = PD and PD = 2HD(l - HD 2). (3.19) 

Define now a function g( t/J) with values in the common stabi-
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lizer Go of HD and PD: 

Go = {gESU(nlm)IHD = AdgHD andPD = AdgPD} 
(3.20) 

by the relation 

g=gu. (3.21) 

Generically, Go consists of the group [U(I)](nlml - I of diag
onal unitary matrices, although in principle, it may vary 
with t/J as various eigenvalue degeneracies occur. But for 
each value of t/J, g(t/J) stabilizes HD(t/J) and PD(t/J) provided it 
does for some initial t/J = t/Jo. 

If we next decompose U(t/J) as 

U(t/J) = V(t/J)g(t/J) (3.22) 

we deduce by differentiating (3.22) that V must be a constant 
elementofSU(nlm). Hence (H,P )ET*lH!(nlm) is conjugate to 
(HD,PD) by the constant matrix V: 

H= VHDVt and P= VpDvt. (3.23) 

Let us note that the above procedure is an application of the 
Marsden-Weinstein reduction scheme. 13.14 Since the value 
of the momentum map for this reduction is zero, its isotropy 
group is the entire SU(nlm), and quotienting the inverse im
ageJ -1(0) in T*lH!(nlm)-lH!(nlm) X lH!(nlm) leads to the re
duced phase space defined by the pairs of diagonal matrices 
(HD,PD) and the reduced Hamilton equations (3.19). The 
Hamiltonian flow for the original problem is reconstructed 
from the reduced one by integrating (3.17) in the orbits 
SU(nlm)/Go. But interpreted on the coset space, this is just 
the zero vector field and hence the matrix Vappearing in Eq. 
(3.23) may be taken as constant. 

In second-order form, Eqs. (3.19) are 

HD = 2HD(1 - H~). (3.24) 

This involves a system of nlm uncoupled one-dimensional 
anharmonic oscillators hi (t/J)ER (i = l,oo.,nlm) described by 

hi = 2hi (1 - h ~). (3.25) 

The solution to the second-order ordinary differential equa
tion (3.25) is known in terms of elliptic functions and pro
vides the solution to the reduced SU(2) problem. 7.8 We may 
thus express the solution to the reduced SU(n) Yang-Mills 
equations in the simple form: 

M(t/J) = H(t/J) = Vd nlm(t/J)Vt, 

where 

d'I¢)=[O h,I~) 0] II~ 1, ... ,1) 

(3.26) 

(3.27) 

is a diagonal matrix of I solutions (hi(t/J)) to Eq. (3.25) (see 
Refs. 7 and 8): 

(a) if Ei=~ (iz ~ + (1 - h ~f)<!, 

h;(t/J) = ± (1 + ~2Ei )1/2dn [(1 + ~2Ei )1/2(t/J - t/Jo);ai ], 
(3.28) 

where 

1546 

ai=2~2Ei/(1 +~2Ei)' 
(b) if Ei >~, 
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hi(t/J) = - (1 + ~2Ei )1/2cn [(8EyI4(t/J - t/JO);!Ji]' (3.29) 

where 

(3i -==( 1 + 2EY2~ 2Ei . 

We finally write the solutions to the other reduced 
Yang-Mills systems which are obtained in the same manner: 

(i) SO(n): 
M(t/J) = Vdn1m(t/J)VT, (3.30) 

with a constant VESO(nlm), 
(ii) SpIn) (even m): 

M(t/J) = Vd 2n1m(t/J)VT, 

with a constant VESO(2nlm); 
(iii) SpIn) (odd m): 

M(t/J) = v[~nlm(t/J) 

with a constant VESp(nlm). 

4. SUMMARY 

(3.31) 

(3.32) 

In this paper, we have explicitly reduced the SU(n), 
SO(n), and SpIn) Yang-Mills equations on compactified 
Minkowski space (S I XS 3IZ2 ) using SO(4) invariant gauge 
fields characterized by a particular set of homomorphisms A 
of the isotropy subgroup SU(2)D into the classical gauge 
groups. More generally, the homomorphisms of SU(2) into 
simple subgroups are classified by a set of highest weights of 
SU(2) irreducible representations, the sum of whose dimen
sions does not exceed the dimension of the smallest linear 
irreducible representation of the simple group. 10 Here, we 
have restricted ourselves to homomorphisms specified by 
irreducible representations of equal highest weights. For 
each embedding, the corresponding reduced Yang-Mills 
equations consist of matricial ordinary differential equations 
in the variable t/JES I, which can be interpreted as a Hamilton
ian system with symmetry constrained so that the associated 
momentum map has value zero. We have found that for this 
type ofSO(4) action, the invariant solutions may be given in 
the form of a diagonal set of solutions to decoupled one
dimensional anharmonic oscillators, conjugated by an arbi
trary constant element of the symmetry group. 

In order to treat other SO(4) reductions which are not 
just uncoupled direct sums of the type obtained above, it is 
necessary to consider embed dings in the classical groups 
constructed with consecutive sequences! },} + l,oo.,} + k l 
of highest weights, which reduces to the study of adjacent 
pairs of weights (j,) + 1). It is very likely that the resulting 
reduced systems have a similar interpretation in terms of 
Hamiltonian systems with symmetry, and this will be the 
subject of further study. 

Other possible further developments of this work would 
be the study of SO(4) invariant reduced systems involving 
spinors5.6 or scalars4 minimally coupled to gauge fields, re
ductions of gauge systems under other symmetry groups, 
and the study of the various corresponding semiclassical and 
quantum problems, generalizing the work done for the SU(2) 
gauge group. 15 
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Misleading results can be obtained by applying a leading logarithm approximation where it is not 
valid. However obvious this fact, its neglect is shown to have led to misleading and even erroneous 
conclusions in several recent practical applications of perturbative QCD to the problem of 
summing soft gluons. 

PACS numbers: 12.35.Cn, 12.35.Eq 

1. THE APPROXIMATION 

The leading logarithm approximation is natural in 
theoretical considerations ofperturbative QCD. 1 There var
iables can be readily taken to infinity with impunity. How
ever, in phenomenological applications, care must be taken 
not to misapply such results in kinematic regimes where the 
supposed leading log is not leading at all. For example, sum
ming the leading double logarithms of multigluon emissions 
gives the well-known Sudakov-like quark form factor. 2-5 
Though this exponential suppression is true asymptotically, 
it is readily masked by nonleading contributions at all fore
seeable energies.4

•
5 Thus, while of little concern to theorists 

calculating only asymptotic results, an understanding of the 
range of validity of these results is paramount in any practi
cal evaluation, hence Ref. 6. Though this is self-evident both 
to those motivated to calculate analytically beyond the lead
ing order (as pointed out in Ref. 7) and to some of those who 
compute numerically,8.9 it has been missed in much recent 
phenomenology, leading to misleading, and often erroneous, 
conclusions. 

The prospect of forthcoming experimental results has 
prompted a number of predictions for the transverse mo
mentum distribution of hadrons in e + e - annihilation and of 
the ZO inpp interactions.4.5.10-15 Many of these attempt to 
sum the effects of very soft gluons in a useful phenomenolo
gical fashion and it is in this context that our general point is 
made. 

In Sec. 2, we consider a simple illustration of the effect 
of a misleading logarithm approximation. In Sec. 3, we dis
cuss the way phenomenological calculations deal with the 
cancellation of infrared divergent logarithms and how ne
glected constant terms again affect the result. Sections 4 and 
5 are devoted to studying the evolution of fragmentation 
functions summing soft gluon emissions and the misapplica
tion of a leading logarithm approximation ofBassetto, Ciafa
loni, and Marchesini l6 in recent phenomenology. In Sec. 6, 
the conclusions are given. 

2. WHEN IS A LOGARITHM LEADING? 

In many papers the leading logarithm approximation 
(LLA) and the full 0 (as) result of a perturbative calculation 
are differentiated. This differentiation is clearly artificial: 
only the latter is unique. Consider either the process y*---+qqg 
relevant for jet production or qq-Zg as applicable for Z 
production by the Drell-Yan mechanism. Then when the 
gluon has small relative transverse momentum kT (more pre-

cisely defined below), these differential cross sections for sin
gle gluon emission 0'.(1) behave like 

Ilnk}1 

k} 
(I) 

in the LLA. However, some mass sets the scale for k } in the 
logarithm and as soon as we ask what this is, our discussion 
goes beyond the LLA. The LLA only strictly applies when 
In Ilk} is larger than any constant. Phenomenology in the 
LLA only has a meaning if one chooses a specific scale. At 
first sight, what scale appears merely a matter of choice. This 
is at least how it has been treated. However, the range of 
validity of any LLA is wholly determined by the size of the 
nonleading corrections. Since most phenomenological appli
cations want to cover the whole range of permissible kT' the 
scale of the logarithm must be chosen to mimic the full 0 (as) 
result, which is the only result applicable in the whole kine
matic regime. Any distinction between full 0 (as) and the 
LLA is a mere artifact. 

The theoretical advantage of the LLA is that the lead
ing logs are generated in a universal, process-independent 
way and so amenable to a general treatment, while the terms 
below the leading depend on the process. In phenomenologi
cal applications it is important to recognize this distinction. 
For illustrative purposes we will specifically discuss e+ e
annihilation, though, of course, the points are more general. 
In studying e+ e-_y*---+qqg, it is natural to work in the Da
litz plot variables Xi (i = 1,2,3), which are the fraction of the 
maximum available energy carried by q,q and g, respectively 
(Fig. I), in the virtual photon rest frame. Energy conserva
tion relates XI + X 2 + X3 = 2. With Q the mass of the pho
ton, it is useful to define x T to be the corresponding fraction 
of the maximum transverse momentum relative to some axis 
(Fig. I), so that X T = 2kT/Q as Xi = 2E;lQ. As is well
known, 17 the differential cross section for single gluon emis
sion at X T #0 is 

ij 

~T 
q 

9 

FIG. 1. The variables used to study r*--->lJqg in the virtual photon rest frame 
as fractions of half the photon mass. so that Xl + X 2 + X3 = 2. 
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J.- d
2
dI) =!2.. C

F 
X/ + X/ , 

aO dx Jdx2 21T (l-xJ)(I-x2) 
(2) 

where the color Casimir CF = j and ao is the parton cross 
section 41T a 2 Nc e~ /3Q 2 for each quark of flavor i. Virtual 
gluon corrections, which we discuss in more detail in Sec. 3, 
render the integrated cross section finite. With x T measured 
relative to the X J axis we find that 

d 2d o =!2.. CF (1 + x~ _ x}x J(1 - !Xd) 
aodxJdx} 21TX} I-xI (I_XI)2 

(
X} ) - 1/2 

X 1--
I-xI 

(3) 

The leading logarithm result for da(l)/dx} comes from the 
range of XI as close to the pole as possible at fixedx T . A curve 
of fixed X T is shown in the Dalitz plot [Fig. 2(a)]. Integrating 
over all XI from 0 to (xdmax = 1 - x} we obtain analytical
ly6.18 

1 ddI) _ 2as CF (( x} xi-) (1 + (1 - X})1/2) ------ 1--+-ln -----
ao dx} 1T x} 4 4 XT 

-~(3-X})). (4) 

Now taking the LLA when x T < 1, we see 

1 da(J) a C 
- -2- = ~ -f In( l/x}) , (5) 
ao dX T 1T XT 

though from Eq. (4) we note that for x T <1 the argument of 
the logarithm is really 4/x}. Either of course is true in the 
LLA. However, they will have quite different ranges of va
lidity. In phenomenological applications we want to apply 
these formulas to regimes where the scale is obviously rel
evant. There is then only one LLA which has the maximum 
range of validity, namely that for which the so-called LLA 
and the full 0 (as) are minimally different. 

As noted in Ref. 6, for small X T the form In l/x} is in 
fact more appropriate, since the terms in the bracket of Eq. 
(4) are dominated by 

~(ln(l/x}) + In 4 -~), (6) 

where the last two terms almost exactly cancel. Thus, if, for 
example, in Ref. 11, In M;/4k} had been used to define the 

x~ ....... ______ -, 

(a) (b) 

FIG. 2. The Dalitz plot for y*--+qqg: (a) shows a contour at fixedx T , where 
X T is defined relative to the XI axis as in Fig. 1; (b) shows contours at fixed 
X T' where X T is defined relative to the appropriate thrust axis (i.e., that with 
the largest Xi) in each region. 
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LLA for Z production, their results for LLA and full 0 (as) 
would become indistinguishable. This has the important im
plication that, as far as this effect is concerned, it is only the 
narrower prediction of Ref. 11 for the transverse momentum 
distribution for W production that is relevant as a probe of 
the structure of perturbative QCD. 

This provides a simple illustration of a misleading log 
approximation, which we will meet again in Sec. 5. In the 
next sections more crucial examples will be given. 

In jet production in e+e- annihilation it is experimen
tally more feasible 19 to define the transverse momentum rel
ative to the "parton" axis with the maximum energy, i.e., 
with largest Xi' The Dalitz plot for three jet production is 
then divided into three regions with q, q, andg as thrust axes. 
In Fig. 2(b), we show a curve at fixed X T in each of these 
regions. The differential cross section for one gluon emission 
is then given by 

1 ddI) 

(1 + s)) 
X T 

(7) 

for q or q as the thrust axis, and 

1 ddI) as CF ( 2 (Fir+s) 
ao dx} =-;; x} ~1-x} In Fir -s 

_ 4( 1 + x} + xi- )In(~ 1 _ T m (1 + s) ) 
2 16 x T 

- ~ (I - Tm)(3 - Tml - ! x}(I - Tm)) (8) 

with the gluon as the thrust axis, where 

S 2 = 1 - x}/( 1 - T m) , 

with T m the minimum value of the thrust variable at a given 
x T , i.e., it is the root of the cubic 

(9) 

with~<;Tm <; 1. The kinematically allowed rangeofx T is then 
O<;x}<;j. 

As seen from a comparison of Figs. 2(a) and (b) the be
havior of the cross section for very small kT is the same 
whether or not we define a thrust axis or not. Note that for 
x T < 1, Tm = 1 - }xT> S= 1 - x T , so that the leading log be
havior of Eq. (7) is just half Eq. (5), for each of q,q as the 
thrust axis. The cross section with the gluon as a thrust axis 
does not contribute, of course, to the LL behavior, since the 
poles at XI = 1 and X 2 = 1 of Eq. (2) do not occur in the 
region of gluon thrust [Fig. 2(b)]. Though the kT'S defined 
with the q as the thrust axis and with q as the thrust axis are 
distinct, amusingly the corrections to the LLA, which deter
mine its range of validity are also simply related to that when 
no thrust axis is defined, viz. for small Xp Eq. (7) gives just 
half ofEq. (6) too for each of q and q. Brown and Ellis20 find 
an identical form to Eq. (6) for the energy weighted back-to
back correlation too. This means that the energy weighting 
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factor Xl' being less than 1 for small X T (see Fig. 2), only 
affects terms beyond the constant in powers of x}, just as the 
difference between thrust axes for defining X T does here. 
Thus the LLA has a similar range of validity in each case. 

3. CANCELLING INFRARED DIVERGENCES BEYOND 
THE LEADING LOGS 

As displayed in Eqs. (2)-(5), the cross section for real 
gluon emission is singular at X T = O. It is well-known that 
this is regularized by the virtual gluon graphs to give a finite 
o (a,) cross section.2' (I). Remembering the virtual graphs 
only contribute at QT = 0, Parisi and Petronzi04 give the 
following elegant prescription for defining this regularized 
cross section: 

d.2' (I) doH) 2 f 2 do(l) 
--=---o(Q) dk -
dQ} dQ} T T dk} . 

(10) 

The beauty of this regularization is especially apparent if the 
b-space transform is considered, 

i l dX2 d'~(l) (1 ) 
B(b) = __ T -""-2- JO -xTQb 

o 0 0 dX T 2 
(11) 

i l dx} du(l) ( (1 )) 
= ----2- Jo -xTQb - 1 , 

o U o dX T 2 
(12) 

which is trivially finite. Moreover, all soft gluons can then be 
simply summed, assuming they are independently emitted, 
by4 

1 du 1 i oo 

- -- = - db b exp(B (b ))Jo(QTb ) . 
U o dQ} 2 0 

(13) 

However, this regularization, Eq. (10), is only appropri
ate for leading logs and not when superficially subleading 
terms are important. This is seen by noting that the virtual 
gluon contributions included there not only make the one 
gluon emission (and hence the n-gluon) cross section finite, 
but in fact zero. Asymptotically this means the all gluon and 
"no" gluon cross sections are equal I I even without asympto
tic freedom, viz. 

fdQ}~=uo. dQ} 
(14) 

This is, of course, an oversimplification of the Kinoshita
Lee-Nauenberg theorem. For though the virtual gluon 
graphs make the integrated cross section finite to any order, 
they do not make it vanish. Indeed, for the integrated one
gluon cross section the answer is well known for e+ e- anni
hilation2l 

(15) 

To recall how this arises, let us give the gluon a nonzero mass 
mg so thatthepoles ofEq. (2)atxI = 1 andx2 = 1, when the 
q and q are, respectively on shell, are no longer in the phys
ical region. By this device the real and virtual gluon cross 
sections are both finite with cancelling double and single 
logarithmsln2 Q21m; - 31n Q 2Im;. TheParisi-Petronzio 
prescription is constructed to ensure the cancellation of 
these logarithmic terms. However, a finite, process-depen
dent part remains, e.g., Eq. (15); a part that may be relevant 
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at finite energies. Thus in e+ e- annihilation the regularized 
one-gluon cross section.2' (I) should be given beyond the LLA 
at O(as) by 

d.2'(1) = ddl) -O(Q2)(fdk 2 du(1) -l.-c las (Q2)1) 
dQ} dQ} T T dk} 4 F 1T 

(16) 

to reproduce Eq. (15). Calling the Bessel transform defined in 
Eqs. (11) and (12) Bo(b), the full transform, i.e., that of Eq. 
(16), is simply 

B (b) = Bo(b) + aCFlas(Q2)1/1T (17) 

at fixed Q 2: a significant shift (see Fig. 2 of Ref. 6). This then 
renormalizes the "all" gluon cross section to be [cf. Eq. (13)] 

l..- dU
2 

= exp(las(Q2)1) l..-fdb b exp(Bo(b ))Jo(QTb). 
Uo dQ T 1T 2 

(18) 

For the Drell-Yan process, a numerically larger renor
malization occurs complicated by the fact that the virtual 
and real graphs involve spacelike and timelike Q 2, respec
tively, so that while the log and double log still cancel, there 
is a ~ left behind.3 Assuming the independent emission of 
gluons, fundamental to these summations [Eq. (10)-(13)], the 
cross section is renormalized by exp(CF(aJ21T)~): the fam
ous K factor of 2_322 below 100 Gey2 results. Its inclusion 
significantly increases the predictions for W,Z production 
beyond those of Ref. 11, even at the pp collider. This current 
experiment will check. 

4. EVOLVING FRAGMENTATION FUNCTIONS 

In this section, we discuss another example of a mis
leading logarithm, generated by the use of a small transverse 
momentum approximation in a regime where it is not valid. 
Above we have considered the emission of many soft gluons 
without regard to how they fragment into hadrons. If we 
want to compare with experiment, we must fold in the ap
propriate fragmentation functions. For just a quark, or anti
quark, this is trivial, e.g., Ref. 23. However, when many 
gluons are emitted, we must consider the evolution of the 
fragmentation functions summing these multigluon effects. 
For the nonsinglet fragmentation function D (Q 2,pT>X), its 
evolution is given byl6 

Q2~D(Q2 X)=1Idz(as(Q2) P (Z)) 
.:lQ2 ,PT' 2 qq 
u x Z 1T + 

f 

d2k 
X ~o(z(l-z)Q2-k}) 

XD(Q2'PT-~kT>~)' (19) 

where strictly speaking the argument of as is not Q 2 but 
Q 2( 1 - Z).24 Though this has an appreciable effect, as dis
cussed in Ref. 25, we shall, for simplicity, ignore this, as it 
just complicates the point we want to make. The derivation 
of this equation follows from Eq. (2) with the approximation 
zT=2kTIQ<.z, when the general lowest-order splitting func
tion f!lI qq(Z,ZT) reduces to Pqq(z). We will relax this approxi
mation in the next section. 
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To solve this equation, it is convenient once again to 
transform to the impact parameter space conjugate to the 
transverse momentum. Then in terms of the Fourier trans
form 

2 Jd2 -lb'P~XD(Q2 ) i»(Q ,b,x)= PTe ,PT,x , (20) 

Since a convenient infrared-finite quantity to calculate, 
which can be easily compared with experiment, is the energy 
weighted accolinearity,19.26 we study the energy-weighted 
transform i»(Q2,b) = sb dx x i»(Q2,b,x) rather than the 
general equation (21). Thus we have just a function of two 
variables satisfying 

Q2 ~ i»(Q2,b) = i l 

dz z (as(Q2) Pqq(Z)) 
aQ2 0 217" + 

XJo( Qb ~ 1 ~z )i»( Q2, !). (22) 

Then knowing i»(Q 2 = Qo2,b )atsomeQo, we want to evolve 
it to some higher Q 2. To solve this equation, Bassetto et al. 16 

suggest the following procedure: let us write the right-hand 
side of this equation as 

a s (Q2) i l 
2 

-- dzz(Pqq(z))+i»(Q ,b) 
217" 0 

a (Q2)i
l 

+ _s__ dz z Pqq(z) 
217" 0 

Then, as discussed by Baier and Fey, 12 z is set equal to 1 in 
each function of the second term, except in the explicit 1 - z 
factors in Pqq and in the argument of the Bessel function, so 
that Eq. (22) becomes 

Q2 a~2 i»(Q2,b) 

= a s (Q2) i»(Q2,b)( -11 + i l 

dz 2C2(F) 
217" 0 1-z 

X (Jo(Qb-!1 -z) -1)), (24) 

where 11 is the zeroth order n = 2 anomalous dimension, 11 
= 16C2(F )/3, with the standard nonsinglet exponent d ~s 

=11/2 Po = 32/(99 - 6Nf )· It is then straightforward to see 
that the solution is 

i»(Q2,b) = i»(Q~,b {:::~;:r~sF(Q2,Q~,b), (25) 

where the form factor 
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(26) 

is just that of Parisi and Petronzio,4 cf. Eqs. (12) and (13). For 
large b, this form factor has the behavior given by Rakow 
and Webber. 5 The z-+ 1 approximation generates their lead
ing double logarithm result. However, the approximation of 
Bassetto et al. 16 is, of course, an asymptotic one. Though 
perfectly suitable for strictly theoretical considerations, at 
finite energies its use is quite misplaced. Experience from 
evaluating Eq. (13)4.6 tells us that it is relatively small b that is 
important in inverting such Bessel transforms, e.g., Eq. (13), 
even at small QT or e. Then the terms that generate the 
leading double logarithm result, no longer dominate, consid
erably affecting the phenomenology of Refs. 12 and 13. 

To illustrate this, let us recast Eq. (22), guided by Eq. 
(24), in terms of W defined by 

i»(Q2,b) = W(Q2,b )(a(Q2))d~S 

so that 

Q2 ~ W(Q2,b) = - a s(Q2) i l 

dz z Pqq (Z)(W(Q2,b) 
aQ2 217" 0 

_ W(Q2, !)Jo(Qb~ 1 ~z)) .(27) 

This separation has the virtue that the integrand is clearly 
nonsingular with only real gluon emissions: the virtual 
graphs just contributing to the anomalous dimension term. 
The approximation ofBassetto et al. is to write the integrand 
of this equation simply as 

(2C2(F)I(I-z))W(b,Q2)(I-Jo(Qb~l-z)). (28) 

This would be good if z-+ 1 dominated; but unless Qb is large, 
it does not. 

To illustrate this at its most simple, consider W(b,Q 2) to 
be a constant in b, e.g., 1. With b = 0.2 and 1 GeV- I the 
exact and approximate integrands are shown (with Qo = 6 
GeV, as an example) in Fig. 3(a). We see the approximate 
integrand of Bassetto et al. 16 is not particularly peaked at 
z = 1, and from Eq. (27) we see it will give the derivative 
wrong by a factor of two or more, and so the evolution starts 
off incorrectly. 

This is exemplified by the behavior at b = ° of the func
tion i» (Q 2,b ). Setting b = ° in either Eq. (22), or its approxi
mate Eq. (24), we see aW(Q 2,O)laQ 2 = 0, so that 

i» (Q 2,0) = i» (Q ~ ,oJ( ;i~;; r ~s (29) 

for both. Now, however, let us consider the derivative at 
b = ° of each equation. It is easily checked that the approxi
mation of Bassetto etal. gives, Eq. (28), a 2W(Q2,b)1 
a In Q 2ab Ib~O = 0, which means 

ai» (Q2 0) = ai» (Q2 0) (as(Q2))d~S, 
ab ' ab 0' as(Q~) 

whereas the exact result [either Eq. (22) or Eq. (27)] gives 
a 2 !2J(Q 2,b)la In Q 2 ab Ib =0 = 0, i.e., 

M. R. Pennington 1551 



                                                                                                                                    

12 b = 02 GeV-1 

08 

0·4 

o 0"-0"". 2""""""0 ·"-4 ....,0"'"·6-,0""·8--'1 

b=1GeV-1 

20 

10 

o L-....... =::::.........---L---l 
o 0·2 0·4 0·6 0·8 1 

z 
(8) 

1·2 b=02GeV-1 

-------
0·8 

04 

o 0 02 0·4 06 08 1 

16 r--.---.---.----r----, 
b=1GeV-1 

12 

4 

o i...--*==--'---L---l 

o 02 0·4 06 08 1 
z 

(b) 
FIG. 3. The integrands of the evolution equation [Eq. (27), solid lines] and 
their approximation [Eq. (28), dashed lines] for (a) g'(Q~,b) = 1 and (b) 
g'(Q~,b) deduced from the phenomenological form Eq. (31). Qo = 6 GeV, 
A = 0.4 GeV. 

JfiJ (Q2 0) = JfiJ (Q 20). 
Jb ' Jb 0' 

(30) 

Thus, just as Fig. 3(a) illustrates, the change with Q 2 is too 
great for the approximate solution for small b, which is the 
crucial region for determining the behavior of the QeD pre
diction. 

Moreover, the difference shown in Fig. 3(a), between 
the exact and approximate integrands, is likely to be even 
greater in practice. At z = 1, for example, the approximate 
integrand, Eq. (28), is just 

!C2(F)Q 2b 21f(Q 2,b ) , 

while for the exact expression, Eq. (27), is 

~ C2(Fl( Q 2b 21f(Q 2,b) - 4b ! If(Q 2,b)) . 

In the illustration of Fig. 3(a), with If = 1, this last derivative 
contributes nothing, but in general this will not be the case. 
Of course, if Qb is large enough, the integrands do peak at 
z = 1, and the approximation of Bassetto et al. 16 is valid. 
However, we naturally want to evolve the fragmentation 
functions from some relatively low momentum, otherwise 
the predictions are already built into the starting function 
fiJ(Q02,b ). 

Since Eq. (19) is clearly tricky to solve analytically, we 
can evolve it numerically. As a suitable fragmentation func
tion in the two jet regime, i.e., at Q-6 GeV, we choose 

Though such a form is expected for q or q separately and not 
for their nonsinglet combinations, it serves as a useful exam
ple. N then ensures momentum conservation, viz. 

f dx x J d 2PT D(Q2,PT,x) = 1, (32) 

which implies that the Fourier transform of the energy 
weighted function, viz. Eq. (22), is normalized so that 
fiJ(Q 2,b = 0) = 1. Note that the range ofpT [in Eqs. (31) and 
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(32)] is limited by the energy fraction x so that27
•
28 

X>XT = 2 PT/Q. 
With (P}) = 0.25 GeV /c2 at Qo = 6 GeV we have 

evolved the transform to Q = 30 GeV and its square is 
shown in Fig. 4. As expected the true transform evolves 
more slowly than the approximation of Bassetto et al. In a 
practical calculation like that of the accolinearity w( 0 ), a 
coupled system of singlet quark and gluon fragmentation 
equations arises, with w(O) given byl2 

~~ =~ (= d(bQ)bQJo(bQsin!O)(fiJ(Q2,b))2, 
d sm !O 2 Jo 

(33) 

where fiJ is now a singlet quark distribution. Though this 
has zero anomalous dimension and so its value at b = 0 is 
fixed with momentum [Eq. (29)], it evolves very similarly to 
that illustrated in Fig. 4 (the curves are just all normalized to 
one at b = 0). Since the inversion, given by Eq. (33), needed 
to compare with experiment in the region cos 0> 0.97,26 
picks out b < 0.3 Ge V - I, we see this difference between the 
true and approximate transforms is crucial to a meaningful 
confrontation with data. 

Though an analytic solution, like Eqs. (25) and (26), is 
not possible beyond the LLA, the numerical evaluation giv
en above is straightforward. Moreover, the inclusion of the 
dominant higher-order terms in as by correcting the argu
ment to k } from Q 2 in Eq. (19),24 for which numerical solu
tion is necessary anyway, produces no additional complica
tions beyond those studied in Ref. 25. These effects are 
worthy offurther study.29 

5. RELAXING THE SMALLkT APPROXIMATION 

So far our discussion has been limited by the small 
transverse momentum approximation in which the full split
ting function 9' qq(x,x T ) is replaced by Pqq(x). Kodaira and 
Trentadue l4

•
15 have attempted to go beyond this by includ

ing the terms in the splitting function that give more than the 
leading logarithm ofEq. (5), as well as higher-order terms 
o (a;). By doing this Kodaira and Trentadue conclude that 
no agreement with experiment is possible. To see how they 
arrive at this conclusion by use of a misleading approxima
tion let us drop the 0 (a;) terms, which only complicate the 
discussion. To go beyond the leading logarithm approxima-

08 

:c 
N. 06 
~ 
0 

04 

02 

0 
0 0·5 15 

b GeV·1 

FIG. 4. The evolution of the Fourier transform of the energy-weighted 
fragmentation function IiiJ (Q 2,b ) squared from Q = 6-30 Ge V according to 
Eq. (27) (solid curve) and its approximation Eq. (28) (dashed curve) as func
tions of b. A = 0.4 GeV. 
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tion of Sees. 2 and 4, Kodaira and Trentadue include the 
dominant constant terms ofEq. (4). Thus they generalize Eq. 
(19) to the complete splitting function 9 (X,xT)' but approxi
mate this to generate just the terms [Eq. (6)] 

In(4/x}) - ~. 

This is then transformed into the conjugate impact param
eter space to give T(b), the exponential of which generalizes 
the form factor ofEq. (26) on solving the resulting evolution 
equation by the method of Bassetto et al. This b-space form 
factor is expected to look rather like 1f(Q 2,b f, cf. Fig. 4, 
which it generalizes. However, Kodaira and Trentaduel5 

find the function drawn in Fig. 5, which is quite different. 
Notice that, while the form factor of Fig. 4 falls monotoni
cally, that ofKodaira and Trentadue increases at small band 
then falls. It is this strange behavior of the b-space form 
factor which gives the predictions that Kodaira and Trenta
due find inconsistent with experiment. How does this hap
pen? 

The full splitting function 9 qq (x,x T)' being proportion
al to a physical cross section, is positive definite (except at 
X T = 0 where the virtual graphs contribute). As a conse
quence, the logarithm of the b-space form factor [Eq. (26), or 
B (b) or Eq. (12), or T(b) of Ref. 15] is negative definite, since 
Jo(Y) < 1 V y> O.However, the behavior in Fig. 5 means T(b) 
of Kodaira and Trentadue has a positive excursion for 
b < 0.2 GeV- 1

. This is wholly due to the - ~ ofEq. (6). This 
is indeed the next term in the expansion of the basic single 
gluon emission cross section, Eq. (4) or (7) for k }<Q 2. How
ever, the terms which are negligible for kT small ensure it 
remains positive as kT increases. Thus the next term in Eq. 
(6) would give, from Eq. (4). 

- 1-~+4~ln---1 (( k2 k4) (Q 2
) 3 

2 Q2 Q4 k} 2 

+3 k } _2ki- _~k~ ... ). 
Q2 Q4 3 Q6 

Now it is the behavior of this cross section at large kT that 
determines the Fourier transform at small Qb. There Ko
daira and Trentaduel4.15 still use a small kT approximation 

FIG. 5. The form factor F(Q2,Qo2,b) at Q = 30 GeV from Kodaira and 
Trentadue" (the curve shown solid), with A = 0.2 GeV, compared with 
that given by Eq. (26) (the dotted curve). 
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[Eq. (6)] where it surely cannot be valid. Not surprisingly, 
misleading conclusions then result.30 

As already remarked, experience from evaluating Eqs. 
(12) and (26)4,6 tells us small b is the dominant region. The 
behavior is largely determined there by the form of the single 
gluon cross section at large XT' There perturbation theory 
straightforwardly applies4 and the cross section, being phys
ical, is positive definite. Consequently, the b-space form fac
tor is definitely less than one. Predictions for the accolinear
ity, or energy-energy correlation, in e+ e-, 19,26 depend on the 
details of how this form factor falls from one as b increases, 
e.g., Fig. 4. This should provide a valuable test of perturba
tive QCD.4 

6. CONCLUSIONS 

Leading logarithms in perturbative QCD have a univer
sal, process-independent origin. Their study provides a most 
useful theoretical approximation yielding many important 
results. 1 However, in any confrontation of these with experi
ment, care must be taken to apply results so obtained only in 
kinematic regimes where such approximations are valid. To 
do otherwise is shown to lead to misleading results and pro
duce erroneous conclusions on the ability of perturbative 
QCD to describe available data. In most present phenomen
ology, nonleading terms dominate and the leading logarithm 
approximation is quite misleading. The K-factor in Drell
Yan processes,3.22 and its analog in other reactions (Sec. 3), 
dramatically affects their normalization at all foreseeable en
ergies. The inclusion of non leading terms usually means ana
lytic solutions are no longer possible: for example, the frag
mentation function formulas of Bassetto, Ciafaloni, and 
Marchesini. 16 In Sec. 4, we have shown how their leading 
logarithm approximation fails at finite momenta. Neverthe
less, such evolution equations are readily solved numerical
ly, generating quite different results. 

In almost all physical problems, approximations are of 
course necessary; approximations that can be shown to be 
invalid in some regime. Nonetheless, however pathological 
the approximation there, it is often of no consequence for the 
original problem. The examples given here differ31 in that 
they show how the leading logarithm approximation is dan
gerous in tackling presently relevant problems at presently 
accessible momenta. We must conclude that leading logs 
lead theoretically, but mislead phenomenology. 
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In the last decade an extensive literature appeared in which the microscopic collective behavior of 
nuclei was associated with definite irreducible representations (irreps) of either the O(n) or Sp(6) 
groups, where n = A-I and A is the number of nucleons. It became clear that the two 
approaches are equivalent, as problems with 3n degrees of freedom are characterized by a definite 
irrep of the group Sp( 6n) and for its subgroup Sp( 6) X O(n) the irrep ofO(n) determines that ofSp( 6) 
and vice versa. Thus one can consider that collective effects appear when one introduces the 
constraint that in the many-body system the states are restricted to a definite irrep ofO(n) [and 
thus also ofSp(6)] and the Hamiltonians are in the enveloping algebra ofSp(6) rather than in that 
of Sp(6n). Once Sp(6) becomes the paramount group of collective motions, the problem is to 
determine the matrix elements of the generators ofSp(6) in a basis characterized by irreps of its 
subgroups. What subgroups to choose? Rowe and Rosensteel have taken Sp(6):JU(3) and 
Sp(6):J CM(3), where the latter has also been considered by Biedenharn et al. In the present series 
of papers we analyze the problem in the chain Sp(6):JSp(2) X &'(3), as we show that in the boson 
limit, i.e., when n» 1, the Casimir operator ofSp(2) goes into the Casimir operator ofU(5), i.e., the 
corresponding chain is U(6):JU(5):J&'(3). In the case Sp(6):JU(3):J&'(3), the boson limit is 
U(6):JU(3):J&'(3). Thus in this series of papers we look at the microscopic collective model from 
what could be called the vibrational rather than the rotational point of view. 

PACS numbers: 21.60.Ev, 21.60.Fw, 03.65.Ge 

1. INTRODUCTION 

In this, the first of a series of papers, we wish to discuss 
the relation between collective behavior in many-body sys
tems and geometrical concepts. Specifically, we shall reexa
mine the microscopic description of nuclear collective mo
tions and their relations with the symplectic geometry of the 
A nucleon system. 

The first widely succesful way of introducing collective 
degrees of freedom in the nucleus was the liquid drop model 
of Niels Bohr.l In it the surface of the drop is given in spheri
cal coordinates by r = f(B,cp ), and the right-hand side is de
veloped in spherical harmonics with the coefficients becom
ing the collective degrees offreedom. In the more systematic 
approach developed years later by Bohr and Mottelson,2 the 
drop is restricted to quadrupole deformations, and the fluid 
is taken as incompressible so that the equation of the surface 
becomes 

(1) 

with am = ( - Ira -m' m = 2,1,0, - 1, - 2, being the 
collective degrees of freedom. The am are implicitly relat
ed2

•
3 to the mass quadrupole of the many nucleon system 

defined by 

qm = L (Ir,lr'/2m) LXrsx,-'s' (2) 
'T,r' s = 1 

where < / ) is a Clebsch-Gordan coefficient and x rs ' 

r = 1,0, - 1, s = 1,2, ... ,n, are the spherical components of 
the n = A-I relative Jacobi vectors of the A nucleon sys-

8) Member of El Colegio Nacional and Instituto Nacional de Investigaciones 
Nucleares. 

tem as, from the beginning, we wish to eliminate the center
of-mass coordinate which is irrelevant for the analysis. It is 
immediately clear that the qm defined by (2) is a scalar with 
respect to the O(n) group of rotations in the space associated 
with the index s = 1,2, ... ,n. This point will be central to 

much of the following discussion. 
In view of the great success of the Bohr-Mottelson mod

el in explaining many of the features of nuclear structure, a 
very extensive literature developed trying to justify it micro
scopically. From the standpoint of this series of papers, we 
are concerned only with that part of the literature based on 
group-theoretical considerations, which we shall proceed to 
review briefly so as to place our approach in the context of 
the work done previously in this field. 

Probably the first publications that develop the point of 
view in which we are interested are those of Goshen and 
Lipkin.4 In the first one, that appeared in 1959, they consider 
an n-body system in one-dimensional space and indicate how 
from the symplectic 2n-dimensional group Sp(2n) of the 
problem, one can pass to the group Sp(2)XO(n), where the 
latter is the orthogonal group in n-dimensions. Collective 
excitations are then related to the Sp(2) group and, in parti
cular, the collective Hamiltonian is associated with the O{2) 
subgroup of the latter. In a subsequent paper they extend the 
analysis to two space dimensions, i.e., Sp(4n):JSp(4)XO(n). 
In several respects the papers of Goshen and Lipkin provide 
the foundations on which many of the group-theoretical mi
croscopic collective theories were based, including the one to 
be presented in this series of papers. They did not provide, 
though, a detailed formalism for carrying out nuclear struc
ture calculations. 

By the early seventies a considerable push was given to 
the development of group-theoretical microscopic collective 
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models through the work of Zickendraht5 and Dzublik et 
al.6 in which they introduced a transformations of coordi
nates that take us from the 3n variables Xis' i = 1,2,3, 
s = 1, ... ,n, to six collective degrees of freedom (three defor
mation parameters along the principal axis and three Euler 
angles) and 3n - 6 variables associated with single-particle 
excitations. Almost immediately the group of Filippov7 in 
Kiev and ofVanagas8 in Vilnus realized that these transfor
mations allowed one to discuss collective effects by restrict
ing the states to a definite irreducible representation (irrep) of 
the O(n) group which could be derived from shell model con
sideration.7,8 

A problem of 3n degrees of freedom can be associated 
with a definite irrep of a dynamical group Sp(6n), which 
among its subgroups has Sp(6)XO(n). It was shown by Mo
shinsky and Quesne9 in 1971 that the irrep of the group O(n) 
determines that of Sp(6), Le., that they are "complemen
tary,,,9 and thus the procedure of Filippov and Vanagas re
stricted to a specific irrep of O(n) implied also a restriction to 
a definite irrep ofSp( 6), as these authors realized in their later 
publications. IO

•
11 

By the middle seventies Rosensteel and Rowe I2 in Tor
onto and Bidenharn, Buck, Cusson, and Weaver13 at Duke 
initiated an approach to the problem by first identifying the 
desired collective motions and then determining the opera
tors that generate these motions as well as the Lie algebra 
that they satisfy. Thus appeared the collective motion Lie 
algebra 12.13 known as cm(3) as well as the explicit determina
tion of the vortex spin operator which plays a very important 
role in coupling rotational motion with internal dynamics. 14 

Rosensteel and Rowe15 and their collaborators quickly 
realized that the CM(3) group was a subgroup ofSp(6) 
[which they call SP(3,R )J and thus the basis for the irreps of 
the latter were fundamental for implementing their views on 
the microscopic origin of collective motions. A natural chain 
for discussing these basis is Sp(6)::J U(3) where the latter is 
the unitary group in three dimensions introduced by El
liott. 16 Rowe and Rosensteel then proceeded to find the basis 
for the irreps Sp(6)::JU(3) both in an abstract fashion and as 
shell model states, and to carry an extensive program of cal
culations 17 using these basis as well as discussing the impli
cations for the states characterized by irreps in the chain 
Sp(6)~CM(3).12.I3 

The remark made previously9 about the relation 
between the irreps ofSp(6) and O(n), when Sp(6)XO(n) is 
considered as a subgroup of a definite irrep ofSp(6n), imme
diately relates the work done in Toronto and Duke to that 
carried out in Vilnus and Kiev, as was quickly clear to all the 
authors involved. 10,11,14.15 Thus the Sp(6) group became the 
paramount one for the microscopic analysis of nuclear col
lective motions, and its seemed that the discussion of the 
previously mentioned authors, and, in particular, the very 
extensive analysis of Rowe and Rosensteel,15 provided all 
the background necessary for calculations in nuclear struc
ture. 

The reason that, in the present series of papers, the au
thor and his collaborators are looking again at the Sp(6) 
problem stems from their experience l8

-
20 both in the Bohr

Mottelson model2 and the interacting boson approximation 
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(IBA)21 introduced by Arima and Iachello. In particular in 
the latter, where pairs of nucleons are associated with s- and 
d-bosons, the fundamental group is U(6) and it admits, 
among others, the chain of subgroup V(6)::JU(3)::J 6(3) and 
U(6)::J V(S)::J C'(3) associated, respectively, with rotational 
and vibrational limits. 21 Now Deenen and Quesne22 showed 
that for closed shells or, equivalently, scalar representation 
ofO(n), the states that are basis for irreps of Sp(6)::JU(3) can 
be put into one-to-one correspondence with basis states 
characterized by irreps of U(6)::JU(3) in the boson approxi
mation. A similar result was proved for open shells, where 
now there is vortex spin, by Castaiios and Frank,23 but only 
in the limit when the number of nucleons A---.. 00. Thus the 
procedures of Rosensteel and Rowe are closely correlated 
with the U(6)~U(3) chain in the boson approximation, as 
they themselves have stressed.24 

Is there something equivalent in the Sp(6) model of the 
U(6)::JU(5)::J C'(3) chain in the boson model? We shall show 
in the present paper that this is the case if we consider the 
Sp(6)::JSp(2) X &(3) chain which, to our knowledge, has not 
been fully discussed before. Thus it becomes interesting to 
analyze the basis for the irreps in the chain 
Sp(6)::JSp(2)X &(3) as well as the matrix element of the gen
erators ofSp(6) in this basis. This will be the main objective of 
the present series of papers. 

Before presenting a summary of this and the following 
publications, we would like to stress that the developments 
outlined above for a group-theoretical approach to a micro
scopic theory of collective motions are not contradictory but 
complementary. As we indicated, all of them can be related 
to the Sp(6) group, though some analysis emphasize the com
plementary group O(n), 10. II while others stress particular 
subgroups ofSp(6) whose generators are relevant to collec
tive operators. 12.14. 15 Thus one could affirm that the bare 
bones ideas introduced almost a quarter of century ag04 have 
been fleshed out in a variety of ways that illuminate the mi
croscopic nature of nuclear collective motions and help us 
also to understand better macroscopic collective models 
such as the Bohr-Mottelson one and the interacting boson 
approximation. 

2. SUMMARY 

We start our analysis in Sec. 3 by briefly outlining an 
analogy in Euclidean geometry which we think is helpful in 
understanding the nature of the problem. In Sec. 4 we then 
review the symplectic geometry for a problem of 3n degrees 
offreedom whose dynamical group is Sp(6n), emphasizing 
the subgroup Sp(6) XO(n). In Sec. S we introduce our defini
tion of collectivity as a restriction to a definite irrep of O(n) 
for the states and to expressions in the enveloping algebra of 
Sp( 6) for the Hamiltonians. As discussed in the Introduction, 
this definition coincides with those of other authors,7.8.15 but 
in Sec. 6 we indicate that our procedure for calculations is 
based on the chain of subgroups Sp(6) ~Sp(2) X C'(3). After a 
brief detour to the one-dimensional problem in Sec. 7, we 
tackle in Sec. 8 the three-dimensional case in the limit when 
n---.. 00. We show that the Casimir operator of the Sp(2) sub
group goes then into a collective Hamiltonian of the Bohr-

Marcos Moshinsky 1556 



                                                                                                                                    

Mottelson type. As the latter can be formally associated with 
d-bosons only, and thus, with a U(5) symmetry group, we see 
that Sp(6):)Sp(2) X &(3) in the boson limit (i.e., when n> 1) 
corresponds to the U(6):) U(5):) &(3) chain of groups, rather 
than to U(6):)U(3), which is the boson limit for the 
Sp(6):::) U(3) approach followed by Rosensteel and Rowe. 15,24 
Also in Sec. 8 we use a complete set of states25 for microscop
ic collective models (again when n> 1), to give the matrix 
elements of the generators ofSp(6), and thus fully implement 
our program when the number of nucleons is large. In Sec. 9 
we outline the program for the determination of the states 
and matrix elements for arbitrary n (and not as before for 
n> 1 only), and this program will be implemented in the sec
ond and third papers of this series in spaces of two and three 
dimensions, i.e., for the chains of groups Sp(4):::) Sp(2) X &(2) 
and Sp(6):)Sp(2)X &(3). 

3. ANALOGY IN ELEMENTARY GEOMETRY 

Let us now consider an elementary problem which will 
provide a useful analogy for our future discussions. If we 
look at the three-dimensional Euclidean space of coordi
nates (x, y,z) we have in it the simple geometrical concepts 
and theorems discussed in Euclid's book. If we introduce a 
constraint in this space by the relation X2 + y2 

+ (z - 0)2 = 0 2, we have now the more complex geometry 
of a sphere despite the fact that we are dealing with a two
rather than a three-dimensional manifold. We recover the 
simple Euclidean geometry, but now in two rather than three 
dimensions, for the points on the sphere near the origin when 
0_ 00 , as then that part of the sphere becomes essentially the 
x-yplane. 

4. SYMPLECTIC GEOMETRY 

Let us turn now our attention to the A = n + 1 particle 
system in a d-dimensional space, which we will later particu
larize to d = 1,2 as well as the physical case d = 3. Again 
eliminating the center of mass, we have the Jacobi coordi
nates and momenta 

Xis ,Pis , [Xis ,pjI1 = i/Jij/Js" iJ = 1, ... ,d, s,t = 1, ... ,n, (3) 

which are the elements of a dn-dimensional Weyl Lie algebra 
W(dn). We shall use in this paper units in which fl, the mass 
of the particles, and an appropriate frequency take the value 
1. 

The Hermitian quadratic expressions in coordinates 
and momenta 

XisXjl , XisPjl + pj1xis> PisPjl' (4) 

which close under commutation,26 provide us with the 
dn(2dn + 1) generators of the symplectic group Sp(2dn). 

We now indicate a, purely conceptual, way in which we 
could use the Sp(2dn) group to solve the many-body prob
lem. We first need a complete set of states which can be 
provided by the eigenstates of the Hamiltonian 

n d 

Ho = L L HiS' His = !(P~ +X;s), (5) 
s= 1;= 1 

where the dn operators His are particular combinations of 
the generators (4) ofSp(2dn) that commute among them-
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selves, i.e., [HiS ,Hjl 1 = 0, thus giving us the weight genera
tors27 of this group. As H o is invariant under the permuta
tion of the A = n + 1 nucleons, the eigenstates can be 
characterized further by the irreducible representation (ir
rep) of symmetric group Sn + I and its subgroups, i.e., by a 
partition { f J of n + 1 and the Yamanouchi symbol (r). Fur
thermore, in this basis we can calculate the matrix elements 
of all the generators (4) ofthe Sp(2dn) group. 

Now an arbitrary Hamiltonian H involving central 
forces (to which we shall restrict ourselves for simplicity) is 
in the enveloping algebra ofSp(2dn), as it will be a function of 
the quadratic expressions in (4) which are invariant under 
space reflections, rather than on the linear Xis' Pis' which are 
not. This also applies to other integrals of motion such as the 
components of the total angular momentum or functions of 
them. Thus, if we have the matrix elements of the generators 
ofSp(2dn) in the basis of eigenstates of Ho, we know, in prin
ciple, the matrix representation of an arbitrary Hamiltonian 
H and its integrals of motion. The diagonalization of these 
matrices, which we make finite by taking an upper bound to 
the number of quanta in the eigenstates of Ho, provide us 
with energy levels characterized by eigenvalues of the inte
grals of motion. 

The procedure indicated in the previous paragraph is, 
of course, highly impractical, but it provides us with a frame
work which we shall use later when we restrict ourselves to 
the collective degrees of freedom. 

Let us now turn our attention to the dn-dimensional 
oscillator whose Hamiltonian is the H o of (5). Its dynamical 
group is, of course,26 Sp(2dn) whose generators are given by 
(4) and all the states of even (odd) number of quanta Nbelong 
to the irrep [!dn] (Udn - In) of this group, as can be seen 
when we apply His of (5) to the lowest weight state, i.e., for 
even (odd) number of quanta the N = ° (1) state. 

The subgroups of the dynamical group Sp(2dn) allow us 
to classify further the eigenstates of H o' As we show later, the 
relevant subgroup turns out to be 

Sp(2dn) :::) Sp(2d ) X O(n), (6) 

whose generators can be obtained from (4) if we contract 
with respect to the indices i or s. For O(n) these generators27 

have the well-known form 

d 

.2"sl = L (xisPit - XitPis), 
;= 1 

(7) 

and there are (n/2) (n - 1) of them with the quadratic Casi
mir operator being given by .2"2 = P:SI .2";" For Sp(2d) 
there are d (2d + 1) Hermitian generators of the form26,15 

n 

qij = L (xiSxjs ), (8a) 
s= I 

1 n 

Sij ="2 s~I(XisPjS + XjsPis + Pjsxis + PisXjS) = i[Ho,qij 1, 

(8b) 
n 

Tij = L (PisPjS) = qij - H Ho, [Ho,qij]] ' (8c) 
8= 1 

n 

Lij = L (XiSPjS - XjsPis)' (8d) 
s= 1 
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where from the commutation relation (3) we see thatSij' Tij; 
i,j = l...d, can be expressed in terms of commutators of qij 
with Ho. The generators in (8d) are those of the (/ (d) sub
group of Sp(2d ). 

As we are dealing only with the irreps [~dn] or [!dn - '~] 

ofSp(2dn) it is clear9,28 that the irreps ofSp(2d) and O(n) are 
complementary, i.e., if we fix the irrep of O(n) that of Sp(2d ) 
is given or vice versa. This is due to the fact that the Casimir 
operators ofSp(2d ) can be expressed as polynomial functions 
of those ofO(n) or vice versa. 

We now look at the type ofirreps that we can have for 
O(n) in the eigenstates of Ho. The symmetry group of Ho is 
U(dn), and it admits the subgroup chain 

U(dnp W(d)xU(n), (9) 

where in turn O(n), whose generators are given by (7), is a 
subgroup ofU(n). As all states will be characterized by sym
metric irreps [N] of N quanta for U(dn), W(d), and Urn) are 
also complementary.9,28 Assuming d < n (which will be the 
case for most situations of interest as in physical space 
d = 3), we have that the irreps of both W(d) and Urn) are 
characterized by partitions of N in d numbers, i.e., 
[h"h2· .. hd ]. As O(n) is a subgroup ofU(n), its most general 
irrep will also be given by a partition in d numbers 
(W"W2"'Wd)' where Wi <hi' i = 1, ... ,d. Thus we have charac
terized the irrep ofO(n) and, because ofthe complementary 
relations, also that of Sp(2d ). 

The eigenstates of Ho are determined by dn quantum 
numbers. We wish now to characterize these states by an 
irrep (W''''Wd) ofO(n) and thus also by a definite irrep of 
Sp(2d)' We first inquire how many of the dn quantum 
numbers are associated with subgroups of the O(n) group. 
For this purpose let us consider the chain O(n) 
~O(n - Ip ... ~0(2) whose irreps can be arranged in a 
Gel'fand pattern29 

O(n) w',n w2,n ........... wd,n 

O(n -1) w',n_' ......... wd,n -, 
............... 

0(2d) 

0(2d - 1) (10) 

0(2d- 2) 

0(3) W13 

0(2) W 12 

where to the left we indicate the orthogonal subgroup to 
which the irrep in each row belongs and we have added the 
index n to thew;. i = 1,2, .. ·,n of the irrep ofO(n), Clearly the 
total of quantum numbers is given by 

d-' 
(n - 2d + l)d + L m = nd - d 2. (11) 

m= 1 

Thus the irreps of the subgroups of Sp(2d ), plus the multi
plicity indices, must supply the missing d 2 quantum 
numbers. In an independent fashion '5,30 it is also possible to 
see that the total of quantum numbers required to character
ize the most general irrep of Sp(2d ) is d 2, 
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5. DEFINITION OF COLLECTIVITY 

So far we have been talking about mathematical rela
tions. We wish now to address ourselves to the physics and 
ask how collectivity appears within this framework. Our de
finition will be that collective states are restricted to a single 
irrep ofO(n)-and thus also ofSp(2d )-and that collective 
Hamiltonians will be defined in the enveloping algebra of 
Sp(2d ), rather than in that ofSp(2dn), i.e., will be functions of 
the operators (8) which, furthermore, must be invariant un
der the subgroup (/ (d), 

The reasons for this definition are the following: First 
we can assume an oscillator shell model as the starting point 
in our analysis. The ground state for A nucleons (for which 
now d = 3), is formed when we fill compactly the levels of 
the oscillator to get a state of definite number of quanta N. 
These states can be characterized by irreps (A Il) ofSU(3) 
which correspond to irreps ofU(3), and thus also ofU(n), 
given by 

[h,h2h3], (12a) 

where 

h, = WU + Il) + N], 

h2 = HfI.t - A) + N], h3 = H - (A + 21l) + N]. 
(12b) 

As the levels are compactly filled,25 we have that the irreps of 
O(n), which for d = 3 are given by (w, W2 ( 3 ), become 
(w, w2 ( 3) = [h,h2h3]' Thus 4He, '60, 2°Ne, for which, re
spectively, theN and the irreps (A Il) ofSU(3) are given by 0, 
12,20 and (0,0), (0,0), (8,0), correspond to irreps (w" W 2 (3) of 
O(n) that are (0,0,0), (4,4,4), (12,4,4). Thus the shell model for 
the ground state fixes the irrep ofO(n), to which we restrict 
ourselves in collective excitations. 

Clearly this procedure for determining (w, W 2 ( 3 ) does 
not hold for heavy nuclei above the 2s, Id shell where the 
strong spin-orbit coupling destroys the SU(3) symmetry. 
However, alternative proposals have been presented, '5.3' or 
may become available in the future, to determine the 
(w, W 2 ( 3 ) to which one is restricted in collective excitations . 

We now tum our attention to why the collective Hamil
tonian should be defined in the enveloping algebra ofSp(2d ). 
To begin with, we notice that the mass quadrupole of the A 
nucleon system, given by (2), and already related to collective 
behavior by Bohr and Mottelson,2,3 is in fact given in Carte
sian components by qij - j ~~ =, qkk ~ij' where q'j was de
fined in (8a). Thus it is an element of the Sp(2d) Lie algebra. 
More generally, Vanagas" has stressed that the collective 
component of a given many-body Hamiltonian is related to 
that part of it that is invariant under the O(n) group and thus 
can be expressed in the enveloping algebra of Sp(2d ). 

Collective states and Hamiltonians are not then the 
most general wave functions and operators that can be de
fined for the many-body system, but in effect they obey a 
constraint; for the states that they belong to a given irrep 
(W''''Wd) ofO(n) and for the Hamiltonians that they are in
variant under O(n) and (/ (d ). This restriction in our symplec
tic space resembles the constraint in Euclidean space that we 
discussed in Sec. 3 of this note. As in the Euclidean problem, 
the constraint in the symplectic manifold drastically reduces 
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the dimensions of the Hilbert space as we pass from one 
characterized by dn quantum numbers, if the physical space 
has d dimensions, to one in which we have only d 2 quantum 
numbers. This is a tremendous reduction if we consider that 
n = A-I is of the order of a hundred in nuclei in which 
collective effects are of interest, while d = 3 in physical 
space. 

On the other hand, the constraint makes the determina
tion of states and matrix elements more difficult, in the same 
way as the constraint in Euclidean space leads to a geometry 
on a sphere which is more difficult than that of a plane. 

6. PROCEDURE FOR CALCULATIONS 

What procedure must we then follow for calculations in 
the collective model defined above? First we must character
ize the states of Ho not only by an irrep (WIW2"'Wd) ofO(n), 
and thus by an irrep of Sp(2d), but also by subgroups of the 
latter. We found it convenient to consider the chain 

Sp(2d):::J Sp(2) X d(d), (13) 

where the generators of d(d) are given by (Sd), while those of 
Sp(2) are the scalars of d(d) that we can form from the gener
ators (Sa)-(Sc), i.e., 

1 d 

II ="4 i~I(Tii - qii)' 

(14) 

which satisfy26 the commutation rules 
[/1,12] = - il3, [/3,11] = il2, [/2,13] = ill' 

The eigenstates of Ho are then characterized by the ir
rep (WI'''Wd) ofO(n), and thus also ofSp(2d), and by the irrep 
A ofSp(2) and (L I,L2, ... ,L[d12 J) of d(d) (where [d 12] equals 
d 12 if d is even and (d - 1)/2 if d is odd) as well as by multi
plicity indices in the chain (13). The irreps of the subgroups 
ofO(n), also required in the characterization of the eigen
states of H o, will be irrelevant in the calculation of the matrix 
elements of operators in the enveloping algebra of Sp(2d ). 

Clearly, then, what we require are the matrix elements 
of the qij of (Sa) in the basis ofeigenstates of Ho characterized 
by the chain of subgroups (6), (13), as from them we can 
immediately obtain those of Sij' Tij using the commutation 
relations in (Sb), (Sc), and thus finally the matrix elements of 
any operator in the enveloping algebra of Sp(2d ). 

The determination of the eigenstates mentioned in the 
previous paragraph requires the use of an appropriate coor
dinate system introduced by Zickendraht5 and by Dzublik et 
al.6 in which thedn coordinates Xis , i = 1, ... ,d,s = 1, ... ,n, are 
expressed as 

d 

Xis = I PkDUtJ)D~_d+k.s(l/J). (15) 
k~1 

In (15) the matrix Dl = liD ki (tJ ) II is the defining repre
sentation (which is the reason for the 1 appearing as an upper 
index) of the dId) group, in terms of its (d /2) (d - 1) Euler 
angles. The matrix liD :s(l/J )11 has the same meaning for the 
O(n) group and it depends on (n/2) (n - 1) angular coordi
nates denoted by l/J. As in (15), we need only the last d rows of 
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this matrix, the number of angular coordinates required will 
be those of the O(n) minus those of the O(n - d) subgroup 
associated with rows 1 to n - d, i.e., 

(n/2)(n - 1) - [In - d )/2)](n - d - 1) 

= nd - (d 12)(d + 1). (16) 

Ifweadd to the number (16) of l/J 's that of tJ 's and thep's, we 
obtain nd, i.e., the number of X is' as we should. 

Furthermore, we note that from the orthogonal proper
ties of the matrices liD :s (l/J ) II we have 

q= IIqijll =jjl(tJ)lIp~8ijIlDI(tJ), (17) 

where - indicates the transposed matrix. Thus the Pk 's ap
pearing in (15) are related to the diagonal quadrupole matrix 
11P~8ij II while DI(tJ) is the orthogonal matrix, function of the 
(d 12)(d - 1) Euler angles, that takes us from the frame of 
reference fixed in space to the one fixed in the body. 

7. ONE-DIMENSIONAL CASE 

We wish now to illustrate our analysis for d = 1. The 
problem is trivial as we can suppress the index i = 1 and have 
Xs = P D ~s (l/J ), i.e., and expansion in hyperspherical coordi
nates. The HamiltonianHo of(5) for d = 1, can be written as 

Ho=~( __ I_~pn-I~+ 2"2 +p2), (IS) 
2 pn - I Jp Jp p2 

where 2"2 is the Casimir operator ofO(n), defined after Eq. 
(7), whose eigenvalue27 is given by w(w + n - 2). 

From (IS) we see that the collective state can be written 
as 

I 
w ) - - In - 1)/2 w + In - 2)/2 w 

N;15[fJ(r) -p f 1N-w1/2 (P)DO,l>lfllrl(l/J), (19) 

where N is the total number of quanta and D W (l/J ) is the irrep 
of O(n), characterized by the single value w, whose row25 

becomes 0, while the column is characterized by the irreps of 
the symmetric subgroups Sn + I :::J ... :::JS2 of O(n), i.e., by the 
partition [f) and Yamanouchi symbol (r). The 8 corre
sponds to the multiplicity indices necessary to distinguish 
between identical irreps [f) of Sn + I contained in the given 
irrep w of O(n). The radial part of the function is given by32 

f;~~I:V22)/2(p) = [2[(N -w)/2]!lr [(N + w + n)/2])1/2 

X e - p'/2 pW + In - 11/2 L W + In - 2112( p2) (20) 
IN - w)/2 , 

where L OJ + In - 2112( p2) is a Laguerre polynomial IN-w1/2 . 

The matrix elements that we require are then only those 
of 

(21) 

with respect to the states (19), which implies that the D Iwl(l/J ) 
will be irrelevant for their evaluation. The part connected 
with the radial functionf( pI, can be obtained from the face2 

thatI3 applied to the ket (19) gives (N 12) + (n/4), while32 

(N + 2;~[f)(r)11 ± IN;15tfl(r) 

= WN + w + n - 1 ± l)(N -w ± 1)]1/2, (22) 

where I ± = II ± i/2 • 
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8. AN EXAMPLE IN THREE DIMENSIONS 

For d = 3 the situation is more complex.25 We will for
mulate it in general but will be able to implement our pro
gram explicitly only in the limiting case when n--- 00. It is 
first convenient to replace the three coordinatesPk' 
k = 1,2,3, by p,b,c through the definitions 

p~ = (p2/3){ 1 + 2b cos [ c - (21Tk 13)]J, k = 1,2,3. 
(23) 

As P is then an hyperradius in a 3n-dimensional space, the 
Hamiltonian Ho can be written as 

H I ( 1 a 3n _ I a A 2 2) 0=- -----P -+-+p, (24) 
2 p3n - I a pap p2 

whereA 2 is the Casimir operator of the group 0(3n) which is 
function25 of b, c and their derivatives as well as of 2"~v' 
u,v = 1, ... ,n defined by25 

n 

2"~v = L D ~s(¢»D ~t(¢> )2"Sl' (25) 
S,t= 1 

where 2" st are the generators (7) of O(n). 
We note that the symplectic group Sp(6n), correspond

ing to d = 3, admits also the subgroup 

Sp(6n):J Sp(2) X 0(3n), (26) 

where the generators ofSp(2) are given by (14) and those of 
0(3n) by XisPjt - XjtPis' i,j = 1,2,3 s,t = 1, ... ,n. 

As in the analysis following (6)-(8) in the irreps [!3n], 
[!3n - I ~l ofSp(6n) the irreps ofSp(2) and 0(3n) are comple
mentary. ,28 In fact, it is easily seen from the generators (14) 
ofSp(2), and those ofO(3n) given in the previous paragraph, 
that the Casimir operators of these two groups are related by 

12_n -Ii -n = HA 2 + !(3n)2 - (3n)]. (27) 

As the eigenvalues of 12 and A 2 can be denoted, respectively, 
by A (A - 1) and I (I + 3n - 2) we obtain the relation 

A = 112 + 3n14. (28) 

The eigenstates can then be written as 

I 
(lU I lU2 lU3) ) 

TANLM;{j{ I }(r) 

= p -13n - 1)/2 If;; /i)I_A + 13n/4 ) (p)L L 
K T!'T2'1 

(29) 

where the quantum numbers are associated with the irreps of 
the following groups: (lUllU2lU3) with both O(n) and Sp(6), A 
with Sp(2), L with &(3) and Mwith its subgroup &(2), while 
{j, { I l,(r) have the same meaning as in the one-dimensional 
case. The total number of quanta, N, is related to the irrep of 
the 0(2) subgroup ofSp(2) whose generator is 13 = (l/2)Ho; it 
follows then that the eigenvalue of Ho is given by N + (3n/2). 
Furthermore, T represents multiplicity indices between 
Sp(6) and Sp(2) X &(3) (in fact five ofthem are required). 

From (24) we see that the functionlffr /i/- A + 13n/4) (p) is 
given by (20), while D ~MWi) is the Wigner function for &(3) 
in terms ofthe Euler angles iJ I ,iJ2,iJ3 and D I"', """,,)(¢» is the 
corresponding function of the group O(n), in which we note25 
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that the row is characterized by just three quantum numbers 
1"1>1"2, bl' The remaining function F(b,c) is quite difficult to 
determine except for the physically interesting case when the 
number of nucleons is very large. 25 

As indicated in our previous discussion, the next step is 
to calculate the matrix element of qij with respect to the 
states (29). It is convenient first to change qij for Cartesian 
components iJ = 1,2,3 to the spherical ones 1" = 1,0, - 1 
and then to the irreducible form qm of(2) combined with 
q = (l/v1)l:T( - WqT, _ T' Using then (17) and (23), we ob
tain 

qm = ~ p2{2-1/2 b sin c 

X [D~mWi) + D 2_2m Wi)] + b cos CD~mWi)J, (30a) 

q = (l/..{3)p2. (30b) 

The action of these operators on the states (29) does not 
affect the irrep D (w, "" "',I(¢> ) ofO(n), but only the part depend
ing on p,b,c. For actual calculations we shall only consider 
the case when A> 1, which corresponds in this problem to 
a> 1 in the geometrical example given in Sec. 3. As discussed 
in Ref. 25, we can then substitute 

1 + 2( ,82102) 

=(I-b 2)(1-3b 2+2b 3cos3c)-1, c=y, (31) 

where 02 = (lUI + lU2 + lU3) + ~(A - 5» 1, and if we renor
malize the operator A 2 through the change of volume ele
ment in Eq. (3.8) of Ref. 25, we get for the term of highest 
order in a that25 

A 2=(PI P2P3)ln - 3)/2 p4A 2(PI P2P3) -In - 3)/2 p-4 

(32) 

in which 

HBM=~(--I-~,84~- 1 ~Sin3Y~) 
2 ,]4 a,8 a,8 ,82 sin 3 y ay ay 

3 

+ L 14,82sin2[y-(21TkI3)]J-I 
k~1 

(33) 

where L" are the components of the ordinary angular mo
mentum in the frame of reference fixed in the body, while the 
2"", associated with what is known as vortex spin,14 are 
given by 

(34) 

where 2"~v is defined in (25) while Ekk'k" is the antisymme
tric tensor. The notation H BM for the operator appearing in 
(33) is to indicate its relation to the Bohr-Mottelson (BM) 
vibrational Hamiltonian though now including also a vortex 
spin. From (27), (32) we see that, whenA> 1, H BM becomes a 
function of the Casimir operator 12 ofSp(2). 

We need now to consider what happens to the H o, qm' q 
of (24) and (30) when A, and particularly 02, are much larger 
than 1. For this purpose we can replace A 2 in (24) by its value 
(32) and it is also convenient to write P in terms of a new 
variable ii through the relation 
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P = u exp(a/v1u), (35) 

where as O'P' 00 we have that - 00 ,a, 00. 

From the analysis of Ref. 25, we note that theHo of(24), 
again renormalized as in (32), takes to order (1/ u) the follow
ingform: 

H
O
==(PIP2P3j1',-3)/2 p4Ho(PIP2P3) -(n- 3)/2 p-4 

= ~ + 2[!( - if-/aa2 + ( 2
) + H~M] 

=~+2HiBA' (36) 

The part in the square bracket resembles the Hamiltonian 
used in Ref. 20 for discussion of the states in the IBA. We 
have indicated this at the right-hand side of the equation 
through the introduction of H iBA' We note though that 
from (36), (33) theH iBA is also dependent on the vortex spin. 

Turning now our attention of qm' q, we see that, in view 
of the fact that u> 1, we get from (31) thatb-:::::t.(j3 /u).ltisclear 
then that, up to terms of lowest order in u, we obtain 

qm-:::::t.~2/3 am' (37a) 

where am is related toP, y, {Ji in the standard Bohr-Mottel
son3 fashion. Furthermore, we also get 

(37b) 

In the limiting case A> I-which implies u> l-our 
problem is the determination of q m' q of (37) with respect to 
the eigenstates of the Ho in (36). The latter have been derived 
explicitly in Eq. (5.30) of Ref. 25. To obtain the matrix ele
ments of q m' q with respect to these states, we first consider 
the situation when the irrep (U>I U>2 U>3) ofO(n) becomes 
(U>U>U» corresponding to the case of closed shells. The eigen
state of (37) can then be written as25 

IffVAt;;~81 f J(r)) 

= IvAtLM ) riff _ ,,(aiD =~/ll f](rdtfo). (38) 

In (38) ff = !(N-U>I-U>rU>3) = (N --:- 3u>)/2, where N, as be
fore, is the total number of quanta inHo and from the factor 2 
in (36) it jumps by steps of 2 (starting from its lowest value 
U>I + U>2 + U>3 = 3u». The riff _ ,,(a) is a one-dimensional os
cillator state of ff - v quanta associated with the operator 
!( - a2/aa2 + ( 2). TheD=~/llfl(r)(tfo) is the irrep (U>U>U» of 
O(n) given in (29) when the row l is U>U>,U> so that .Y" acting 
on it vanishes, in the same way as L k 11m) vanishes if I = O. 
The I vA tLM) are the eigenkets of the Hamiltonian H ~M of 
(33) in which .Y" = 0, i.e., the eigenstates of the standard 
Bohr-Mottelson Hamiltonian2 that were completely deter
mined in Refs. 18 and 19. 

From (36) it is clear that we need only to calculate the 
matrix elements of a, am with respect to the states (38). Fora 
this is trivial as riff _ ,,(a) is the wave function of a one-di
mensional oscillator. For am we have the matrix elements 

(v'A 't'L 'M'lam IvAtLM), (39) 

which were obtained explicitly in Ref. 19. 
We briefly discuss (39) to provide the setting for the 

situation when we deal with the general irrep (U>I U>2 U>3) of 
O(n). The eigenket of the Bohr-Mottelson Hamiltonian can 
be expressed as 
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IvAtLM) =F~-A)I2(P)L <p~tL(y)DiMWi)' (40) 
K 

in whichF(j3), <p (y) are the the part of the eigenket depending 
on P,y where the former is well known and the latter was 
determined explicitly in Ref. 19. We note here that v corre
sponds to the total number of quanta of the BM Hamilton
ian, i.e., in a five-dimensional oscillator. TheA corre
sponds20 to the irrep of 0(5) and t is a multiplicity index20 in 
the chain 0(5):J0(3). 

As indicated in Ref. 19, we can write 

am =P L <p 112(y)DzmWi)' 
k= -2 

where 

<p il2 = et> 1.!22 = (1/v2) sin y, 

et> :12 = et> I~~ = 0, et> 612 = cos y. 

The matrix element (39) can then be written as 

(v'A 't'L 'M'lam IvAtLM) 

(41) 

(42) 

= Iv'A 'lllvA J(112;AtL;A 't'L ')8r(2L' + 1)-1/2 

X (LM,2mIL 'M'), (43) 

where 

Iv'A '1P1vA) = i""F~'-A')I2(P)PPF~_A)/2(P)P4dP, 
(44) 

is the radial integral and 

(A "t"L ";AtL;A 't'L') 

= r" L [(2L'+ 1)-1/2(LK,L"K"IL'-K') 
Jo K"KK' 

X( - W' et>~:t"L"(y)et>~tL(y)et>~:t'L'(y)] sin 3ydy, 
(45) 

is the integral depending on y which can be interpreted as a 
reduced 3jsymbol in the 0(5):J0(3) chain of groups. 19 Note 
that we use the selection rulel9 et> ~tL (y) = 0 if K is odd and 
et> ~tL (y)* = ( - W et> ~~ (y) when K is even. Explicit ex
pressions are available for the brackets (45) and they have 
also been tabulated numerically.33 

Let us now tum our attention to the case where we still 
maintain A> 1 but we have a general irrep (U>I U>2 U>3) ofO(n). 
Then, as shown in Eq. (5.30) of Ref. 25, the eigenket of Ho in 
(36) takes the form 

Iff v,AtJ ~1;~;~;81 f) (r)) 

= riff - ,,(a)F~_ A)/2 (P)~ {et>:¥'(y) 

X~[ (LK,lLK.IJ%)DiMWi)A ~L~:/li'hrdtfo)]}, 
(46) 

where 

(47) 
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All functions appearing in (46) have already been defined 
except of L1 (¢). The latter is given by (47), in which the 
D (w, w, w,)(¢ ) is the irrep of O(n) that already appeared in the 
general case (29), multiplied by a transformation bracket re
lating the V(3) basis characterized by the chain 
V(3):>V(2):>V(I) with the one characterized by 
V(3):> 0(3):> 0(2). In the latter the 0(3) is not connected with 
orbital angular momentum but is rather associated with the 
vortex spin mentioned above, and its magnitude and projec
tion are indicated by the quantum numbers L, K As usual, 
we add the multiplicity index required between V(3) and 
0(3), which we designate by fl. The orbital angular momen
tum and the vortex spin are coupled to a total J as indicated 
in (46). 

To determine now the matrix elements of am with re
spect to the states (46), we need only to recall that the re
duced matrix elements of a tensor TL (I) depending on sys
tem I, with respect to states in which the angular momenta 
of systems 1 and 2 are coupled to a definite j, is given by34 

(j); j; II TL (llIljj I j2) 

=8.,. (_ly,+L--j,-f[(2j; + 1)(2j+ 1)]1/2 
hI, 

X W(jJ; JJ';Lj2)(j; IITL(I)lVtl, (48) 

where W is a Racah coefficient. 
The matrix ii with respect to the states (46) involves 

only the one-dimensional oscillator ¢. I-v(ii) and therefore 
is immediate. For am we have now, using (48) and the results 
discussed above, that the matrix element becomes 

lv'V',A 't'J~1~~~'L';8[jJ(r)lam 1 

W I W2 W3 ) 

X ff v,AtJ,LM,flL;81 f J (r) 

= 8n 'n 81..'1.. 8.}, -v'J-v Iv'A '111vA J 

X(l12;AtJ;A 't'J')(8r)(2L' + 1)-112 

X (LM,2mIL 'M')( - I)I..-L-J' 
X [(2J + 1)(2J' + 1)]1I2W(LL 'JJ';2L). (49) 

We have thus obtained explicitly the matrix elements of 
qm ,q with respect to the eigenstates of H o when A-and thus 
u-become very large. As the other generators of Sp(6) are 
obtained from commutators and double commutators of 
qm ,qwithHo, we have from (8) that all matrix elements of the 
generators ofSp(6), in the limit when A-oo, are obtained 
when we consider [Ho,a m ], [Ho, [Ho,am ] ], and similarly 
for ii. From this result we have, in principle, that all matrix 
elements of operators in the enveloping algebra of Sp(6) are 
available. 

In fact we have even a direct way of dealing with ele
ments in the enveloping algebra ofSp(6) that are invariant 
under 0(3). We can consider, for example 

[aXa]g =/32/,j5, (50a) 

(SOb) 

From (46) we immediately see that matrix elements of /3 2r 

reduce to the integrals in/3oftheform I v'A 12rlvA J with all 
the other quantum number in bra and ket being equal. From 
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matrix elements of powers of /3 3 cos 3y, the /3 part is trivial, 
and we can decompose (cos 3yY' in Legendre polynomials 
Ps(cos 3y). As Ps(cos 3y) = (/> 6s

•
I
•
O(y), we can immediately 

obtain that the matrix element of /3 2r + 3s Ps (cos 3y) is given 
by 

/ WIWZW, l/3zr+3'p( 3)1 
'vV'v',A 't'J',L 'M',Il'L';8IfJ(r) . s cos Y 

W I W2 W3 ) 

X.r v,AtJ,LM,flL;81 f J (r) 

= 8 I' _ ,i_ 1 _ v 8!l'!l81..'1.. 8L 'L 8M'M8J 'J 

X I v'A '12r + 3slvA J 

X (3s,I,O;AtJ,A 't'J') 
X (8r)(2L + 1)-I(2J + 1)1/2, (51) 

where the brackets have the same meaning as before, but 
now with new parameters. 

The matrix elements (51) would allow us to make calcu
lations in what has been called35 the "Frankfurt collective 
model" but now in the presence of vortex spin. 

9, GENERAL APPROACH TO THE PROBLEM 

Summarizing, we can say that the framework we have 
introduced for description of collective effects requires, 
when we are dealing with ad-dimensional space,the deter
mination of the matrix elements for the generators q ij of the 
Sp(2d) group given in (8a), with respect to the states of the 
oscillator Hamiltonian H o of (5) characterized by the chain 
of groups 

A. N 

(WI W 2'''Wd ) Sp(2) ~ 0(2) 

Sp(2d)~ X (52) 

&(d) ~"'~ &(2) 

(LI,,·Lld12j) M 

where above and below the groups we give the quantum 
numbers that characterize their irreps. This is as much a 
geometrical problem as the one in which we require the ma
trix elements of the generators L;. i = 1,2,3, of the 0(3) 
group, with respect to states that are characterized by the 

chain of groups O( 3) ~ 0(2). 
In the present paper our program was implemented ful

ly when d = 1 in Sec. 7. In Sec. 8 it was implemented when 
d = 3 but with the restriction thatA>I, and more correctly 
only in the limit when A_ 00, where the problem simplifies 
in a sense similar to the elementary geometrical example in 
Sec. 3 when the radius of the sphere a_ 00. For d = 2 and 
finite, though arbitrary, A the complete solution of the prob
lem will be presented in a companion paper ofChacan, Hess, 
and Moshinksy.36 For d = 3 and arbitrary A, we have just 
started the problem using the same techniques as in Ref. 36, 
though possibly it may be attacked with the alternative pro
cedures developed by other authors. 15.30 

As the last point in this section, we would like to deter
mine the relation between the irreps of O(n) and Sp(2d ), 
which will be useful for the analysis carried out in the next 
papers of this series. 

From (5) and (8) the weight generators of the Sp(2d) 
group are the operators Hi' i = 1,2,.",d, defined by 
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1 ~ 2 2 U' n H =- Lip· +x)= v·· +-, 
I 2

s
=1

1S 
IS II 2 

(53) 

where the eigenvalues of the operator 
n 

~ii = L 7JisSis' (54a) 
s= 1 

7Jjs = (l!~(XjS - ipis)' tjs = (l!~)(XjS + ipj'), (54b) 

give the number of quanta for the corresponding oscillator 
Hamiltonian H j , i = 1,2, ... ,d. 

As indicated in Sec. 4, the Hamiltonian Ho = ~1 = 1 H j , 

admits the chain of symmetry groups 

U(dnpw(d)XU(n), 

which can be complemented with the subgroups 

w(dPw(d - Ip ... ::)w(l), 

U(npO(npSn + 1 ::)Sn ::)",::)S2' 

(55) 

(56) 

where Sm are symmetric groups in m particles. The eigen
states of Ho can then be denoted by 

hld h 2d hdd 

hl,d_I···hd_l,d_1 
[h1d,,·hdd 1) 

(WI'''Wd ) 

o{ IlIr) 

, (57) 

where [hl"oo.,h jj 1, i = 1,2,oo.,d, are the irreps of W(i), 
(WI'''Wd) the irrep ofO(n) and I I J (r) correspond, as indicat
ed after Eq. (19), to the irreps of Sn+ 1 ::)",::)S2' The ~jj 
applied to the kets (57) give the eigenvalues 

(58) 

The irrep of Sp(2d ) is given by the eigenvalues of H j 

when applied to the lowest weight state (57) consistent with 
the given irrep (W1"'Wd) ofO(n). As indicated in Sec. 4 this 
implies that hjd = Wj' i = 1,2, ... ,d, and, furthermore, that in 
each row on the left-hand side of the ket hjj = hj + I,j + I' 

i,j = 1,2,oo.,d. Thus we have to apply H j to the ket 

W1WZ'''Wd [@'W,""<H') W 2"'Wd (W 1W 2"'Wd) 
, 

Wd o{ I J(r) 

which, from (53) and (58), gives the eigenvalue 
Wd_j+ 1 + nl2 for the operator H j • 

(59) 

Thus toan irrep (wjWZ"'Wd) ofO(n) corresponds an irrep 
of Sp(2d ) given by 

[(nI2) + W d ' (nI2) + Wd _ 1 ,oo.,(nI2) + WI J. (60) 

It is interesting to note that we do not need to consider 
the most generalirrep ofO(n) to get (60). In fact, if we restrict 
ourselves to the irrep (wi , ... ,w~ _ 1,0) ofO(n') we get the most 
general irrep (60) ofSp(2d) if we take n' = n + 2wd , 

w; =Wj -Wd' 

10. CONCLUSION 

We have given in Sec. 5 a definition of collectivity and 
then shown that it leads to a specific mathematical problem 
which we intend to solve in the present series of papers. In 
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this concluding section we would like to examine critically 
how close our definition is to the actual physical situation of 
collective effects for systems for nucleons in nuclei. 

We mentioned in Sec. 5 that we could use the shell mod
el to obtain the irreps ofO(n) to which we restrict ourselves. 
But in this case the oscillator Hamiltonian Ho would be the 
shell model Hamiltonian and fwJ would be of the order of 
MeV. This implies that we have degenerate ground states 
characterized by an irrep (A,Lt) of SU(3) related with irrep 
(W 1W 2W 3) ofO(n) as in the discussion following Eq. (12). Fur
thermore, the collective excitations build up by jumps 2fwJ 
from the ground state as indicated in the discussion follow
ing Eq. (38). This seems to imply that the definition of collec
tivity introduced in this paper is more closely related to col
lective effects in giant quadrupole and monopole resonances 
than to those in low lying collective phenomena. 

On the other hand, it is an interesting fact that, for A» 1, 
the Casimir operators of the Sp(2) and 0(2) groups appearing 
in the chain (52), are related to the Bohr-Mottelson and IBA 
basic Hamiltonians, albeit with an extra vortex spin. In view 
of the successes of the BM and IBA models, it is interesting 
to speculate whether Ho is not necessarily connected with 
the shell model, but just provides a convenient starting point 
for the discussion of collective effects from a many-body 
point of view. In this case, though, we have to try to elimi
nate in some way the vortex spin effects, which do not appear 
in the models mentioned. 

In any case the author feels strongly that collectivity 
must be related to constraints in the symplectic geometry 
associated with the many-nucleon system, though future 
analysis may show that the constraints are not necessarily of 
the type proposed in the present article. 
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Collectivity and geometry. II. The two-dimensional case 
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In a previous paper of this series we showed that nuclear collective behavior can be related to the 
symplectic geometry of the many-nucleon system. when we introduc.e in it ap~ro~riate 
constraints. We showed in that paper that a full discussion of collectIve behavIOr m the many
body system requires-in a space of d dimensions-the basis for the irreducible representations of 
the Sp(2d ) group in the chain Sp(2d ) ::J Sp(2) X &(d ). as well as the matrix elements of the 
generators of Sp(2d ) in this basis. In the present paper we implement this program fully f?r d = 2. 
both because of the mathematical interest of the chain Sp(4)::J Sp(2) X &(2) and as a steppmg stone 
to the chain Sp(6P Sp(2) X &(3) which is central to the discussion of collective motions. 

PACS numbers: 21.60.Ev. 21.60.Fw. 03.65.Ge 

1. INTRODUCTION 

In a previous paper I under the same general title (to be 
referred as I and whose equations will be quoted by their 
number followed by I) we showed that certain type of collec
tive effects in nuclei follow from many-body theory. if we 
establish appropriate constraints in the symplectic geometry 
of the A -nucleon system. 

In the present paper we intend to discuss fully the prob
lem for an arbitrary number of nucleons. A (and not only for 
A-co as in I but when our space has only two dimensions. 
i.e., d = 2). Of course. our analysis will have physical rel
evance only when d = 3. but, as the problem is quite a diffi
cult one. we need first to understand it when d = 2. Further
more. the results obtained in this paper are relevant to the 
mathematical question of the states that are basis for irredu
cible representations (irreps) of the Sp(4) grouP. whose rows 
are characterized by the Sp(2) X &(2) subgroup. and also to 
the derivation of the matrix elements of the generators of 
Sp(4) with respect to this basis. 

As indicated in I. we eliminate from the beginning the 
center of mass of the A -body system. and thus deal with 
n = A-I Jacobi coordinates and momenta in this two-di
mensional space. i.e .• 

Xis,Pis' i = 1,2, s = 1.2 .... ,n . (1.1) 

As indicated in Sec. 9 of I. our problem is then to get the 
matrix elements of 

n 

qij = I XiSXjs 
s~ I 

with respect to the eigenstates of 

(1.2) 

(1.3) 

when the former are characterized by the chain of groups 

.) Present address: Institut fUr Theoretische Physik, Universitiit Frankfurt, 
West Germany. 

b) Member ofE! Co!egio Naciona! and Instituto Naciona! de Investigaciones 
Nucleares. 

[n12 + "'2,n12 + "'d 1"'1''''2) 

Sp(4n)::J Sp(4) X O(n) • (1.4a) 

A v 

Sp(2PO(2) 

Sp(4)::J X (l.4b) 

&(2). 
M 

where above or below the groups we have indicated the 
quantum numbers that characterize their irreps. 

As qij is a scalar in O(n). we do not need to consider 
subgroups of this group to characterize the states of Ho and. 
in most of our discussion. will assume that the states are of 
highest weight in the chain O(npO(n - 1p .. ·::JO(2). 

We shall not go directly into our general problem but 
first illustrate the procedure in particular cases where the 
analysis is very simple. Thus in Sec. 2 we deal with the prob
lem when n = 2. while in Sec. 3 we discuss the case when the 
irrep ofO(n) is (0.0) and thus that ofSp(4) is [nI2, nI2]. 

In Sec. 4 we determine the eigenstates of Ho character
ized by the chain of groups (1.4) when the irrep of O(n) is 
(w.O). As indicated in Sec. 9 of I. this gives the most general 
irrep [nI2, nl2 + w] ofSp(4) as it depends on two parameters 
n,w. 

In Sec. 5 we deal with the matrix elements of qij with 
respect to the states mentioned while in the concluding Sec. 6 
we discuss the problem of shape and also what parts of our 
analysis are likely to help in the problem when d = 3. 

Before starting our discussion we establish the notation 
that we will be employing in the following sections. To begin 
with, as in Sec. 6 of I. we will be using the Zickendrahe and 
Dzublik et al. 3 (ZD) coordinate system through the defini
tions 

2 

Xis = I PkD Ut'J)D ~ - 2 H,s(¢> ) , 
k~l 

where 

Dl(t'J) = liD L(t'J)II = [ c~s t'J sin t'J] 
- sm t'J cos t'J 

(1.5) 

(1.6) 
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is the defining irrep of &(2), while liD :s(¢»11 is the defining irrep ofO(n). From (1.2) and (1.5) it is then clear that 

q= //qij// =fiW)[pi ~]DIW) 
OPz 

= [!(Pi +p~)+!(pi -p~)cos211 !(pi -p~)Sin211] 
!( pi - p~) sin 211 1( pi + p~) - !( pi - p~) cos 211 . 

(1.7) 

Introducing now the variables 

PI =P cos y, P2 =P sin y 

and 

r=p2/2, e=2Y+1T/2, q;=211, 

we obtain 

= [r + r sin e cos q; r sin e sin q; ] 
q r sin e sin q; r - r sin e cos q; . 

(1.8) 

(1.9) 

(1.10) 

Finally instead of qij = qji' i,j = 1,2, we introduce the three 
variables q =! Tr q, q ± = !(qll - qnl ± iql2 to obtain 

q = r , q ± = r sin e e ± itp , ( 1. 11 ) 

which are the operators whose matrix elements we wish to 
calculate. 

Besides the coordinates and momenta x is' Pis' we shall 
also need the creation and annihilation operators lIis' Sis giv
en by the standard definitions 

lIis = (l/v'1)(Xis - ipis), Sis = (l/v'1)(Xj, + ipis) .(1.12) 

Furthermore, instead of the components i = 1,2 of all the 
vectors, we shall use their polar form through the definition 

Xv = (l/v'1)(x is ±ixzsl. (1.13) 

As having expressions with two indices like x ±.s will prove 
cumbersome, we introduce the notation 

xs==.x + ,s , xs==.x _ ,s (1.14) 

and similar definitions for Ps,Ps' 11" fin and 5s, ~s· 
For application to our states of the generators of the 

O(n) group, it will prove necessary not to speak of compo
nents s = 1,2, ... ,n of x S ' P .. lIs, 55 and those with bars, but 
rather to introduce what we could call their "hyperspheri
cal" form, For this purpose we definej as 

2j + 1 = n , (1.15) 

(which implies thatj is integer when n is odd and half-integer 
when n is even) and introduce the index 

m = j,j - l,j - 2, ... , - j , (1.16) 

which will replace the s = 1,2, ... ,n. For n odd we define as 

x ±j = (l/v'1)(XI ± ixz), 

x ± {j_ I) = (l/v'1)(X3 ± iX4)' .. " 

X±I = (l/v'1)(xn_ 2 ±iXn_l), XO=Xn, 

while for n even we have 

x ± j = l/v'1(x) ± ixz), 

x ± Ii _ I) = (l/v'1)(X3 ± ix4 ) , 

X±1I2 = (l/v'1)(Xn_1 ±ixn)' 

and similarly for 11 m' Xm, fi m' 

As we have the relation 
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(1.17a) 

(1.17b) 

n j 

L x; = L XmX - m , (1.18) 
s=1 m=-j 

we see that in "hyperspherical" components the metric ten
sor4 is 

(1.19) 

The momenta and annihilation operators can, from their 
commutation relation with the coordinate and creation op
erators, be defined as 

(1.20) 

and thus have a contravariant4 rather than covariant form, 
From the metric tensor (1.19) we conclude that 

Pm=p- m,5m=S-m (1.21) 

and similarly for the barred expressions. 
The generators of the unitary group V(n) associated 

with the particle index s = 1,2, ... ,n are given bys 
2 

r =" n. f: ss' £.J "liS ~ is' , (1.22) 
i= 1 

and clearly in "hyperspherical" coordinates they become 

r m' f:m' - km' U'm' 173m' 
m = 11m'::> + 11m'::> = 1Q m + "" m . (1.23) 

If we take the covariant form of these generators, i.e., r mm" 

we can define their antisymmetric part by 

A mm, = (r mm' - r m'm) , 

which in mixed tensor form becomes 

A ;;:' = (r;;:' - r =-:') . 
It is clear that A ,;; m = 0 and A ;;:' 
there are only 

j(2j + 1) = (n/2)(n - 1) 

(1.24) 

(1.25) 

- A - m, and thus 
-m 

(1.26) 

independent operators of this type. Furthermore, they close 
under commutation,S and we have that 

[ A ;;:', ~ 11 m" 11 _ m" ] 

= [r;;:' -r=-:, ,211mll-m +211m,1I_ m ,] =0. 
11.27) 

Clearly then theA ;;:' of(1.25), where m,m/ = j,j - 1, ... , - j 
are the generators of an 0(2j + 1) = O{n) group. 

The generators A ;;:', m + m / > 0, can be separated into 
three subsets that respectively raise, give, and lower the 
weight, i.e.,s 

A;;:', m>m', A;;:, A;;:', m<m'. (1.28) 

The highest weight state in O(n) would then become a poly-

Chac6n, Hess, and Moshinsky 1566 



                                                                                                                                    

nomial P(1Jm,7;m) acting on the ground state 10) such that5 

A ;;:'P(1Jm,7;m)IO) =0 if m>m', 

A ;;:P(1Jm,7;m)IO) = L mP(1Jm,7;m)IO) , (1.29) 

where, inLm, m = },} - I,} - 2, ... ,1 if} is integer (n odd) or 
m = },} - I,} - 2, ... ,! if} is half-integer (n even). The weight 
of the state and thus the irrep ofO(n) = 0(2} + 1) is given by 

(Lj,Lj~l>Lj~2"")' (1.30) 

We note furthermore that the generators A ;;:' can be 
written as 

A ;;:' = 2";;:' + l?;;:' , (1.31) 

where 
2"m' = '1!m' _ '1! ~ m 

m m -m" 
(1.32) 

and similarly for the barred expression. 
Having established our notation we proceed now to dis

cuss the problem when n = 2. 

2. THE CASE WHEN n = 2 

The problem of A = 3 particles in a space of two dimen
sions corresponds then to n =A - 1 = 2, and from (1.5) its 
coordinates Xis' i = 1,2, s = 1,2, can be expressed in terms of 
the ZD variables as 

2 

Xis = I PkDLW)D1.,(</», i,s= 1,2, (2.1) 
k~1 

where DI is given by (1.6) in terms of the angles indicated. 
WritingpI' P2 in terms ofp, r as in (1.S), we then obtain6 

X 11 = p(dbc + trs) , (2.2a) 

X 12 = p( - dbs + trc) , (2.2b) 

X 21 =p( - drc + tbs), 

X 22 = p(drs + tbc) , 

(2.2c) 

(2.2d) 

where 

b=costJ, r=sintJ, c=cos</>, 

s = sin </>, d = cos r, t = sin r . 
The Hamiltonian Ho of the form 

122( J2 ) Ho=- I I --2-+X~ 
2i~ls~1 aXiS 

(2.3) 

(2.4) 

Introducing now the variables r,e,qJ through the definition 
(1.9), plus ax given by 

X = 2</>, (2.6) 

we obtain that 

Ho= ---r-+-L + I , { la a 12) 
r ar ar r (2.7) 

where 
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L2= _ [_I_.i...sine.i...+_1_(~+£) 
sin e ae ae sin2 e aqJ2 aX 2 

2cose a2 
] -------

sin2 e aqJ ax 
(2.S) 

is the Hamiltonian of the spherical top.7 

Note that 4L2 is related to the Casimir operator of the 
0(4) group in the chain Sp(S):>Sp(2) X 0(4). Thus the eigen
value 2L (2L + 2) of4L2 is related to the eigenvalue A (A - I) 
of the Casimir operator ofSp(2). From a reasoning similar to 
that given in (271) we conclude that A = L + 1. 

The eigenket of Ho can be written as 

IvKLM) = r~IF~+ I12(r)e~; 1)1I2D~M(qJ,e,x), 
(2.9) 

where D ~M is the Wigner irrep of 0(3 ) related to the fiJ ~M of 
Rose's bookS through 

D ~M(qJ,e,X) = fiJt-~(qJ,e,X) = eiM'Pd t-K(e )eiKX . (2.10) 

The normalized radial function is given by9 

F~ + 112(r) = 2L + 112[ 2(v!) ] 112 

r(v+ 2L + 2) 

X~+ le~rL~L+ 1(2r), (2.11) 

where L ~L + I is a Laguerre polynomial and the volume ele
ment for the problem is 

r dr sin e de dqJ dx (2.12) 

with the variables being in the intervals 

(2.13) 

(2.14) 

O<qJ, X<21T . (2.15) 

As n = 2, O(n) = 0(2) and its only generator is 
- i ala</> = - (i/2) alax, so that the irrep ofO(n) is (w,O) 
= (K 12,0). Therefore, the irrep of Sp(4) corresponding to 

A = n + I = 3 particles is then given by 

[1,1 + (K 12)]. (2.16) 

We need now to calculate the matrix elements of 

q ± = r sin e e ± i'P = + (S1T13)1/2rYI, ± I (e,tp) 

= + v"lrD ~. ± I (qJ,e,X ) , 

q = r = rD ~ (qJ,e,X) 

(2.17a) 

(2.17b) 

with respect to the states I vKLM ). As the integration involv
ing three D functions is well known, S and that involving the 
radial integral can also be determined,9.10 we obtain 

(v'KL 'M'lq ± IvKLM) 

= + [2(2L + 1)/(2L' + I)] 1/2(LM;I, ± IlL 'M') 

X(LK;IOIL'K) .c" F~:+I12(r)F~+1I2(r)dr,(2.IS) 
(v'KLMlqlvKLM) = IO F~,+1I2(r)F~+1I2(r)dr, (2.19) 

where the radial integrals will be denoted by 

(v'L 'IvL )-i oo 

F~,' + 112(r)F~+ 112(r) dr, (2.20a) 
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which, from properties of the Laguerre polynomials, 10 take 
the values 

(v'L IvL) 

= - Wv + l)(v + 2L + 2)] 1I28v'.v+ I 

+ (v + L + 1)8v'v - H v(v + 2L + 1)] 1128v'.v_I ' 
(2.20b) 

(v'L + 11vL) = Wv + 2L + 3)(v + 2L + 2)] 1I28y'v 

- [v(v + 2L + 2)] 1/28y' y_ 1 

+ l[v(v - 1)] 1128 (2.20c) 2 v',v-2' 

(v'L-1IvL) =H(v+2L+ 1)(v+2L)] 1I28y.y 

- [(v + 2L + l)(v + 1)] 1128"",,+ 1 

+ H(v + 2)(v + 1)] 1I28y'.y+ 2 • (2.20d) 

We note furthermore that the eigenvalue of the opera
tor Ho of (2.7) is9 

2(v + 1+ 1) (2.21) 

while from (2.4) it is given by N + 2, where N is the total 
number of quanta. Thus we have 

N= 2(v+/). (2.22) 

From (81) and (2.18)-(2.21) we see that for n = 2 we 
have determined in a direct fashion the matrix elements of all 
the generators ofSp(4) in the basis (2.9) of eigenstates of Ho. 

3. THE CASE OF THE IRREP [nI2, n12] OF Sp(4) 

We now tum our attention to the problem of an arbi
trary number of particles A = n + 1, but whose states are 
characterized by the scalar representation of O(n), i.e., they 
belong I to the irrep [nI2, n12] ofSp(4). Our program then 
requires that we write the Hamiltonian (1.3) in terms of the 
ZD coordinates (1.5), which gives Ho as a function of 
PI' P2' {} and their derivatives as well as of 2';" 
s < t = 2,3, ... ,n, where the latter are the "body-fixed" gener
ators ofO(n) defined in Ref. 11 as well as in (251). The 2';, 
acting on states belonging to the scalar representation ofO(n) 
give zero and thus the Hamiltonian (1.3) projected on this 
scalar representation, which we designate by Ro, takes the 
form 12 

(3.1) 

Denoting by IJIE(PI' P2' {}) the eigenstate of the Hamil
tonian (3.1) associated with the eigenvalue E, we can write it 
as 

(3.2) 

and, passing frompI' P2' {} to r,O,tp, related to them by (1.9), 
we obtain for tPE the following equationl2: 

R~tPE=r[ - ~ :r r2 :r + ~2 + 1 ]tPE = EtPE' (3.3) 

where 

A 2= _-l-~sinO~ 
sin 0 ao ao 

__ 1_ ~ + (n - 2)(n - 4) . (3.4) 
sin2 0 atp2 4 cos2 0 

As shown in Ref. 12, the A 2 is actually the Casimir 
operator 

A 2 = ./V'2 - K 2 - N 2 (3.5) 

of an Sp(2) group whose generators are./V', K~, N~ satisfy
ing the commutation relations 

[ K ~,N n = - iJIIl, [ ./V',K ~] = iN ~ , 

[ N ~,A/'] = iK ~ . (3.6) 

The explicit expression for these operators is l2 

A/I 1 H- , K' 1 H- , N' 1 (a 1) 
Jr = - 0' 4 = - 0 - r , 4 = -:- r - + . 

2 2 I ar 
(3.7) 

The eigenvalue of the operator A 2 can be denoted, as in 
Sec. 8 of I. by A. (A. - 1), and writing 

A. = I + (n!2), 1= 0,1,2, ... , (3.8) 

we can express the eigenfunction (/>lm (O,tp) of A 2, i.e., 

A 2(/>lm (O,tp ) = (I + n12)(1 + n!2 - 1 )(/>lm (O,tp ), (3.9) 

in the form l2 

(/>lm (O,tp ) = (sin 0 )Iml(cos 0 )(n - 21/2 

X P(lml.[n - 31/21(cos 20 )eimtp (3.10) (1-lmll/2 ' 
where P is a Jacobi polynomial \3 and 
m = I, 1- 2, 1- 4, ... , - I. 

From (3.3) the radial part, which we can write as 
r- 1 R (r), satisfies the equation 

J.. r{ _ ~ + [l + (n - 1)12]2 - A + l}R (r) = J.. ER (r). 
2 dr2 r2 2 

(3.11) 
The energy E takes then the value9 

E = 2(v + I) + n, v = 0,1,2, ... , (3.12) 

and the radial part ofthe wave function becomes9 

R
Y1 

= 1+ In/2le - rL ~l + n - 1(2r) , (3.13) 

where L ~l + n - I is a Laguerre polynomial. 
Finally the eigenket of Ii b of (3.3) can be written as 

In;vlm) = Bylmr-IRyl(r)(/>lm(O,tp), (3.14) 

where the normalization constant is given byl2 

B
v1m 

= ( _ )Im + Imll/2[ V!2 21 + n[(l- Iml)l2]!(21 + n - l)r((/ + Iml + n - 1)12) ] 1/2 . 
21T(V + 21 + n - 1)![(1 + Iml)/2]!r((/- Iml + n - 1)12) 

(3.15) 
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The phase factor in (3.15) was chosen to guarantee that 

In;vlm)* = ( - )mln;vl, - m) , (3.16) 

where we put the extra parameter n = A-I in the ket to 
indicate the number of particles to which the state belongs 
and thus also the irrep [nI2,nI2] ofSp(4). The volume ele
ment is r dr sin 0 dO dcp. 

We now need the matrix elements of r sin 0 exp( ± icp ) 
and rwith respect to the states In;vlm) of(3.14). As this was 
done in Ref. 12, we just quote the results here: 

(n;v'I'm'lrln;vlm) = {(v + 1+ nI2)ov'v 

- H v(v + 21 + n - 1)]1/2ov'.v_ 1 

- mv + l)(v + 21 + n)]1/2ov'.v+ I} 

X01'lom'm' (3.17a) 

(n;v'I'm'lr sin 0 e ± i<p In;vlm) 

=[(/+m+n-l)(/+m+2)]1I20 ° 
(2/+n-l)(2/+n+l) 1',1+1 m'.m±1 

X{± [v(v+21+n)p12ov'.v_1 +Hv(v-l)]1/2 

xOv'.v_ 2 + [(v + 21 + n)(v + 21 + n + 1)]1/2ov'v} 

[
(I +m + n - 3)(1 +m)]112 

+ (2/+n-3)(2/+n-l) o/'.I_l om'.m±1 

X{ + [(v+ l)(v+2/+n -1)]1/2ov'.v+1 

± mv + l)(v + 2)]1120v,.v+ 2 

± H(v + 21 + n - 2)(v + 21 + n - 1)]1/20v'v} . 

(3.17b) 
Thus we have been able to implement our program for 

the irrep [nI2,n/2] ofSp(4), when n is arbitrary. 

4" THE GENERAL CASE: DETERMINATION OF THE 
STATES 

The Hamiltonian Hoof (1. 3) is a 2n-dimensional oscilla
tor which admits a symmetry group U(2n) whose linear Casi
mir operator 

(4.1) 
m m 

gives the number of quanta N when applied to the state 

(4.2) 
where P is an homogeneous polynomial of degree N in the 
variables indicated and 10) is the ground state. 

We would like now to characterize the state (4.2) by 
irreps of subgroups of U(2n) that are also contained in the 
chain (1.4) that was relevant for our collective problem. 
Clearly we should then consider 

U(2nj:) UJt(2) X U(n) 

u 

&(2) 
u 

O(n) 
(4.3) 

as &(2), O(n) are in (1.4), and look first for states that corre
spond to definite irreps N ofU(2n), M of &(2), and (cuO) of 
O(n). For this we require that (4.2) satisfy 

NPIO) =NPIO), 

LoP 10) = MP 10) , 
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(4.4a) 

(4.4b) 

A ~P 10) = cuP 10) , (4.4c) 

A::: P 10) = 0 , m = j - l,j - 2, ... , - j + 1 , (4.4d) 

A :'p 10) = 0, m > m', m + m' > 0, m,m' = j, ... , - j , 

where 

Lo = i (X 1s P2s -X2s Pls) = I (17mS m -17mt m) 
s= 1 m 

1 a 
i at} 

(4.4e) 

(4.5) 

and A :' are the generators ofO(n) = O(2j + 1) discussed in 
the Introduction. As we mentioned there, we can take our 
state to be of highest weight in the chain O(2j + 1) 
~O(2j)~ .. ·~O(2) which is what (4.4e) implies. 

We proceed to derive explicitly the P that satisfies (4.4). 
Once we achieve this objective we will replace the 17m' 17m 
that are standard boson operators by traceless boson opera
tors, 14, 15 so that automatically we get eigenstates of O(2n) 
rather than U(2n). As Sp(4n) is the dynamical group of the 
2n-dimensional oscillator, it can also have the subgroup 

Sp(4nj:)Sp(2)xO(2n) , (4.6) 

in which, as discussed in I, Sp(2) and O(2n) are complemen
tary.16 Thus the irrep ofO(2n) determines that ofSp(2), and 
therefore our states are characterized by the irrep of another 
of the groups that appears in (1.4). 

So far our analysis is in terms of polynomials of creation 
operators acting on 10), but, by Dragt's theorem 17, they can 
be converted into the same polynomials in the coordinates 
P (xm ,xm) multiplied by exp( - p2/2). To get then the most 
general state, we have just to multiply the P (xm ,xm) by an 
appropriate Laguerre polynomial 1 5 inp2. We get thus an 
explicit expression for the states of Ho characterized by the 
irreps of the chain of groups (1.4). We will see though that 
these irreps are not sufficient to determine the state and that 
in fact we need in the chain O(2nj:)&(2)xO(n) one extra 
multiplicity index. Thus our states will not be orthonormal 
in the latter. 

Returning now to our state (4.2), we clearly see from 
(4.4a), (4.4b) and (4.1), (4.5) that it is a homogeneous polyno
mial of degrees (N + M )/2 and (N - M )/2 in 17 m and 17m' 
respectively. Thus we can write 

P( 17m,17m) = 17t+ M )/217IN-M)!2p'( 17ml17j' 17ml17j)' (4.7) 

where (N ± M) must be even. 
As a next step we denote the scalar products in O(n) of 

the creation operators by 
j j 

( 11 "11) = I 17m 17 - m' (11 -11) = I 17m 17 - m , 
m= -j m= -j 

j 

(11"11)= I 17m17-m, (4.8) 
m= -j 

and note that 

(11"211) =2 17-} + jI,1 '!!..!!!.... 17-m (4.9) 
17} 17} m = - j + 1 17j 17j 

and similarly for the corresponding barred expression. Thus 
in (4.7) we can replace 
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("I -/"Ij), (7j _jl7jj) by (1) 01))/"IJ, (11 ° 11)/7jJ 

and be left with ("Iml"lj)' (7jml7jj) with m in the range 
m = - j + I, - j + 2, ... ,j - 1. Furthermore, we can take 
sums and differences of the last ratios to finally write 

P( "Im,7jm) = "It + M)/27jJN-M)/2 

inwhichinP",m=j-l,j-2, ... ,-j+ 1. 
We now apply the operator A 'J', j > m to P 10) and re

quire from (4.4e) that the result vanishes. We first see that 

A ;;:', and thus also A 'J', commute with scalars of O(n), i.e., 

[A;;:',1)01)] = [A;;:',11°11] = [A;;:',1)°11] =0. 
(4.11) 

We then note that, as 

A'J' = r'J' - r -:.Jm , m = j - I,j - 2, ... , - j + 1 , 
(4.12) 

and we eliminated expressions with index m = - j in (4.10), 
the application of A 'J' reduces to that of r 'J', i.e., 

A 'J'P 10) 

= (~'J' + Cjj'J')P 10) 

=2"1jN+M)/27jt- M)/2{ ap" }IO). 
a[("Iml"lj) + ("Iml"lj)] 

(4.13) 

Thus [( "Iml"lj) + (7jml7jj)], m = j - l,j - 2, ... , - j + 1, 
cannot appear in P" of (4.10) so our state takes the form 

P 10) = ",,{N + M)/2",{N - M)/2p",("Im _ tjm 1) 01) 11 011) 
./J ./} -' 2' 2 ' 

"Ij "Ij "Ij "Ij 
(4.14) 

in which in P "', m = j - l,j - 2, ... , - j + 1. 
We now wish to use the scalar product 

(1)°11) _ ~ "1m 7j-m 
----- k ----, 

"Ij"lj m~ -j "Ij "Ij 
(4.15) 

to eliminate the index m = - j + 1 in the expression (4.14). 
For this purpose we define 

_ 1 (1) ° 1) 11 ° 11) (1) ° 11) _ -- --+-- - -- -A 1 
2 2 -2 - J-

"Ij "Ij "Ij"lj 

and see that we can write 

(4.17) 
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where Aj _ 2 contains factors 

[( "Iml"lj) - (7jm l 7jj)] (4.18) 

but only with values m = j - 2,j - 3, ... , - j + 2. 
We can then write the state (4.14) as 

P 10) = "IjN + M)/27jt - M)l2 

XR ("1m _ tjm "Ij-l _ 7jj- I 

"Ij 7jj' "Ij 7jj' 

1) °21) , 11~211 , 1) 0_11) , 
"Ij "Ij "Ij"lj 

(4.19) 

where m = j - 2,j - 3, ... , - j + 2 and R is a rational func
tion of the variables indicated, as from (4.17) it can have 
negative powers in [( "Ij-ll"lj) - (7jj- l /7jj)]' though it 
contains nonnegative powers of all the other variables. 

We now apply 

Ai'-l = r'J'- I - r =~+ I, m = j - 2,j - 3, ... , - j + 2, 
(4.20) 

and, as [( "I _ j + 1 l"Ij) - ( 7j _ j + 1 17jj)] was already eliminat
ed through (4.17), we get 

A 'J'- I P 10) = (~'J'- I + Cjj'J'- .)P 10) = "It + M)l27jt - M)/2 

X{ aR } 
a[( "Iml"lj) - ("Iml"lj)] 

X("Ij-1 - 7jj_-1 )10) =0. (4.21) 
"Ij "Ij 

Thus we see that R cannot depend on 
[( "Iml"lj) - (7jml7jj)], m = j - 2,j - 3, ... , - j + 2 and the 
condition (4.4e) establishes that our polynomial has the form 

P 10) = "It + M)/27jt - M)/2 

XR'( "Ij- I _ 7jj- I 1) 01) 11 °11 1) 011) (4.22) 
- , 2' -2' - , 

"Ij "Ij "Ij "Ij "Ij"lj 

where R ' is a rational function of the variables indicated as it 
can have negative powers of [( "Ij _ I l"Ij) - ( tjj _ I 17jj)] but 
positive of all the others. 

We now apply A ~=: to P 10), which from (4.4d) must 
give zero, and obtain 

A j-l P 10) = (~!-l + Cjj!-I)P 10) = ""{N+M)/2,,,{N-M)/2 J-I J-I J-I 'IJ 'IJ 

. {aR 'Ia[( "Ij-II"Ij) - (7jj_ l /7jj)]} 

X [( "Ij-II"Ij) - (7jj_ l /7jj)] 10) = 0 (4.23) 

which implies that R ' is independent of 
[( "Ij _ II "Ij) - ( tjj _ I 17jj)] and thus is a polynomial in the 
other variables, i.e., 

P 10 ) = "It + MI/2fJt - MI/2pIV(1) °21) , 11~211 , 1) °_11) 10) 
"Ij "Ij "Ij"lj 

where from the equations (4.4a)-(4.4c) we have that the expo
nents satisfy the relations 

11+12 + 2/3 + 2/4 + 2/5 = N, (4.25a) 

(4.25b) 
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II + 12 = W , (4.25c) 

with all the 1;;;;.0 as there are no divisibility problems. 15 Note 
that the step (4.23) does not apply ifj = 1, i.e., n = 3, and so 
the above analysis is valid only for n > 3. For n = 3 a special 
discussion is necessary. 18 

Denoting now 

14 = q, 15 = I (4.26) 

and expressing 11,/2 ,13 in terms of them with the help of(4.25), 
we arrive at the states 

INMwqI) = {( 1Jj)"'-IN-M)/2+ 2q+1( 7jj)IN-M)/2-2q -1 

X ( "I - fJ)IN - w)/2 - q -I ( 1i -1i)q( "I -1iOIO) , 
(4.27) 

where, as all the exponents must be nonnegative integers, we 
have the inequalities 

1;;;.0, q;;;'O, w - !(N - M) + 2q + 1;;;.0 , 

!(N - M) - 2q -1;;;'0, !(N - w) - q -1;;;.0 (4.28) 

plus the fact that N - M and N - w must be even. 
The state (4.27) is an eigenket of Ho characterized by the 

irreps of the chain of groups 

U(2n)::J &(2) X O(n) . (4.29) 

Between the first and last groups we can fit though a sub
group 0(2n), and we would like actually to have states char
acterized by the chain 

U(2npO(2np&(2)XO(n) , (4.30) 
N L M 

where below each group we give the value of its irrep. Clear
ly, as U(2n) is characterized by the symmetric irrep N, the 
0(2n) will also be characterized by a partition with one row 
which we denote L = N, N - 2, N - 4, ... ,1 or O. As indicat
ed above, the importance of the irrep L ofO(2n) for our 
problem is that it also implies states characterized by an irrep 
A of the Sp(2) group in (1.4) where, by a reasoning similar to 
the one that led to (281), but now for d = 2 instead of d = 3, 
we have 

A =(L +n)/2. (4.31) 

Two of the authors l5.19 had to face a similar problem to 
the one leading from (4.29) to (4.30) when they discussed the 
eigenstates of the Bohr-Mottelson vibrational Hamiltonian. 
Therel5.19 they had to go from U(5) ::JO(3) to 
U(5P 0(5P 0(3), and they were able to achieve their objec
tive by replacing the boson creation operators by traceless 
ones. 14 

We shall follow the steps of Refs. 15 and 19 but now for 
our present problem. We start by defining the traceless bo
son operators 

am =1Jm -2(fJ-1i)(2N+2n)-ltm, 

am = tjm - 2( "I -1i)(2N + 2n)-ISm , 

where N is given by (4.1). 
We then put 1 = 0 in (4.27) to eliminate 

(4.32a) 

(4.32b) 

2 n a 
( "I -1i) = L L 1J7. = p2 - Ho - P - - n (4.33) 

;=ls=1 ap 
which is a scalar l5 of 0(2n) that acts only on the radial part, 
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and replace N by Land 1Jm' tjm by am' am to get a state 

ILMwq) 
= (aj)W - IL - M)/2 + 2q(a

j 
)IL - M)/2 - 2q 

X (a - a)IL - w)/2 - q(ii - ii)qIO) , (4.34) 

which corresponds l5.19 to the irrepL of both U(2n)andO(2n} 
as well as to theirrepsM, w of &(2), O(n).1t is now a question 
of rewriting the state (4.34) in terms of 1J m' tjm and then, by 
Dragt's theorem,17 in terms of x m , xm • 

We shall start by applying the last two terms in (4.34) to 
the ground state, i.e., by determining 

PoIO)=(a - a)IL - w)/2 - q(ii - ii)qIO) . (4.35) 

In the context of the present problem, the analysis of 
Ref. 19 indicates that PolO) can be expanded in terms of a 
polynomial in scalars of O(n) that can be formed from 
1Jm' 7jm, acting on /0), i.e., 

(4.36) 

subject to the following conditions. 
(a) The total degree of the polynomial in the creation 

operators should be the same as in (4.35), i.e., L - w. 
(b) The total angular momentum, i.e., the irrep of &(2), 

should be the same as in (4.35), i.e., (L - w) - 4q. 
(c) The PolO) should satisfy the equation 

2 n 

I I S ~sPoIO) = (~ - ~)PoIO) = 0 . (4.37) 
;= 1 s= 1 

From the first two conditions we get 

(4.38a) 

2n I - 2n2 = L - w - 4q , (4.38b) 

so that, denoting n3 = 2r, we get 

PolO) = I Crt "I - fJ)IL - w)/2 - q - '( 1i -1i)q - '( "I -1i)2'IO) , 
, 

(4.39) 

where, as the exponents must all be nonnegative integers, the 
r is restricted to integer values. 

We have now to apply the operator (~ - ~) to (4.39) as 
indicated in condition (c). This is done in Appendix A, where 
it is shown that it leads to a recurrence relation for Cn from 
which, up to a multiplicative constant, it can be evaluated as 

C, = {r!(q - r)![~(L - w) - q - r]! 

X ( - HL - w] - Hn - 3]),} - J , (4.40) 

where (x), is a Pochammer symbol (x), 
= xix + 1 ) .. ·(x + r - 1). 

We now have to apply 

(a
j

)'" - IL - M)/2 + 2q(a
j 

)IL - M)/2 - 2q (4.41) 

to the PolO) (4.39) in which C, is given by (4.40). This is also 
done in Appendix A where we show that, up to a constant, 
the state (4.34) can be written as 
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where 

"." 
x ( 1) o1))IL - w)/2 - q - "( ij 0 ij)q - " 

X( 1) 0 ij)"+ "}IO) , 

I = !(L - M) - 2q , 

(4.42) 

(4.43) 

and the coefficient in the double summation takes the form 

C LMwq = ( - )" + "2" + "(L + n - 2 - u - r)! 

"" [(L -liJ)/2 - q - u]!(q - r)! 

X I {22rr!( _ [L -liJ] _ [n - 3]) 
r 2 2 r 

X (u - r)! [ (L ~ M) - 2q - u + r]! 

X(L -liJ + n - 2 - 2r)!(r - r)! 

X[liJ- (L~M) +2q-r+r]!} -I (4.44) 

So far our state is given as a polynomial in the creation 
operators acting on the ground state. But, as it corresponds 
to theirrepL ofO(2n), it can, by Dragt's theorem, 17 be trans
formed into a wave function of the coordinates, i.e., 

ILMliJq) = PLMwq ( 1Jm' 7im)IO) 

(4.45) 

In (4.45) the irrep ofU(2n) is the same as that ofO(2n) so 
that a more correct notation for this state, characterized by 
the irreps in the chain of groups (4.30) and the multiplicity 
index q, would be ILLMliJq). The most general state of this 
type would be INLMliJq) whereN = L,L + 2, .... To get this 
state, once ILMliJq) of (4.45) is known, is quite simple. We 
consider the Ho of (1.3) in the ZD coordinates (1.5) in which 
PI = P cos y, P2 = P sin yand get 

1 [ 1 J 2n 1 J !£2 2] I - -----p - -+-+p NLMliJq) 
2 p2n - 1 Jp Jp pZ 

= (N + n)INLMliJq) , (4.46) 

where!£2 is the Casimir operator ofO(2n). We now write 

INLMliJq) = p - n + IIzR (p)((;l/2p -L ILMliJq») , (4.47) 

where the right-hand side ket is given by (4.45). As 
P - L exp(pz/2)ILMliJq) is independent of p and satisfies 

!£2 [ P - LeP
2
/2ILMliJq) ] 

= L (L + 2n - 2)[ P -LeP2/2ILMliJq)] , (4.48) 

we see that R (p) satisfies the equation 

~{ _ ~ + (L + n - 1 f - A + 2}R ( ) 
2 *2 ~ P P 

= (2v+L +n)R (p), (4.49) 

where we have written 

N=2v+L. (4.50) 

The normalized R (p), which we characterize by the indices 
v,L, can be expressed as 
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RVL(P) = [2(v!)/r(v + L + n)] 112 

XpL+n-1I2e-p2/2L~+n-l(p2), (4.51) 

where L ~ + n - 1 is a Laguerre polynomial. 
We can then using (4.45) and (4.42) write our state as 

INLMliJq) = 1T - In12)2L12p - (II + L) + 112RvL (p) 

"," 

(4.52) 

where I is given by (4.43) and c;~wq by (4.44) and ILMliJq j is 
independent of p. 

We have thus obtained explicitly the eigenstates of Ho 
characterized by the irreps of the group chain (4.30), As the 
irrep L of O(2n) determines the irrep A. of Sp(2) through 
(4.31), and in view of the relation (4.50) between Nand v, we 
can also denote the state (4.52) as characterized by the irreps 
of the chain (1.4), i.e., 

I [n/2,n/2 + liJ ]A.M,vq) = INLMliJq) . (4.53) 

Thus we have the most general state associated with 
this chain and in the next section we proceed to discuss the 
matrix elements of the generators ofSp(4) with respect to the 
kets (4.53). 

5. THE GENERAL CASE: ALGORITHM FOR THE MATRIX 
ELEMENTS 

The state (4.52) is a rather complex one, and thus we do 
not expect a simple expression for the matrix elements of r, 
r sin (J exp( ± irp ) with respect to it. Rather than a closed for
mula, we shall give an algorithm that permits the calculation 
of all required matrix elements. This algorithm can be easily 
programmed and eventually we plan to do this both for the 
d = 2 case discussed here and the d = 3 that we intend to 
analyze in a future publication. 

We shall start with the calculation of r which, from 
(1.9), is r = (p2/2).1t is clear therefore that only matrix ele
ments different from zero are 

(N 'LMliJq' I( p2/2)INLMliJq) 

= (v'L l(p2/2)lvL) [LMliJq'ILMliJqj , 

where the radial part 

(v'L l(p2/2)lvL) 

= 1" Rv'L(P)(p2/2)RvL(P)dp 

is evaluated in Sec. 7 of I. 
There remains the scalar product 

(5.1) 

(5.2) 

!LMliJq'ILMliJqj = 2[(L + n)!] -l(LMliJq'ILMliJq) , 
(5.3) 

where the radial factors in the angular kets are 
pL exp( - p2/2), and we used the fact that 

1= p 2Le -p'p2n - 1 dp = !(L + n)! . 
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The angular kets ILMwq) are given by (4.45), and in Appendix B we calculate the scalar product on the right-hand sideof(5.3) 
to get 

(LMwq'ILMwq) = 2{L-w)/2(L + n - 2)!(w + M + 2q' + n - 2)!!(L - M - 2q' + n - 2)!! 
(L - w + n - 2)![(L - M)l2 - 2q']! 

c~~Wq(u + 1")![w - (L - m)l2 + u - 1"]! 

X ~ 2P p!(q _ q' + u - p)! [w - (L - M )/2 + q + q' - 1" + P ] !(q' - q + 1" - P )! 

[(L - M)l2 - q - q' + 7 - P ]! 
X (2lU _ L + M + 2q + 2q' + n - 2 + 2u)!!(L - M - 2q - 2q' + n - 2 + 21" - 2p)!! 

(5.5) 

We now tum our attention to the matrix elements of 

r sin (j ei<p = (x· x) , (5.6a) 

r sin (j e - i<p = (i· i) . (5.6b) 

We shall only sketch here the algorithm to obtain the matrix 
elements of (5.6a) as a similar one holds for (5.6b). 

As we already know how to calculate the matrix ele
ment of r, we can restrict ourselves to that of 

sin (j ei<p = [(x· x)l(x' i)] , (5.7) 
for which we can restrict ourselves to the states with N = L, 
i.e., the ILMwq) of (4.45). We thus get 

[(x, x)/(x' i)] ILMwq) 

G,T 

X(x' x)IL-W)/2- q-G+ I(i· i)q- T(X' it+ T- I , (5.8) 

where I = [(L - M )12] - 2q. 
We now use the same expression (5.8) for a particular 

ket IL 'M'wq') multiplied by (x· iY+ I-I, i.e., 

(x • x)S + I - IlL + 2 - 2s - 2t,M + 2,w,q - t ) 

= (rr - nl22L 12e - p2/2) " C L + 2 - 2s - 2/,M + 2.w,q 
£.. a-S,T-t 
G,T 

X (x • X )IL + 2 - 2s - ZI - w)12 - q + I - G + S 

where 

(5.9) 

7 = ~(L + 2 - 2s - 2t) - ~(M + 2) - 2(q - t) (5.10) 

and instead of writing the summation indices as U,1" in (5.8) 
we write them as u - S,1" - t. 

Using (5.10) and simplifying terms, we finally have 

(x • i)' + I - IlL + 2 - 2s - 2t,M + 2,w,q - t ) 

= (rr- n122LIZe _p2/Z) " CL + Z - Zs- ZI,M + Z,w,q - I 
""'- 0'-5,7- t 
G.T 

X (xjt- 1+ G- T(Xj)l- G+ T 

X(x. x)IL - w)12 -q- a+ I(X' x)q- T(X' xt+ T-l .(5.11) 

Comparing (5.8) and (5.11), we see that in them all the 
powersofxj , xj , (x, x), (i· i), (x· i) are the same though the 
coefficients Care different, This clearly indicates that we can 
write 
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I 
[(x· x)l(x' i)] ILMwq) 

= L As/(x' ir + I - IlL + 2 - 2s - 2t,M + 2,w,q - t) , 
s,t 

(5.12) 

and, comparing coefficients in (5.8) and (5.11), we get 

C LMwq =" A CL+2-Zs-2/,M+Z,w,q-1 (5.13) 
aT ~ sl a-s,-r-t , 

s,l 

and thus we have an inhomogeneous system of linear alge
braic equations to determine the A sl' 

Because in (5.11) the indices u - S,1" - tofthe C's must 
be nonnegative, we have that if we make a choice of U,1", the 
s,t are restricted by O';;;s,;;;u, O.;;;t';;;1". Now if, for example, we 
take u = 0, then s = 0, and we get the system of equations 

T 

CLMwq = "A CL+Z-ZI,M+Z,w,q-1 
Or £.. Ot 0,7"-{ • 

1=0 

(5.14) 

The system of equations (5.14) in the unknowns AOl has a 
triangular determinant so it is immediate to solve giving us 
Ao! for t = 0,1, ... ,7 max' Once we have these Ao" we can pass 
in (5.13) tos = 1 where the only unknowns areAl!> and again 
we have a system of linear equations also with a triangular 
determinant so we can obtain theA 1I immediately. We then 
pass to s = 2 and so on up to s = u max to get all the A sl as 
illustrated graphically in Fig. 1. 

There remains the problem of finding (x' i)UILLMwq) 
in terms of INLMwq), but, as (x, i) = (pz/2), this is 
achieved trivially with the help of the discussion given at the 
beginning of this section. Of course, eventually we want the 
matrix elements not with respect to the INLMwq) but with 
respect to combinations of them in the q index that will be 
orthonormal. But this can be achieved in a standard way20 
with the help of the matrix elements (5.5). 

Thus we obtained an algorithm for the determination of 
the matrix elements of sin (j exp(i<p ), and, in a similar fashion, 
we can obtain those of sin (j exp( - i<p ). 

Tmax 

Because the generators ofSp(4) are given by the qij of 

T 

FIG. 1. The figure illustrates 
the successive steps for the 
detennination of the coeffi
cients A" in (5.13). Each dot 
stands for an A", Setting 
u = 0 in (5.13) we obtain 
(5.14) from which all Ao, can 
be found, then set u = 1 and 
detennine all A,,; continue 
increasing u up to u = Urn .. 

which allows us to find the 
last unknowns A urnRx,,' 
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(1.10) and commutators of qij with Ho as shown in (SI), it is 
clear that for d = 2 we are in a position to give all the matrix 
elements of the generators ofSp(4) with respect to the states 
(4.53) that are characterized by the irreps of the chain of 
groups (1.4). 

6. CONCLUSION 

In the previous sections we obtained in (4.52) and (4.53) 
the eigenstates of Ho characterized by the chains of groups 
(1.4) and the matrix elements of qij of(1.2) with respect to 
them. We want first to indicate the information we can ob
tain from the latter on the shape of collective states for two
dimensional many-body systems and then outline the proce
dure for generalizing our results to three dimensions. 

As the qij,iJ = 1,2, of (1.2) give the components of the 
quadrupole tensor in two-dimensional space, it is clear from 
(1.7) that pi ,p~ give the components of the quadrupole tensor 
in the frame of reference fixed in the body. 

From the discussion in I, the collective Hamiltonian H 
is in the enveloping algebra ofSp(4), and thus its eigenstates 
can be expressed as linear combinations of the kets (4.53) in 
which n,w-and thus the irrep [(nI2),(nI2) + w] ofSp(4)
are kept fixed and also M as the angular momentum is an 
integral of motion. The eigenstates of H can then be ex
pressed as 

InwM) = L AAvq I [~, ~ + W]AM,Vq) . 
Avq 2 2 

(6.1) 

To get information about the shape of these states, we 
would require the expectation values of pi ,p~ with respect 
to the ket (6.1) and thus the matrix elements of pi ,p~ with 
respect to the states (4.53). Alternatively as pi, p~ are roots 
of the characteristic equation 

X2 - (pi + p~)x + pi p~ = ° , (6.2) 

we can calculate the matrix elements of 

pi + p~ = p2 = 2r, pi p~ =! p2 sin2 2y = ,.z cos2 e 
(6.3) 

and then solve Eq. (6.2) when we replace2r,,.z cos2 eby their 
expectation values with respect to the collective states (6.1). 

To implement this program, we require the matrix ele
ments of 

r=(x·i), 

,.z sin2 e = (x • x)(i • i) 

(6.4a) 

(6.4b) 

with respect to the states (4.53). The one of (6.4a) was expli
citly given in (5.1), while as an algorithm was obtained in Sec. 
5 for (x • x) and (i • i), we can obtain from them one for 
(6.4b). 

We do not give here explicit expressions for the expecta
tion values of r, ,.z cos2 e with respect to the states (6.1) as we 
prefer to discuss this problem in detail in another publication 
dealing with shape for systems of A particles both in two- and 
three-dimensional space, where, of course, the latter is the 
physically relevant case. 

We want also to indicate briefly what will be the proce
dure for generalizing our analysis to d = 3. In this case we 
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have the position coordinate Xis' i = 1,2,3, s = 1,2, ... ,n, 
which we can write in "hyperspherical" covariant form as 

X qm , q = + ,0, -, m = jJ - 1, ... , - j, n = 2j + 1 , 
(6.5) 

which are defined in a way similar to the analysis given 
between (1.13) and (1.17). Besides we have also the covariant 
creation operators rJqm' and the contravariant momenta and 
annihilation operators pqm,S qm, where 

Xqm = (- )qx;q = (- )qx-q,-m. (6.6) 

What we are looking for are eigenstates of 

1 3 n 
H=_",,,,(22 

o 2 i~l s~l Pis + Xis) (6.7) 

characterized by the chain of groups 

Sp(6n) :::J Sp(6) X O(n) , 
(WtCt)2 w 3) 

(6.Sa) 

A 

:::J Sp(2) :::J 0(2) 

[n/2 + w},ni2 + W2.n/2 + W,] 

Sp(6) X 

&(3) :::J &(2), (6.Sb) 
L M 

where above and below the groups we give their irreps. 
We also require the matrix elements of the operator 

j 

Q q' = '" X xq
'
m 

q ~ qm 
m~ -j 

with respect to the states characterized by the chain of 
groups (6.S). 

(6.9) 

It is clear that much of the analysis carried out in Secs. 4 
and 5 can be generalized to the case d = 3, though the alge
braic work is likely to be much harder. From the discussion 
given in I we see that the determination of the basis for the 
irreducible representations ofSp(6) in the chain (6.Sb) will be 
central to the discussion of collective behavior in many-body 
systems. 

APPENDIX A: DERIVATION OF THE COEFFICIENTS Cr 

AND a-::Wq 

In the first part of this appendix we discuss the deriva
tion of the coefficients Cr appearing in the state PolO) of 
(4.39) which satisfies the condition 

(~. ~)PoIO) = 0. (AI) 

From (1.20) we see that essentially it is a matter of evaluating 
the expression 

-j if 

I a a M n" n2,2r' 
m~j rJ-m "'m 

(A2) 

where 

M ( )nl( - -)n2( -)2r 
n".2.2r = 1)' 1) 1) • 1) 1) • 1) (A3) 

and the scalar products are defined in Eqs. (4.S). 
It is immediately deduced that 
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a 
= L ~{2nl17 - mMn, - l,n2,2r 

m 17-m 

+ 2rq _ mM n"n2,2r- I} 

= L {2nl • 2n217 - m 1]m M n, - l,n2 - 1,2r 
m 

Introducing the values 

n l = !(L - w) - q - r, n2 = q - r (AS) 

appropriate for PolO) of(4.39) and making a shift of dummy 
index r--+r - 1 in the term containing ( 11·",)2r+ I, we obtain 

I 

(g. ~)Po/O) 

= 4 ~ {( L ~ w _ q + 1 - r}q + 1 - r)Cr _ I 

+ r( L ~ w + n ~ 1 _ r )Cr } 

X ( 11 • 11)(L - cu)/2 - q - r( '" .",)q - r( 11 • ",)2r- I/O) . (A6) 

Thus Eq. (A 1) will be satisfied provided we choose the coeffi
cients Cr such that 

Cr [(L - w)l2 - q + 1 - r](q + 1 - r) 
Cr _ 1 r[ - (L - w)/2 - (n - 1)/2 + r] (A7) 

The solution to this recursion relation is the Cr given in 
(4.40). 

We turn now to the application of powers of the trace
less bosonoperatorsaj,oj of(4.32) on thestatePo/O) of(4.39). 
Again, from (1.20) we see that this is equivalent to the appli
cation on the monomial M n"n2,2r of (A3) of powers of the 
differential operators 

aj = 17j - 2( 11·",)(2N + 2n)-1 ~, 
a17 _j 

o· = 1] - 2( 11·",)(2N + 2n)-I_a_. , , a'Y1 . 
'f -, 

Applying first the OJ, we find 

(A8a) 

(A8b) 

(- )IM (2nl + 2n2 + 4r + n - 2)!nl! 
a
j 

n"n2.
2r = (2nl + 2n2 + 4r + n - 2 + 1 )!(2nl + 2n2 + 2r + n - 2)! 

~ (-2)'/!(2nl+2n2+2r+n-2+I-s)! ( .)S(-.)I-SM, (A9) 
X ~ '(/_ )'( _)' 17, 17, n, - s,n2,2r + S S s. s. n l s. 

a result which has been checked by the method of induction. By a similar procedure, applying the aj on the previous 
polynomial, we find 

(ai' ( 17j )S( 1]j )1- SMn, _ s.n2,2r + S 

(2nl + 2n2 + 4r + 1 + n - 2)!n2! 

(2nl + 2n2 + 4r + 1 + I' + n - 2)!(2nl + 2n2 + 2r - S + 1 + n - 2)! 

~ (-2j11'!(2n l +2n2+2r-s+n-2+1+1'-t)! ( .)I'+s-t(-.)I+t-sM . (AW) 
X~ '(/'_ )'( _)' 17, 17, n,-s,n2-t,2r+s+t t t. t . n2 t. 

The general state 

/LMwq) = (ai'(oiPo/O) (All) 

can be obtained by combining (A9), (AW) with (4.39), intro
ducing as new summation indices u==r + s, r==r + t instead 
of S,I, and giving to n l,n2 the values in (AS), to 1 the value in 
(4.43), and setting I' = w - I. The result appears in Eqs. 
(4.42) and (4.44). 

APPENDIX B: EVALUATION OF THE SCALAR 
PRODUCT (5.5) 

The state /LMwq) of (4.42) was shown in Sec. 4 to be
long to a basis for the irrep (L ) of both U(2n) and O(2n); thus 
it satisfies the condition 

(g. ~)/LMwq) = 0, i.e., (11·",)t/LMwq) = 0, (Bl) 
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I 
where 17 ~ means the Hermitian conjugate of 17 m' and simi
larly for 1]~. Therefore, when taking the scalar product of 
/LMwq) with /LMwq') , in the explicit realization of the lat
ter state, Eq. (4.42), only the term in the double sum corre
sponding to (7 = 'T = 0 can give a non vanishing contribution. 
As the scalar product is real, we can write 

X (0/ [ ( 17j)'" - I + a - T( 1]j V + T - a( 11 • 11 )(L - cu)/2 - q - a 

X ( '" .",)q - T( 11 ·",t +r]f( 17j)'" - I' 

X ( 1]j n 11 • 11)(L - cu)/2 - q'( '" • ",)q' /0) , 

where 

1 = (L - M )/2 - 2q, I' = (L - M)l2 - 2q' 

and the C 's are given in (4.44). 
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We now get rid of the powers off 1) '1))Qn (B3) by using the fact that, from (1.20), ( 1) '1))t acting onP ( 7])10) is equivalent 
to ~m((fp la7]ma7] _ m)IO), and 

[ 
a2] (L - w)l2 - q - 17 I ( 7]j)'v - I' ( 1) • 1))(L - w)l2 - q' = A ~~Wqq' ( 7]j t - I' ( 1) • 1))q - q' + 17 

m a7]m a7] - m 

with 

A LMwqq' = 2(L - w)/2 - q - 17[(L - liJ)/2 - q'] !(L + liJ - 21' - 2q' + n - 2)!! 

17 (q _ q' + u)!(2UJ - 21' - 2q' + n - 2 + 2u + 2q)!! . 

Thus, using again the reality of the scalar product, we have 

X( 7]jt- I+17 - 1'( iij+1'-17( 'ij. 'ij)q-1'( 1)' 'ijr+1'IO) . 

By a similar procedure, we can now get rid of the powers of ( 1J • 1J)t in (B6) using the fact that 

[I a2 ]q-q'+17(7]jt- I+17 - 1'(1)''ij)17+1' 
m a7]m a7] - m 

= I B ~~Wqq' ( 7]j)'" - 1 + q' - q - l' + P( iij)q - q' + 17 - P( 'ij • 'ij)P( 1) • 'ij)q' - q + l' - P 
P 

with 

B LMwqq' = (liJ - 1 + U - 7)!(U + 7)!(q - q' + u)!2q - q' + 17 - P 

171'p p!(q _ q' + U _ p)!(liJ -/- 7 - q + q' + p)!(q' - q + 7 - p)! ' 

a result which can be checked by the method of induction. Therefore, we have, at this stage, 

(LMliJq'ILMliJq) 

= C LMwq' ~ CLMwqA LMwqq'BLMwqq' 
00 ~ 0'; (T crrp 

171'p 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

x (01 [( 7]j)W-/H' - q-1'+ p( iij)q-q' + 1+ 1'- p( 'ij • 'ij)q -1'+ p( 1)' 'ij)q' -q+ 1'-pp( 7]j)w-I'( iii'( 'ij '11)9"10) , (B9) 

where again we have utilized the fact that the scalar product is real. 
By a formula similar to (B4) but with ii m replacing to 7] m' the scalar product on the right-hand side of (B9) is seen to be 

equal to 

D~:qq' (01 [( 7]j)",-I+q' - q-r+ P( iij)q-q' + IH-P( 1) • 11)q' -qH-PP! 7]j)",-I'( iij (( 11 • 11)q' -q+ 1'-PIO) (BIO) 

with 
q 'l(2q' + 2/' + n - 2)!l2q

-
1' + p 

D LMqq' = ____ ----'!......."-2---...:... __ ~_~.....::. ______ _ 

1'p (q' _ q + 7 _ p)!(2q' + 21' + n - 2 - 2q + 27 - 2p)!! 
(Bll) 

and the scalar product in (B 10) can easily be found to have the value 

E ~pMwqq' = (liJ - / ')!(q - q' + / + 7 - p)!(q' - q + 7 - p)!2q' - q + l' - P . (B12) 

Thus our final result is 

(LMliJq'ILMliJq) = C LMwq' ~ CLMwqA LMwqq'BLM",qq'DLMqq'ELMwqq' 
00 ~UT a (rrp Tp Tp· 

(BI3) 

Inserting the values of A,B,D,E, we obtain the expression given in (5.5). 
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On the analytic structure of the wave function for a hydrogen atom in an 
analytic potential 
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The rate of convergence of an approximate method for solving Schrodinger's equation depends on 
the ability of the approximating sequence to mimic the analytic structure of the unknown exact 
wave function. Thus a knowledge of the analytic structure of the wave function can be of great 
value when approximation schemes are designed. Consider the Schrodinger equation 
[- ~V2 - r- I + V(r)]IJi(r) = EIJi (r) for a hydrogen atom in a potential VIr). Thegeneraltheoryof 
elliptic partial differential equations implies that IJi is analytic at regular points, but no general 
theory is available at singular points. The present paper investigates the Coulomb singular point at 
r = o and shows that, if VIr) = VI(x,y,z) + rV2(x,y,z) where VI and V2 areanalyticfunctionsofx, 
y,zatx = y = z = 0, then the wave function has the form lJi(r) = IJiI(x,y,z) + rIJi2(x,y,z) where IJiI 
and 1Ji2 are analytic functions of x, y, z at x = y = z = O. 

PACS numbers: 3Ll5. + q, 02.30. + g, 03.65.Ge 

I. INTRODUCTION 

In most cases of physical interest, the wave function IJi 
which satisfies the Schrodinger equation HIJi = EIJi cannot 
be determined exactly. When only approximations are avail
able, rapid convergence of those approximations is clearly 
desirable. Because the rate of convergence of an approxima
tion method usually depends on the ability of the approxi
mating sequence to mimic the analytic structure of an un
known exact 1Ji, information about this analytic structure 
can be of great value when approximation methods are de
signed. Thus the desire for better methods of practical nu
merical computation leads in a natural way to the study of 
the analytic structure of 1Ji. 

The mathematical foundation for the study of N-parti
cle quantum-mechanical systems was laid in Kato's famous 
1951 paper,! which gave the first rigorous definition of the 
Hamiltonian, proved that it is essentially self-adjoint (Her
mitian), proved that eigenfunctions belonging to whatever 
discrete eigenvalues the Hamiltonian has will satisfy the 
Schrodinger equation as a differential equation except at sin
gular points of the potential, and proved that the discrete 
eigenvalues (below the continuum) and their eigenfunctions 
could be characterized by the familiar Rayleigh-Ritz vari
ational principle. Kato's subsequent 1957 paper,2 which was 
devoted to properties of the eigenfunctions, proved that the 
eigenfunctions are continuous throughout the configuration 
space, proved that they have partial derivatives of first order 
(except at Coulomb singular points) which are bounded, and 
established his famous cusp condition. A number of subse
quent papers by other authors have extended and general
ized his cusp condition.3 

A general theory of the analytic structure of solutions to 
partial differential equations at singular points, analagous to 
the theory for ordinary differential equations at singular 
points, does not exist. The few results which are available in 
the literature4 apply only to special cases. The present paper 
treats a special case of physical interest, namely, the Schro
dinger equation HtP = EtP, where 

H= -~V2-r-I+V(r). (Ll) 

The Hamiltonian H describes a hydrogenic electron in a po
tential V (r). Potentials of the form 

V(r) = VI(x,y,Z)+,V2(x,y,z) (1.2) 

with VI and V2 analytic functions of x, y, z at x = y = z = 0 
are treated. The main result is that the wave function tP has 
the form 

(1.3) 

in a neighborhood of, = 0, where tPl and tP2 are analytic 
functions of x, y, z at x = y = z = O. 

This paper is the first in a projected series of papers 
which will discuss the analytic structure of the wave function 
at Coulomb singular points for arbitrary atoms and mole
cules. Because of certain additional technical difficulties 
which arise when discussing Coulomb singular points for 
many-particle systems, it was decided to treat only the sim
plest case in this first paper ofthe series. Nevertheless the 
results obtained apply to both the Zeeman and Stark effects 
for one-electron atoms, which are problems of continuing 
interest. 

The analysis, which is quite elementary, begins by ob
serving that the analytic structure of tP is a local property. It 
is assumed that global questions have already been answered 
by invoking functional analysis to prove the existence of a 
"weak" or "generalized" global tP in an appropriate Sobolev 
space. If P is a regular point of the potential - ,-1 + V (r), 
the Hamiltonian operator H is elliptic and tP is an analytic 
function of the Cartesian coordinates at P. If P is a singular 
point of - ,-1 + VIr), choose a neighborhood N of P, and 
consider the interior Dirichlet problem Hip = Eip in N, 
ip = tP on aN. For N sufficiently small, this Dirichlet prob
lem can be shown to have the unique solution ip = tP in N. 
The analytic structure of tP at P is then established by explicit 
construction of a series solution for ip which is general 
enough to satisfy ip = tP on aN; by uniqueness this series 
coincides with tP throughout N. The approach outlined 
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above works because the differential operator - V2 domi
nates, with the potential - r- I + VIr) acting as a small per
turbation, in the neighborhood N. This approach should be 
useful for showing that formal series solutions of partial dif
ferential equations are sufficiently general to include the so
lutions of physical interest in other problems as well. 

Section II of this paper gives precise statements of the 
results obtained for solutions of H'if; = E'if;. The proofs are in 
Sec. III. 

II. STATEMENT OF RESULTS 

First some notation. The setting is the (local) Sobolev 
space H 1(.0 ) off unctions for which the norm 

(2.1) 

is finite. nt} is the subspace O<r<f.! ofR3
• The spherical 

harmonics Y I•m are defined in the usual way by 

YI.m(O, rP) = (21 + 1)(/- m)! pm( 0) im4> 
I cos e , 

41r(1 + m)! 
(2.2) 

Ddrl' r2, 8): = {r, 0, rP ITEC, BEC, rPEC, 

where 

pm(S) = (- It (1 _ 52t12[ d
l 
+m (52 _ 1)/] (2.3) 

I 21/! d51 +m 

is an associated Legendre function as defined in Magnus, 
Oberhettinger, and Sonis and in the Bateman project. 6 

Theorem 1 and Corollary 1 give some properties of 
spherical harmonic expansions of analytic functions. These 
properties have been stated as a separate theorem because of 
their value for the interpretation of numerical data on rates 
of convergence. Theorem 2 and Corollary 2 spell out the 
analytic structure of solutions for the Hamiltonian (1.1) in a 
neighborhood of r = O. 

Theorem 1: Let r l, r2, 8, and 82 be real numbers satisfy
ing O<rl <r2 < 00,8> 0,82 >0. Define the domains D, D I , 

D 2 , andD3 by 

D(rl' r2, 8): = {x,y, ZIXEC,YEC, ZEC, rt < [Re(x)] 
2 

+ [Re(y)]2 + [Re(zJF<~, [lm(xW 

+ [lm(yW + [lm(zJF<8 2}, (2.4) 

rt < [Re(r)] 2 + IrI21(0, rP )<~, [lm(rW + IrI21(0, rP )<82, 1(0, rP) 
= sinh2[lm(0)] + {sin2[Re(0)] + sinh2[Im(0)) I sinh2[Im(rP )]], (2.S) 

D2(r l, r 2, 8, 82): = {r, 0, rP ITEC, OEC, rPEC, 

rt < [Re(rW, [Re(rW + IrI 212(0, rP )<~, 

[lm(rW + IrI 212(0, rP )<8 2, 12(0, rP ) 

and 

=sinh2[llm(0)1 + Ilm(rP)1 +82]1. 

D3(rl' r 2, 8, 83): = {rITEC, rl<IRe(r)l, 

[Re(rW + IrI2sinh2(83)<~' 

[lm(rW + I rI2sinh2(83) <8 2]. 

(2.6) 

(2.7) 

DI is the image of D under the transformation from Carte
sian to spherical coordinates. 

Let/(x,y, z) be a function of the three complex variables 
x, y, z, analytic and bounded in absolute value by a real con
stant M, for x, y, z in the tubular domain D. Define Fby 

F(r, 0, rP ): = I(r sin ° cos rP, r sin ° sin rP, r cos 0). (2.8) 

Then Fis an analytic function of r, 0, rP in the domain D I , and 
F has an expansion 

00 I 

F(r, 0, rP) = L L rGI•m (r)YI•m (0, rP) (2.9) 
I~Om~ -I 

which converges uniformly to F in any domain D2(r I' r 2' 8, 
82) for which 82 > 0 has been chosen small enough to make 
D2 nonempty. The coefficient rG1m,(r) is given by 

1578 

rGI.m(r) = LIT [fIT F(r, 0, rP )Y1.m(0, rP JdrP ]Sin OdO. 

(2.10) 
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Gl,m (r) is an analytic function of r for r l < IRe(r)1 <r2, 
Ilm(r)1 <8. The terms of the expansion (2.9) have the bound 

Mr(/+~) 
IrGI.m(r)YI.m(O, rP )1< 2"r/2/! exp[ - (I + 1)82] 

(2.11) 

for (r, 0, rP ) inD2(r l , r 2, 8, 82), The expansion coefficients have 
the bound 

Mr(/+~) 
IrGI.m(r)l< 2"r12l! exp[ - (I + 1)83] (2.12) 

for r in D3 and 83 chosen small enough to make D3 non
empty. 

Corollary 1: Let Rand 82 be real numbers satisfying 
R > 0, 82> O. Define the domains D " D i , D 2 , and D; by 

D '(R ): = {x, y, ZIXEC, yEC, ZEC, 

IxI2 + lyl2 + IzI2<R 2), (2.13) 

D ; (R ): = {r, 0, rP ITEC, BEC, rPEC, 

Ir12[1 + sinh2[Im(0)] + {sin2[Re(0)] 

+ sinh2[lm(0)] I sinh2[lm(rP )]]1. (2.14) 

D 2(R, 82): = {r, 0, rP ITEC, OEC, rPEC, 

Ir12[1 + 2 sinh2(llm(0) + Ilm(rP)1 + 82 )]<R 2, (2.15) 

and 

D ;(R, 153 ): = I rITEIC, Ir12[ 1 + 2 sinh2(83)] <R 2). (2.16) 

D; is the image of D ' under the transformation from Carte
sian to spherical coordinates. Then if the tube D of Theorem 
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1 is replaced by the ball D " the conclusions of Theorem 1 
continue to hold with the domains D I , D2, and D3 replaced 
by D ;, D ~, and D 3' respectively, and with the domain of 
analyticity of GI m replaced by 0< Irl <R. 

Theorem 2:' Let I/'be any solution to HI/' = EI/', with H 
given by (1.1), whose restriction to 11 R lies in H 1(11 R ). Let VI 
and V2 in (1.2) be analytic functions of the Cartesian coordi
nates x, y, z for complex x, y, z in the tube 0< [Re(xW 
+ [Re(y)f + [Re(z)f<R 2, [Im(xW + [Im(yW + [Im(zW 
<~ 2. Then I/' has an expansion of the form 

'" I 

I/'(r) = I L ';gl,m (r)YI,m (0, r/J). (2.17) 
I=Om= -I 

There exist real numbers E> 0, Ez > 0 such that the expansion 
(2.17) converges uniformly to I/' for (r, 0, r/J) in the tubular 
domain D2(0, R, E, E2). The domain D z, defined in Theorem 1, 
includes the Coulomb singularity at r = O. There exists a real 
constant M, independent of r, 0, r/J, I, and m, such that the 
terms of (2.17) are bounded by 

I';gl,m (r)YI,m (0, r/J )1<M(1 + !)exp( - Ei) (2.18) 

for (r, 0, r/J) inD2(0, R, E, Ez). There exists a real constantM', 
independent of r, I, and m, such that the bound 

l';gl,m(r)I<M'(1 + !)I/Zexp( - Ei) (2.19) 

holds for rinD3(0, R, E, E2 ). If VI and V2 are polynomials inx, 
y, and z, then the gl,m (r) are entire functions of r. 

Corollary 2: Under the hypotheses of Theorem 2, there 
exists a real number q > 0 such that, for 
0< Ixl 2 + lyl2 + IzI 2<q, the solution I/' can be written in the 
form 

I/'(r) = I/'I(X,y, z) + rI/'2(x,y, z), (2.20) 

where 1/'1 and 1/'2 are analytic functions of x, y, and z for 
O<lxlz + lyl2 + Izlz<q. 

III. PROOFS 

Proof of Theorem 1: The analyticity ofF in the domain 
DI(rl , r2, ~) follows from the fact that an analytic function of 
an analytic function is analytic; DI(r l , r2 , ~) is just the image 
ofD (rl' rz,~)underthechangeofvariablesfromx,y,ztor, 0, 
r/J, The coefficient ';GI,m (r) is analytic in r because the inte
grand in (2.10) is a continuous function of the three variables 
r, 0, r/J, analytic in r for fixed 0, r/J, for allreC, BER, r/JER such 
that rl<IRe(r)l<rz, IIm(r)I<~, 0<0<11', 0<r/J<211'. The de
tailed argument, based on uniform convergence of the Rie
mann sum to the integral, parallels the argument given in 
Copson 7 for an integral over one variable. It follows that 
Gl,m (r) is analytic in r except possibly at r = O. If 
/x1

2 + lyl2 + jZl2 = 0 is included in the domain of analytic
ity off(x,y,z), then there is a real E > Osuch thatf(x,y,z) has a 
power series in x, y, z, convergent for Ixlz + lylZ + IzI2<~, 
which can be written in the form 

fIx, y, z) = J;. (x, y, z) + fz(x, y, z), 

where 

1579 

!;(x, y, z) = r ai.i,kxi yizk 
i,j,k 

i+i+k<l 
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(3.1) 

(3.2) 

and 

f2(x, y, z) = L ai,i,kxi yizk. (3.3) 
i,j,k 

i+j+k>1 

The polynomial!; does not contribute to ';GI,m (r) because 
Yl,m is orthogonal to all spherical harmonics of order less 
than I. The series/z, which does contribute to ';GI,m (r), is of 
order'; for r-o. Thus Gl,m (r) is analytic at r = 0 if r = 0 is 
contained in D I . 

The uniform convergence of the expansion (2.9) can be 
established by using the addition theorem for the spherical 
harmonics to write it in the form 

'" 
F(r, 0, r/J ) = L HI(r, 0, r/J), (3.4) 

1=0 

where 

HI(r, 0, r/J) 

= 21 + 1 f pl (cos w)F(r, 0", r/J ")sin 0" dO" dr/J" 
411' 

(3.5) 

with cos w = cos 0 cos 0 " + sin 0 sin 0 " cos(r/J - r/J "). De
fine rotation matrices Ry(a), Rz(a) via 

( cosa 
0 Sma) 

Ry(a): = O. 1 o , 
-sma 0 cos a 

(3.6) 

c~a - sin a 

~) Rz(a): = ~in a cos a 

0 
(3.7) 

The coordinate rotation 

(

sin 0 " cos r/J ") (0) 
sin 0" sin r/J II = Rz(r/J )Ry(O )Rz(r/J ')Ry(O ') 0 

cosO" 1 
(3.8) 

on the dummy variables of integration in (3.4) carries w into 
0' and brings (3.4) to the form 

HI(r, 0, r/J ) = LTpl(COS 0 ')h/(r, 0, r/J; 0 ')sin 0' dO' (3.9) 

with 

h/(r,O,r/J;O')= 2/+ 1 (217' F(r,O",r/J")dr/J', (3.10) 
411' Jo 

where F(r, 0", r/J") is to be obtained from (2.8) via (3.8). Let 
v = (VI' V2, v3) be a vector with real components, and intro
duce the usual norm 

(3.11 ) 

It is then straightforward to show that, for a complex and /3 
equal to either y or z, 

IIRe[ R{J(a)v] 112<cosh[Im(a)] IIvll2 
and 

111m [ Rp(a)v] liz <sinh [ IIm(a)l] IIvll2, 

(3.12) 

(3.13) 

Repeated application of the inequalities (3.12) and (3.13) on 
(3.8) shows that 
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[Re(sin e" cos,p ,,)]2 + [Re(sin e" sin,p "lY + [Re(cos e"lf 

<coshZ[IIm(e')1 + IIm(,p'11 + IIm(e)1 + IIm(,p)j] 
(3.14) 

and that 

[Im(sin e" cos,p ''If + [Im(sin e" sin,p ''If + [Im(cos e"lf 

<sinhZ[!Im(e')1 + IIm(,p')! + IIm(e)1 + IIm(,p)I]' 
(3.15) 

It follows that (r, e " , ,p ") will remain in the domain D I of 
analyticity of F if (r, e, ,p) is in D z, IIm(e ')1 <82, and,p 'ER. 
Hence? h/(r, e,,p; e') is an analytic function ofr, e,,p, ()' for r, 
e,,pinD2(r l , r 2, 8, 81 ) and - 00 <Re(e')< 00, IIm(e')1<81 . 

Let {; = ei8
', and define k/ by 

(3.16) 

Then k/ is an analytic function of r, e, ,p, (; for r, e, ,p in Dz(r l , 

rl , 8, 81) and (; in the annular region e - b,< I{; I <eb,. H/ is 
given by 

Ht(r, e, ,p ) 

= -2
1 

. 1. Q/(({; + {; -1)/2)k/(r, e, ,p; (;)({; -2 - l)d{;, 
1Tl Yc 

(3.17) 

where the contour C is the circle I{; I = e{j,. Q/ is the second 
solution of Legendre's equation, which can be defined by the 
integral representationS 

Q/(w)=- [w+(w2 -l)l/lcosh(t)]-/-ldt. 1 foo 
2 -00 

(3.18) 

Here I arg[ w - I( w2 
- 1)] I < 17/2, the w plane is cut along the 

real axis from - 1 to 1, and neighborhoods of ± 1 are ex
cluded. The previous expression (3.9) for H/ can be recovered 
from (3.17) by shrinking the contour C to the circle 
I{; 1 = 1 + c where E> 0 is arbitrarily small and using the 
formula9 

1 (w + 1) Q/(w) = - P/(w)ln -- + R (w), 
2 w-l 

(3.19) 

where R (w) is a polynomial of degree I - 1 in w, to compute 
the jump across the branch cut which runs from w = - 1 to 
w = + 1 along the real w axis. The uniform convergence of 
(3.3), and therefore of(2.9), now follows from the discussion 
given by Szego lO of the convergence of Jacobi series of ana
lytic functions. The bound (2.11) follows from (3.17) with the 
aid of the bound 

1 I
.;;:: r(l + !)/iT 

Q/(w) "" l!Y1lw2 _ 11!/41w + (w2 _ 1)1/21/+1 ' 

larg[w- 1(w2 
- 1)1I2]1<1T/2. (3.20) 

The bound (3.20) can be obtained from the integral represen
tation (3.18) by changing the dummy variable of integration 
from t to s via cosh(t) - 1 = s2/2 and choosing the path of 
integration so thatarg[1 + w(WZ - 1)-1/1) = arg(s2). On this 
path, larg(s2)1<17/2, Iw + (w2 

- 1)-1/2cosh(t)1 
= l(w2 

- 1)112/21[12 + 2w(w2 
- 1)- I/Z I + Is21), and 

Idt/dsl = 1(1 + s2/4)-1/21< 1. These imply the bound 
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IQ,(w)I<!12(w2 
_ 1)- 112 1'+ I 

X J:"" [12 + 2W(W2 - 1)- l/z l + Is1 2
] -1-1d lsi, 

(3.21) 

from which (3.20) follows by carrying out the integration. A 
saddle point evaluation of(3.18) (the saddle point is at t = 0) 
shows that the inequality in (3.20) approaches an equality as 
1--+ 00 • The bound (2.12) is obtained by squaring (2.11), muIti
plying by sin e, integratingO<e<1T, 0<,p<21T, and taking the 
(positive) square root of the result. 

Corollary 1 can be proven in the same way as Theorem 
1. 

In order to make the basic ideas of the proof of Theorem 
2 easier to follow, the messier details are relegated to Lem
mas 1,2, and 3. These lemmas are stated first. The proof of 
Theorem 2 is then given, followed by proofs of the lemmas 
and Corollary 2. 

Lemma 1: Let V (r) satisfy the hypothesis of Theorem 2. 
Then the lowest eigenvalue of the eigenvalue problem 

HIP = EIP, IPEH I(fla)' (3.22) 

ljI(r)lr= a = 0 (3.23) 

can be made arbitrarily large by choosing q sufficiently 
small. 

Lemma 2: The spherical harmonics are bounded by 

I Y1,m (e, ,p ) 1< [(21 + 1 )/(41T)] 1/2 

xexp[lIIm(O)1 - m Im(,p I]. (3.24) 

Lemma J: Let VI and Vz in (1.2) be functions of the 
three Cartesian coordinates x, y, z, analytic and bounded in 
absolute value by a positive real constant M v' for complex x, 
y,zin and on theballO<lxl 2 + lylZ + IzIZ<8 2, 0 <8. Letthe 
value of If! (r) for r = q be given by 

00 I 

If!(r)lr= q = I I b/,m Y1,m(O',p), (3.25) 
I=Om= -I 

where b1,m is bounded by 

Ib"m 1 <Mop exp [ - l8op(q)] (3.26) 

for some positive real numbers M I/' independent of q and 
81/'(q), which may depend on q. Then for sufficiently small 
q> 0, the partial differential equation HIf! = Elf! with the 
boundary condition (3.25) has a solution with the series re
presentation (2.17), with the series (2.17) uniformly and abso
lutely convergent throughout the domain 

Irl<q, Irlexp[IIm(())1 + I Im(,p )11<2q· 

There is a constant M ~ such that the bound 

(3.27) 

(3.28) 

holds for Irl <q. If VI and V2 are polynomials, the functions 
g/,m (r) in (2.17) are entire functions. 

Proof of Theorem 2: For any If! satisfying the hypothesis 
of Theorem 2 and any real number q in 0 < q < R, the general 
theory of elliptic partial differential equations 11 implies the 
existenceofa real E'(q) > Osuch that If! is an analytic function 
of x, y, z in the tubular domain D (q, R, E'(q)) where D is 
defined in Theorem 1. The expansion (2.17) then follows 
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from Theorem 1 for q<r<R. The bound (2.12) implies that, 
for any real E3 (q) > 0, 

M'i,r(l+~) 
Irgl,m(r)l< 2r?/2/! exp[ - (/ + I)E;(q)] (3.29) 

for r real in q<r<Q where Q is the lesser of R Icosh [E3 (q)] 
and E(q)/sinh [ E; (q)] . The constant M'f/ in (3.29) can be cho
sen independent of q because IJIE1J'(il R ) implies that IJI is 
continuous in il R' Now consider the Dirichlet problem 

Hlf = Elf, IfE1J '(ilq), (3.30) 

If(r)lr~a = lJI(r)lr=q' (3.31) 

The problem (3.30), (3.31) has the obvious solution If = the 
restriction of IJI to ilq; thus existence is trivial. Uniqueness 
can be established for sufficiently small q by assuming that 
there are two solutions If, and 1f2' The difference 
1f3 = 1f2 - If, then satisfies (3.30) with the homogeneous 
boundary condition 

(3.32) 

The homogeneous problem (3.30), (3.32) isjust the Dirichlet 
eigenvalue problem for ilq; Lemma 1 implies that all eigen
values can be made larger than E by choosing q sufficiently 
small, For such q, (3.30), (3.32) has only the trivial solution 
1f3 = 0 and uniqueness follows. 

Now choose q sufficiently small both to guarantee uni
queness and to satisfy the requirements of Lemma 3. Lemma 
3 then implies that the Dirichlet problem (3.30), (3.31) has a 
solution If given by a series of the form (2.17), uniformly and 
absolutely convergent for Irl <q, Irlexp[IIm(O)1 
+ I Im(cfo )ll<2q. Uniqueness implies that If = IJI, Now 

choose positive real numbers P I and P2 such that 

pi +p~<I, 
2P2 + (pi + p~ ) I /2 < 2, 

and 

(3.33) 

(3.34) 

Choose positive real numbers E and E2 such that E<E'( Plq), 
E< P2q, D2( Plq, R, E, E2) is nonempty, and E2<D'f/(q) 
- In[2p2 + (pi + p~) 1/2]. The uniform convergence of the 

expansion (2.17) and the bounds (2.1S), (2.19) for 
I Re(r) I;;;. P Iq now follow from Theorem 1 and the analyticity 
of IJI at regular points. The uniform convergence of (2.17) and 
the bounds (2.1S), (2.19) for IRe(r)l< Plq follow from Lem
mas 2 and 3. The fact that the gl,m are entire when VI and V2 

are polynomials follows from Lemma 3. 
Proof of Lemma 1: The following simple argument was 

suggested by John D. Morgan III. H can be written as the 
sumH=Ha +Hb +He whereHa = -!V2,Hb 
= -!V2-r- ' ,andHc = Vir). ThenE;;;.Ea +Eb +Ec 

where Ea, E b' Ee are the lowest points in the spectrum of Ha , 
H b, and He' respectively. A simple calculation shows that 
Ea = r/(4q2). Eb is bounded below by - 1, the eigenvalue 
for the infinite domain. 12 Ee = minreIJa Vir), which is bound
ed below by the minimum of Vir) over rEB, 0< Irl <R, which 
minimum exists because Vir) is continuous in that domain, 
The conclusion now follows. 
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Remark: It can be shown that the lowest eigenvalue of 
(3,22), (3.23) is actually r/(2q2) + O(q-I) forq-->O. 

Proof of Lemma 2: The estimate 

IcosO +isinOcostl<exp[IIm(O)ll (3.36) 

applied to the integral representation 

1 121T PI(cos 0) = - (cos 0 + i sin 0 cos t )Idt 
2rr 0 

(3.37) 

yields the bound 

IPI(cos 0)1 <exp[/ IIm(O lI]· (3.3S) 

The addition theorem for the spherical harmonics, when 
written in the form 

I 

I YI,m(O',cfo')YI,m(O,cfo) 
m~ -I 

= (2/ + 1) exp(2imcfo )PI(cos 0 cos 0' 
4rr 

+ sin 0 sin 0 ' cos(cP - cP ')), (3.39) 

is valid for arbitrary complex 0, cP, 0 " and cfo '. It follows from 
(3.39) that 

YI,m (0, cfo )YI,m (0', cP') 

(2/ + 1) (2' A.) 
= Sr exp 1m,!, 

X lh PI (cos 0 cos 0' + sin 0 sin 0' cos t )elmt dt. 

(3.40) 

Setting 0 = 0', cP = cfo', and taking absolute values in (3,40) 
yields 

21 + 1 
IY/,m(O, cfo W< ~exp[ - 2m Im(cfo)] 

X Max IPI(cOS20 + sin2 0 cos t )1. 
0<t<21T 

(3.41) 

If cos w = cos2 0 + sin2 0 cos t with t real, it can be shown 
that Iml(w)1 is largest when cos t = - 1 and 
Iml(w)1 = 2 Iml(O )1. The bound (3.24) then follows from 
(3.41) with the aid of(3.3S). 

ProofofLemma 3: Corollary 1 implies that Vir) has an 
expansion 

00 I 

Vir) = I I rVl,m (r)YI,m (0, cfo), (3.42) 
/~Om~ -I 

uniformly convergent for r, 0, cfo in D ~ (15, 15 ;) where 15 ~ > 0 is 
arbitrary, and that V1,m is analytic for 0< Irl <D. This analy
ticity implies that r'V/,m (r) has an expansion 

00 

rVI,m(r) = I V/,m,nr'+ n, (3.43) 
n=O 

uniformly convergent for 0< Irl <D. The series 
00 I 00 

lJI(r) = I I I gl.m,nr'+nYI,m(O, cfo) (3,44) 
/~Om~-ln=O 

will satisfy HIJI = EIJI formally if the coefficientgl,m,n satisfy 
the recursion relations 

(3.45) 
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gl,m,n + I = 2(n + i)-I(n + 21 + 2)-1 [ - gl,m,n 

- Egl,m,n _ I + q"m,n _ I]' n;;;d, (3.46) 

where the ql,m,n are the coefficients in the expansion 
00 I 00 

V(r)tfI(r) = I I I ql,m,n!+nYI,m(O, f/J). (3.47) 
I~Om~ -ln~O 

The Wigner 3 j-symbol can be used to write the product of 
two spherical harmonics in the form 

YI"m,(O, f/J )YI"m, (0, f/J) 

= It
/
, [(2/1 + 1)(2/2 + 1)(21 + 1)]112 

I~ II, -1,1 41T 

(3.48) 

where m = m l + m 2. It follows from (3.42)-(3.44), (3.47), 
and (3.48) that 

n I [In - n,)l2] m'max 

ql,m,n = I I I I VI"m"n,gl"m"n, ( - l)m 
n 1 =Os=O t=O m,=mlmin 

I ) (II 
-m 0 

12 I) 
o 0' 

with 11= S + t, 12 = 1- s + t, m 2 = m - m l, m l min 
= - min(/I' 12 - m), m l max = min(/I' 12 + m), and 

(3.49) 

n2 = n - n l - 2t, The summation limits come from the fact 
that either or both of the 3 j-symbols in (3.49) are zero unless 
II + 12 + I is even, II' 12, and I satisfy the triangle condition, 
and m = m I + m 2. The coefficients gl,m,n can be calculated 
recursively from (3.45), (3.46), and (3.49) ifthegl,m,o are pre
scribed. Bounds on the coefficients gl,m,n will now be calcu
lated, Corollary 1 implies the bound 

Mvr(/+~) 
I!VI,m(r)l< 2"r/2/! exp[ - (I + 1)8 ~] (3.50) 

for I rl <8 [1 + 2 sinh2(8 i ) ] - 1/2. The inequality 

r(1 +~)<[(l +~)1T]1/21! (3.51) 

can be proven by usingr (I +~) = (I + !)(/- !)"'(~)(!)1T1/2and 
I! = 1(/- 1) ... (3)(2)(1) to write 

r(1 +~) 

I! 

= [(I + !)1T]1I2[ 1 - 4~2 r2[ 1 - 4(1 ~ 1)2 r2 
... [1 - -hr12[1 - !J1/2< [(l + !)1T] 1/2. 

The bound 

IVI,m,n 1«21 + i)1/2Cva~b~, 

where 

Cv = 2-3/21T-IMv exp( - 8 i), 

bv = 8- 1 (1 + 2 sinh2(8 i W/2 , 
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(3.52) 

(3.53) 

(3.54) 

and 

(3.55) 

follows from (3.50) and (3.51) with the aid of a Cauchy inte
gral. The orthogonality conditions for the 3 j-symbols imply 
the (unitarity) bound 

l(jl j2 j3)1 «2jmax + 1)-112, (3.56) 
\m l m 2 m3 

wherejmax is the largest ofjl,j2,j3' The bounds (3.52) and 
(3.56) can be used in (3.49) to obtain 

n I ((n - n,)l2] 
Iql,m,nl<Cv I I I (2/1 + W 

N, =0 s=O (=0 

xa~'b~' Max Igl"m"n,l. (3.57) 
m, 

Make the definition 

C (S, 7], ;): = 9Cv (1 - s )-1(1 - 7])-3(1 -; )-3. (3.58) 

Let ag' bg, Cg be positive real numbers satisfying aVag- I < 1, 
bvb g- 1< 1, avagb g- 2 < 1, and 

bg>! + [IE I +! + C(bvb g- I, aVag- I, avagb g- 2W12. 
(3.59) 

Then 

Igl,m,o I <Cga~ 

implies 

Igl,m,n I <Cga~b;, 

(3.60) 

(3.61) 

as will now be shown via mathematical induction. Assume 
first that (3.61) holds for n<N. Then (3.57) implies that 

(3.62) 

n I [In - n,)12] 
Dis, 7], ;): = I I I (2s + 2t + WSn7]s;,. 

n 1 =Os=O 1=0 

(3.63) 

Replacing the upper limits by 00 in (3.63) yields the bound 

Dis, 7], ;)«1 - S)-I(1 -7])-3(1 - ;)-31'(7], ;), 

valid for O<S < 1, 0<7] < 1, 0<; < 1, where 

1'(7], ;): = 9 -7](1 _7])(g2 + 6) 

- ; (1 - ; )(~ 7]2 + 6) 

- ~ 7];(7] +;) - 7]2 _;2 - 47];. (3.64) 

Clearly 1'(7],; )<9 for 0<7]< 1,0<;< 1. The inequality (3.61) 
for n = N + 1 now follows from (3.46), (3.62), (3.64), and 
1'< 9, thus completing the induction proof. The bounds (3.24) 
and (3.61) then imply that the series (3.44) converges uni
formly and absolutely in the domain defined by the inequal
ities 

Irl<pb g- I
, Irlexp[IIm(O)1 + IIm(f/J)I]<pag-t, 

0< p < 1. (3.65) 

It follows that (3.44) converges to a solution of the partial 
differential equation Htfl = Etfl in the restriction of this do
main to the real values for which Ht/J = Et/J was defined. 
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It will now be shown that, for sufficiently small q, there 
is a choice of the constants gl,m,O satisfying (3,60) for which 
the boundary condition (3.25) is satisfied. The series 

= ~ al'-I gl,m,n £.. YI,m,n;p (3.66) 
p~O 

will satisfy the boundary conditions formally if 

YI,m,O;O = bl,m (3.67) 

and 
p 

YI,m,O;p = L YI,m,n;p - n' p> 1. (3.68) 
n~1 

The YI,m,n;p are to be calculated recursively from the YI,m,O;p 
via (3,45), (3,46), and (3,49) Dust replace gl,m,n by YI,m,n;p in 
(3.45), (3.46), and (3.49)]. The condition (3.67), the bound 
(3.26) on bl,m' and the fact that (3,60) implies (3.61) can be 
used to show that 

I YI,m,n;O I <.M op exp( - 18op)b ;. (3.69) 

Mathematical induction on p can then be used to show that 

(3.70) 

It follows that the series (3,66) converges uniformly and ab
solutely for 

q<.~pbg-l, O<p<1. (3.71) 

It will now be shown that a suitable choice of the constants 
qg' Qg, and q exists, The constants Mv and 8 are determined 
by the potential VIr); 8 ~ can be chosen freely. With 8 ~ cho
sen, qv' Qv' and ~v are determined by (3.53)-(3.55). Chooseqg 
= 2qv, and anticipate that Qg>Max(2qv' 2Qv)' Then 
C(QvQ g- I, qvqg- I, qvqgQ g- 2)<.C (!, ~, ~) = 1152 Cv' Choose 
Qg = Max [2qv, 2Qv'! + (IE I+! + 1152 Cv)]' Choosep in 
0< p < 1. Then for any q in O<q<'!PQ g-I, the series (3.44), 
(3.66) converge to a solution of H'fI = E'fIwith the boundary 
value (3.42) throughout the restriction of the domain (3.27) 
[which is a subset of (3.65)] to the reals. The function gl,m (r) of 
(2,17) is given by 

00 

gl,m(r) = L gl,m,nyn· (3.72) 
"=0 

The bound (3.28) follows from (3.66) and (3,68)-(3.70) with 
Mop, = (2 -p)(l-p)-IMop. 

It remains to show that gl,m is an entire function when 
VI and V2 are polynomials, For polynomials VI and V2, there 
exist lmax' nmax such that vI,m,n = 0 for I> lmax or n > nmax or 
both. The terms of the sum (3.49) are then zero for n I > nmax 

or II > I max ' It follows that the nonzero terms of (3.49) have 
n2>n - nmax - 2lmax ' Define K by 

K = (nmax + 2lmax + 2)/2, (3.73) 

where the trivial case nmax = lmax = 0 is excluded. Define 
B(n)by 

B(n) = {~~ [(n + 2 _ K)/K ])-1, 
n<.2K - 2, 

n>2K - 2. 
(3.74) 

The induction proof that (3.60) implies (3,61) can be shar
pened to show that (3.60) implies 

IgI,m,n I<.Cga~b ;/r [In + K)/K]. (3,75) 
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The key observation is that, because now n2>n - nmax 

- 21max , the validity of (3.75) for n<.N implies that 

Iql,m,n I<.CvCga~b ;C(bvb g- I, avag- I, avagb ;2)B (n) (3.76) 

for n<.N. The bound (3.75) implies that thegl,m(r) are entire 
functions. 

Proof o/Corollary 2: Make the definitions 
00 00 I 

'fI1: = L L L gl,m,2n,J+2nYI,m(O, r/J), (3,77) 
n~OI~Om~ -I 

00 00 I 

'fI2: = L L L gl,m,2n + I ,J + 2n YI,m (0, r/J), (3,78) 
n~OI~Om=-1 

where the gl,m,n are the expansion coefficients from the ex
pansion (3.44) introduced in the proof of Lemma 3. The 
bound (3,61) shows that the series (3.77) and (3.78) converge 
uniformly and absolutely in the domain (3.65). Comparison 
with (3.44) shows that 'fI = 'fI1 + r'fl2' Since ,JYI,m (0, r/J ) is a 
polynomial inx,y,zwhile r = x2 + y2 + r, the series (3.77) 
and (3,78) define analytic functions of x, y, and z in the do
main (3,65). 

Remark: A proof of (2.20) for larger r could not be given 
because nothing is known about the growth of gl,m (r) with I 
for Irl >a and r<O. 
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The relativistic motion of a charged particle is studied when it is acted on simultaneously by a 
constant electric field and a plane electromagnetic wave, propagating in the direction of the 
electric field (x axis). The dynamics includes the radiation reaction (self-force) on the particle 
through a standard approximation of the Lorentz-Dirac equation. The interest is to determine 
the result of the competition between the average acceleration due to the electromagnetic wave 
("radiation pressure") and the acceleration due to the constant force of the static field. Each of 
these actions alone of course produce an unbounded particle energy asymptotically in time. 
However, it is proved first that, when the "forces" are in opposite directions, the particle can never 
accelerate (on the average) indefinitely in the x direction, regardless how weak the electric field 
(Eo) is compared to the amplitude of the wave (A ). It is then proved that all solutions converge to a 
region of zero area in a suitable velocity phase space and, if there exists a periodic solution [in the 
phases = w (t - x/c)] in a specified region of this phase space, then all solutions must converge to 
this solution asymptotically (s- + 00). In the case when (EoA 2/ ( 2

) has a specified bound (w: wave 
frequency), an iterative method is developed which explicitly yields such a periodic solution, 
showing that the energy remains bounded. The direction of the average drift is determined in 
terms of (A ,Eo'w). When the parameter (EoA 2/ ( 2

) is above this bound, a combination of numerical 
and analytic results are obtained which indicate that this periodic solution persists. These results 
indicate that all motions tend to states with bounded energy, regardless of the field strengths. 

PACS numbers: 41.70. + t 

I. INTRODUCTION 

The dynamics of a charged particle, when it reacts to its 
own radiation, has been of interest for a long time. A number 
of special solutions have been obtained illustrating the ef
fects of the energy loss by this radiation. 1-5 In the case of a 
particle in an electromagnetic wave, this energy loss brings 
about an everincreasing energy of the particle, which is com
monly described as a "radiation pressure." Without this ra
diation loss the particle's energy would remain bounded for 
all time, but the radiation reaction causes the particle to es
tablish a phase relation with the wave such that it continues 
to gain energy (on the average) for all time. The gain in the 
energy, as shown by Gunn and Ostriker,3 only increases as 
t 113, indicating that the "radiation pressure" does not act like 
a constant force, even asymptotically (for r would then be
come proportional to t ). 

The present study is concerned with the simultaneous 
influence of such "radiation pressure" and a constant (in 
space and time) electric field which opposes this "pressure" 
and, in particular, how this radiation reaction is modified by 
this constant force. Since, as noted above, electromagnetic 
radiation acting alone is not equivalent to a constant force, it 
might seem reasonable to expect that a constant force (due to 
an electric field) would always dominate the "radiation pres
sure" effect. In this case, a particle would always have an 
unbounded energy in time, due to the influence of the con
stant force. Rather surprisingly, this is not the case. It will be 
shown that when the electric force and "radiation force" are 
in opposite directions all initial states of the particle tend 
asymptotically to a state of motion which has a bounded 
energy and that this feature is essentially independent of the 

strength of the constant electric field Eo, the amplitude A, or 
the frequency w, of the plane electromagentic wave (linearly 
polarized). What this result means is that the radiation reac
tion readjusts the dynamics, through the average phase rela
tion which the particle establishes with the wave, in such a 
manner that it causes the particles to always emit or absorb 
precisely the same average energy which it acquires by its 
drift motion along the electric field. This very pretty re
sponse and balance between the two actions on the particle 
was very unexpected to the author. 

In Sec. II, the standard approximation of the Lorentz
Dirac equation, which is applicable to relativistic dynamics, 
will be reviewed. These equations will then be applied to the 
case of a particle in a plane electromagnetic wave plus a 
constant electric field along its direction of propagation, and 
this system will be reduced to the basic form (2.26). While the 
dynamics are characterized by the three dimensionless pa
rameters 

€ = Eo/A, Wa = qA /mcw, 71 = W70 = w(2q2/3mc3
), 

(1.1) 

this reduction shows that the dominant parameter is €7 IW~. 
In Sec. III, it will be shown that all solutions are captured in 
a bounded region of a suitable velocity phase space, and from 
this it is proved that the particle cannot be indefinitely accel
erated in the direction of the wave propagation, regardless of 
the amplitude of the wave. In Sec. IV, it is proved that all 
solutions tend to a region of zero area in this phase space and 
that, ifthere is a solution which remains in a specified region, 
all solutions will tend asymptotically (t---+ + 00) to this solu
tion. In Sec. V, a convergent iterative method is used to de-
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termine a solution which is periodic in the phase 
t = wIt - x/c) and which is in this specified region, provided 
that (EoA 2/ ( 2

) satisfies a given upper bound. Numerical ex
amples illustrate these figure eight limit cycles, and the di
rection of the asymptotic drift motion of the particle is deter
mined analytically in terms of (A,Eo,w). For large values of 
(E~ 2/ ( 2

), a combination of analytic and numerical results 
are presented which indicate that this globally attracting 
limit cycle persists for all values of the parameters. The con
clusion is that all motions of a particle in these fields main
tain a bounded energy for all time, regardless of the field 
strengths and the frequency (the bound obviously depends 
on these values). 

II. REDUCTION OF THE LORENTZ-DIRAC EQUATION 

The classical description of the dynamics of a charged 
( q) particle when it reacts to its own radiation (self-force) is 
given by the Lorentz-Dirac6

•
7 equation 

ii' = ifvuv + To(iil' - ilvil y ul'/e2), (2.1) 

where 1'0 = 2q2/3me3, ul' = xI' are the components of the 
four-velocity, the dot represents differentiation with respect 
to the proper time, 

~ 
0 Ex Ey EZ) 

if V = q -Ex 0 Bz -By (2.2) 
me -Ey -Bz 0 Bx 

-Ez By -Bx 0 

is the electromagnetic field tensor, and summation notation 
is used. In the case of relativistic motion, the iiI' term 
("Schott term") is negligible, and the remainder of the radi
ation reaction terms can be treated in an iterative approxi
mation,S which is valid both at intermediate and extreme 
relativistic limits.5 The iteration involves substituting the ra
diationless dynamics ill' = ifYuv into the last terms of (2.1). 
This leads to the following system of equations, which forms 
the basis of the present study 

ill' = ifvuv - pUI'. (2.3) 

This equation can also be written in the form 

!!..- (rfl) = -L (E + f3xB) - Pf3. 
dt me 

(2.4) 

The function 

p = 1'0 wI'VuY~ u~ = 2q4;: {(E + f3XB)2 _ (f3oE)2} 
e 3m e 

(2.5) 
is the instantaneous power radiated by the particle, in units 
ofme2

• 

We now consider a plane linearly polarized electromag
netic wave propagating in the positive x direction, and a 
constant electric field Eo along this axis, so that 

E = (Eo, A sin t,O), B = (0,0, A sin t), (2.6) 

t ==wt - kx = wIt - x/c). (2.7) 

We introduce the dimensionless proper time w dt = r dT 
and use the dimensionless parameters in ( 1.1), to write (2.3) in 
the form 

~ Ux = EWa r + WaUy sin t -TJuxR, (2.8) 
dT 
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~ uy = wa(r - ux)sin t -TJuyR, 
dT 

where 

R = w~ {(Er + uy sint)2 + sin2 t(r - ux )2 

(2.9) 

-[Eux+uysint]2J. (2.10) 

This can also be written in the form 

R = w~ {~(r - u~) + 2EUy sint(r - ux) 

+sin2 t(r- uj) 

and since r = I + u~ + u~, the factor r - u~ = 1 + u~. 
This suggests that a more natural function is 

w = r - Ux ' (2.11) 

Provided that we again use the approximation r - 1 c::::::r, 
then 

(2.12) 

and using (2.8) one obtains the equation of motion for w 

dw 
- = -EWaW-TJRw. 
dT 

We next introduce the phase t as the independent variable, 
and noting that 

dt -=W, 
dT 

the above equation for w then becomes simply 

dw 
dt = - EWa - TJR. 

From the last expression for R, we obtain 

R = w~ {~ + (EUy + w sin t)2) 

the equation (2.9) for uy likewise becomes 

duy • 

w dt =wawsmt-TJuyR. 

We note that the term containing R can be eliminated 
between (2.14) and (2.16) 

duy dw 
w-- - uy - =Wa(EUy + wsint) 

dt ds 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

and the resulting function on the right side is what occurs in 
R, (2.15). We can write this in the form 

~ (~) = ~ (E~ +sin t ). 

From this, it appears that the more natural functions are 
(note that w> 0) 

- EWa EUy 
U= --, V= - (2.17) 

w w 
where a scaling has also been introduced, to simplify the 
coefficients in the following equations. One then obtains 

!!!:!.... = -au2+oiv+sint)2, (2.18) 
dt 

dv = _ u(v + sin t), (2.19) 
dt 

where 
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(2.20) 

The Eq. (2.18) suggests two final transformations. One is 
simply to introduce the function 

p v + sin 5" (2.21) 

so that 

dp 
- = - up + cos 5", 
d5" 

(2.22) 

and the other to scale out the coefficient 0' in (2.18). In order 
not to change the simple coefficients of (2.22) the only possi
ble scaling is 

u'=t5- l u, p'=t5p, 5"'=155". (2.23) 

One then readily finds that, if 

154=0' (2.24) 

the equations become 

:;', = _ a(u')2 + (p')2; dp' = u'p' + cos(5" '). 
d5"' 15 

Now, dropping the primes, setting 

1/ = 0'-1/4 = [ - €7IW~] -1/4, (2.25) 

and letting the dot now represent differentiation with respect 
to the (final) 5" variable, the final form of the equations are 

it = - au2 + p2; P = - up + cos(1/5"). (2.26) 

The physical case of interest is when the force due to the 
constant electric field opposes the "radiation pressure," 
which here is the positive x-direction [the direction of the 
Poynting vector, (E X B)c/417J This means that qoEo < 0, or 
€Wa = qEoImcw < O. This is the reason for introducing the 
negative sign in (2.20) [so that 1/ is real, (2.25)] and in (2.17) 
[so that u > 0]. This means that the case of interest is when 
1> a. Moreover all electric fields Eo will be assumed to sa
tisfy 

1> - (qEoImc)(2qz/3mc3
). (2.27) 

For example, for electrons, (2.27) implies that Eo is less than 
3 X 1020 volts/m. For field strengths greater than (2.27), the 
Eqs. (2.3) are invalid because the quadratic effect of Eo in 
(2.5) can dominate the Lorentz force (linear in Eo), thereby 
violating the assumption basic to the iterative approxima
tion, (2.3) (see also Shen5

). To be quite certain that this limit is 
not approached, we shall put a lower bound on a, and also 
specify that the initial condition of u(5" ) is positive 

1 >a>!, u(O) > O. (2.28) 

III. BOUNDED ATTRACTIVE REGION 

We will first prove that all solutions of(2.26) and (2.28) 
enter and remain in a bounded region of the (p,u > 0) phase 
plane. More specifically it will be proven that 

Theorem 1: All solutions of (2.26) and (2.28) tend as
ymptotically (5"- + 00) to the region 

(pz + u 2
) < (1.8)2 + (1.8/a)2I3. 

Once they enter this region they remain there. The 
physical consequence of this theorem is that all motions as
ymptotically (in time, t_ + 00) satisfy 
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0' 1/2 --Y- + sin 5" ( 
€/3 )2 

1 -/3x 
+ 0' -1/2(wJr(1 - /3x W < 3.25 + l.5a- 2I3, (3.1) 

where We = €Wa = qEoImcw. Note that 5" is a monotonic 
function of time, by (2.13), so that 5"- + 00 implies that 
7_ + 00, to yield (3.1). This inequality yields a number of 
useful physical conclusions, which will be discussed follow
ing the proof of Theorem 1. 

The proof consists of two parts. First it is shown that all 
solutions must pass through a specified region (R4' below) in 
the phase plane (p,u > 0). One then shows that any solution 
in this region remains bounded for all 5"- + 00 (in a slightly 
larger region). 

We first define several regions R; in the phase plane 
(p,u > 0), together with their complements, R; (see Fig. 1). 
First let 

RI = (!PI <au3 J; RI = (Ipl >au3
), 

and note that 

(3.2) 

~ ~ (p2 + u2) = _ p cos(1/5") _ au3 .;;;;!p1 - au3
• 

2 d5" 
Therefore, the "radius" 

p = [p2 + U2P/2 

decreases with increasing 5" in R I' 

dp <0 (in Rd. 
d5" 

Next, let 

R z = ( !P I u > 1), R2 = ( Ip I u < 11, 

(3.3) 

(3.4) 

(3.5) 

FIG. 1. The boundaries of the regions in the phase space (p,u > 0) defined in 
the text. The region R. is enclosed by the dashed curve. 
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Solutions in these regions, according to (2.26) have the fol
lowing properties (for all S ): 

sgn(plb <0 (in R 2) 

u > 0 (in R 3); u < 0 (in R3)' 

Finally we define a rather awkward region 

R4 = R2nR3n! p < [a l/2 + a- I
/
2r/2 j 

+ R2nR3n! [PI <p*j, 

(3.6) 

(3.7) 

where p* will be defined below. These regions are illustrated 
in Fig. 1, where R4 is enclosed by a dashed curve. 

Because of the properties (3.4) and (3.6), it is clear that 
all solutions in the following regions proceed (as S increases) 
according to the following sequence: 

R InR3--.R2nRr-+(R InR2) \R4--.R4. (3.8) 

Next consider R2nR I' in which sgn( p) p < 0 and u > O. It 
follows that solutions in this region either enter RlnR3 
[thereafter following the route (3.8)] or else they enter 
R2nR3 • What we want to do is to show that, if p* is selected 
correctly, they can in fact only go into R4 (and not into 
R2nR3n! [PI > p*j). In other words, solutions in R2nRi can 
enter R2nR3 only if p <p*. The slope of this boundary is 
sgn(p) dp/du = - u2 whereas, in R2nRi 

dp -l-pu 
O>sgn(p)- > 2 2 sgn(p). (3.9) 

du p -au 
Therefore, a solution can cross from R2nRi to R2nR3 only if 
sgn (p) (dp/du)lplu = I < - u-2, or (2 + a) u4> 1. In other 
words if p < (2 + a)I/4. Thus, we define 

p*=(2 + a)I/4 (3.10) 

in which case, all points inR2nRi now either enter RlnR3 or 
R4 (directly). 

Thus we have shown that all solutions are either in R4 
or enter R4 , with the possible exception of the solutions in 
R 2n! [PI >p*j. Since all these solutions satisfy u > 0, they 
either enter R4 directly, or RlnR2 (hence to R4, as just 
shown), or else [PI--.oo. We now show that the latter possi
bility does not happen. In R2 

dp - un - cos('YI~ ) 1 -sgn(p) = r .,,:> sgn(p)< . 
du p2 _ au2 p2 _ au2 

Consider an arbitrary initial point 

(3.11) 

then 

dp 1 
-d sgn(p)< 2 (/2) 

U Po - a Po 

both initially and also for all S such that [PI >Po' Hence, we 
conclude that, for the initial state (3.11) 

u 
[PI <Po + 2 2 ' 

Po - (a/po) 

and hence, since [P I u < 1, there is a maximum value of [P I 
given by 

[PI <PI Po + PI -I [p~ - (a/p~)] -I (in R2)' 

This yields 

PI =....Q. 1 + 1 + -4-- . p [[ 4] 112] 
2 po-a 
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(3.12) 

This shows that all solutions in R2n! [PI> p*jleave this re
gion at a finite [PI <PI(PO), given by (3.12). This completes 
the proof that all solutions not in R4 must enter this region. 

They do not, however, necessarily stay in R 4 , but we can 
now easily obtain a bounded region in which they remain. 
Solutions which leave R4 have a maximum [PI given by 

[PI = p* [Plu < 1, 

after which their maximum value of [PI is given by (3.12) 
(with Po = p*) 

(3.13) 

where the inequality is nearly satisfied if a = 1 
(Pt = 1.79779). If these solutions enter RI R2 they cannot 
obtain a larger value of [P I [since sgn( p) p < 0], so the largest 
possible value of p when they enter R I is 

p2 = (pt)2 + (pt/a)2/3. (3.14) 
This bound on p can be reduced by obtaining an upper nega
tive bound on (dp/du) sgn(p) in RI R 2, but this refinement 
will not be pursued. Using the upper valuep* = 1.8 of(3.13) 
in (3.14) gives the bound quoted in the theorem. 

The bound, as expressed in the form (3.1), shows that in 
all cases f3 x"';'" + 1 as 1'--. + 00, because 
limfJx~ + I y( 1 - f3 x) = O. In other words, regardless how 
small the static electric field, Eo, the radiation reaction can 
not cause an indefinite acceleration in the direction of the 
Poynting vector. This result is of considerable interest, possi
bly surprising, but also possibly not (due to the temporal 
argument in the introduction). In any case it can not be con
cluded from the inequality (3.1) thatf3x does not go to - 1, 
nor even that r is bounded. Indeed, on the basis of the afore
mentioned temporal argument, it might seem likely that the 
particle is always dominated by the constant electric field 
and hence would expect (since q Eo < 0) that f3x --. - 1 as 
t--. + 00. Certainly this seems reasonable if Eo is large [but 
within the bound (2.27)] relative to the amplitUde of the elec
tromagnetic wave (say € = Eo! A> 1). Most surprisingly, the 
Eqs. (2.26) and (2.28) do not yield this result. 

IV. ASYMPTOTIC RESULTS 

In this section we will establish several more results 
concerning the asymptotic solutions of (2.26) and (2.28). We 
know from the proof of Theorem I that all these solutions 
pass through the region R4 (Fig. 1), and thereafter remain in 
the bounded region indicated in that theorem. Unfortunate
ly all points in this region do not necessarily remain in it 
(only those orbits which filter through R4 ), so one cannot 
employ Brouwer's fixed point theorem to conclude that this 
region has a periodic solution. However, we can establish 
several facts about the asymptotic solutions, and then use 
these to draw conclusions about an explicit periodic solution 
which will be obtained in the next section. 

The first result is: 
Theorem II. All solutions of (2.26), (2.28) are asympto

tic (t--. + (0) to a region of zero area within the bounded 
region of Theorem 1. 

This follows simply from the fact that au/au + ap/ap 
= - (2a + 1 )u, which is negative for all u > O. Thus the 

area of all regions in the relevant phase space contracts as t 
increases. 
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Although the motion is in a plane, it is governed by 
nonautonomous equations and hence trajectories can have 
crossings in the plane. Therefore, a convergent flow does not 
necessarily tend to a closed or nonintersecting curve. One 
possibility might be for solutions to approach some type of 
strange attractor, associated frequently with forced nonlin
ear oscillators. In the present case, the autonomous system is 
not an oscillator, but simply has a fixed point (global attrac
tor) at the origin. Thus there is no reason to expect this exotic 
behavior, since there are no competing oscillatory motions 
involved. At least in the case oflarge 1] [small CT, (2.20)] we 
will be able to show that the region of zero area is in fact a 
single closed curve (a unique periodic solution). To arrive at 
this property of uniqueness, we next prove: 

Theorem III: Ifany solution of(2.26) and (2.28) remains 
in the region 4au2 > p2, then all solutions converge to it. 

It of course follows that, if the solution in question is a peri
odic solution, it is the unique global attractor (limit cycle) of 
all solutions. 

To prove this result assume that (u"pd is a solution 
satisfying 

4aui >pi, (4.1) 

and that (u2, P2) is any other solution. Consider the change in 
the distance between these solutions 

J... ~ [(u, - u2f + (p, - P2)2] 
2 ds 

= (u l - u2)( -aui +pi +au~ -p~) 

+ (p, - P2)( - UtPl + U2P2) 

- a(u j - U2)2(U I + u2 ) + (PI - P2) 

X(Pzu I - pjuz)· (4.2) 

The last factor, considered as a function of (p" P2)' has a 
maximum which is positive. For a fixed PI the maximum 
occurs at 2u I P2 = PI (u I + uz) at which point the last factor 
in (4.2) equals (Pi /4u j )(u l - uz)z. Therefore, 

J...~ [(UI - UZ)2 + (PI - PZ)2] 
2 ds 

.;;; { - a(u j + u2) + pi }(U I - U2)2, 
4u , 

which is negative if(u l - uz)¥=O and 4 a UI(U I + u2»pi· 
But since U 2 > 0, this inequality holds, due to (4.1). More
over, if U I = U2, then the derivative is still negative according 
to (4.2). It therefore follows that the distance between any 
distinct solution (P2'U2) and the solution satisfying (4.1 l de
creases as S (or t) increases. 

This result means that if such a periodic solution (satis
fying 4 a u2 > p2) can be found, it is the only periodic solution 
of the system (2.26), (2.28), and it is moreover the global 
attractor of all solutions. We will not proceed to obtain such 
a periodic solution in the case oflarge 1] (small CT). The case of 
small 1] (large CT) will be examined, in Sec. VI. 

V. GLOBAL LIMIT CYCLE FOR "SMALL" EoA 2
/W

2 

In this section we will obtain an iterative solution for 
Eqs. (2.26) and (2.28) which is most useful in the limit 

1588 J. Math. Phys., Vol. 25, No.5, May 1984 

[ (me ) (mew)! ] 114 1]= - -- -- To >1. 
qEo qA 

(5.1) 

This condition is usually well satisfied unless the frequency 
of the radiation is very low. In such a case, the particle exper
iences a near-constant equal and orthogonal electric and 
magnetic field (due to the wave), which can produce long 
intervals of acceleration, so that any ultimate cyclic motion 
requires a different treatment (see the next section). 

The solution of the equations of motion which we seek 
is the periodic function of the phase which, if it satisfies the 
condition of Theorem III, will be the global attractor (limit 
cycle) of all initial states. We begin by setting 

00 00 

U= LUk, P= LPk' (5.2) 
k=O k=O 

where these functions are required to satisfy the equations 

Uo = 0; Uk = - aDkou6 

k 

-aLuk_1uI 
1=0 

k-I 
+ LPk-I-IPe (k;>I), (5.3) 

1=0 

k 

Pk = DkO cos(1]S) - LPk _lUI' (5.4) 
1=0 

If these equations are satisfied, then the functions (5.2) sa
tisfy the basic Eqs. (2.26). We moreover, are only interested 
in the periodic solution of(5.3) and (5.4), which is readily 
found to be the asymptotic solution of these equations. We 
therefore require that the average of all right-hand sides of 
(5.3) and (5.4) vanish. More specifically, we require 

2 is + 271'/'1/ 

uk(s + ;) - Uk(S) = s uk(s')ds' = 0, 

(5.5) 

2 is + 271'/'1/ 

Pk(s+ ;)-Pk(s)= s Pk(s')ds'=O. 

The lowest-order equations 

Uo = 0; Po = - cos(1]s) - PoUo 

yield a constant Uo (unspecified) and the periodic solution 

Po = - sin(1]S + 4>0)/[ 1]! + U6 J 112, tan 4>0 = uo/1]. (5.6) 

In the next order 

ul = - 2auou l - aU6 + P6; PI = - UrPl - utPo, (5.7) 

the condition (5.5) applied to the equation for U I' and taking 
U I to have no constant portion, determines Uo in terms of 1], 

U6 = - ! D i, D la sin(21]S + 2tPo + 1/'0)' tan 1/'0 = aUo/1], 
(5.8) 

where we have introduced the notation 

Djk = ((j1])2 + (kUO)2)-1I2. (5.9) 

Using (5.8) in the above equation for PI' one obtains 

PI = - ADi,D'a sin(1]S + 2tPo + tPol 
+ i D i I D 31D la sin(31]S + 3tPo + 1/'0 + tPo), 

tan tPl = uoI31]. 
The equation determining U2 is then found to be 

E. Atlee Jackson 
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Uz = - 2auouz - (a/32)D i I D ia 

+ !DiiDla cos(¢o + "'0) 

- !DiIDla[Dllcos(21]5 +31,60+"'0) 

+ D31 COS(21]5 + 21,60 + "'0 + 1,61)] 

+ ! D i I Dla [(a/4)Dla cos(41]5 + 41,60 + 2",0) 

+D3I cos(41]5 +41,60+"'0+1,61)]' (5.11) 

and the application of (5.5) determines the constant portion 
ofuz 

which is the dominant portion ofuz in the limit (5.1). 
To estimate the order of the functions in (5.2) in the 

limit oflarge 1], note that according to (5.7) and (5.9) 

Uo~ 1/1], D~ 1/1], 

so that the oscillatory portion ofuz, according to (5.11), goes 
as D 61]-1 = 1]-7, whereas the constant factor (5.12) de
creases as 1]-4, and hence is dominant. Proceeding with this 
analysis on the higher-order equations in (4.3) and (4.4), it is 
found that the order of the functions for large k is 

Uk~1]-zk, Pk~1]-2(k+I). 

Therefore, the series (5.2) are convergent for 1] > 1, but they 
are of course most useful if 1] is large. It might be noted that 
even when 1] tends to zero, UO~2-I/Z andD~21/4. Since this 
is only marginally larger than unity, the series (5.2) may still 

-.3 

-.2 

-.I 

.21 .25 

.1 

.2 

.3 

FIG. 2. The limit cycle for the case TJ = 3.162. The dashed lines represent 
the condition of Theorem III, proving that this limit cycle is a global attrac
tor of all solutions. 
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be convergent due to the other factors (indicated in the above 
equations). However, in that limit we will proceed by an
other route in the next section. 

If the equations of motion (2.26) are numerically inte
grated, one readily finds that the solutions tend to this limit 
cycle. Two examples are illustrated in Figs. 2 and 3, for mod
erate values of 1]. Note the small variation in u from its mean 
value, and how this rapidly decreases even for only a modest 
increase in 1]. The dashed curve in these figures indicate the 
boundary described in Theorem III, which shows that these 
limit cycles are indeed global attractors. 

We can compare the lowest-order prediction of the 
mean value ofu, (5.7), with these results. For 1] = 3.162 and 
a = 1, this predicts Uo = 2.236, whereas for 1] = 4.729 this 
yields Uo = 0.1495, both of which are accurate to three sig
nificant figures. 

While these results clearly indicate that the particle's 
energy always remains bounded if 1] is greater than unity, it 
does not yet give the interesting information about the aver
age drift of the particle along the x axis. An interesting ques
tion is "What is the average value of /3x as a function of 
(A,Eo,UJ)?" Unfortunately, this is not very easy to determine, 
but one might at least be able to answer the question "what is 
the sign ofthe average value of/3x?" Knowledge of the sign at 
least indicates whether the radiation "pressure" or the con
stant electric field dominates the average drift velocity. 

To examine these questions, we note that for the origi
nal four velocities f = 1 + u~ + u; and using (2.11) one can 
readily obtain the expressions 

Uk = (1 + u; - wZ)/2w, r = (1 + u 2 + w2)12w. 

Since r /3 k = Uk' this can be expressed in terms of the func
tions (2.17). Finally the scaling (2.23) can be introduced for u 
and p in order to conform with the analysis of the last sec
tion. In terms of these functions 

P 
-.4 

-.3 __ ---

-.2 

-.I 

HI--t--,*t--t--+- U 

.2 

.3 ----

.4 

FIG. 3. The limit cycle (global attractor) for the case TJ = 4.729. Note the 
expanded scale on the u axis. 
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Px = [(U/1JElLIa f + E- 2(1JP - sin 1JS)2 - 1] 

X [(U/1JElLIa)2 + E- 2(1JP - sin 1JS)2 + 1] -I. (5.13) 

Unfortunately, the average of this expression is not easi
ly obtained, and even its sign is not obvious. The question of 
the sign may, however, also be approached by examining the 
average dx/ds = uk/w. From the above relationships, one 
finds that this transcribes to the expression 

dx = ~ [(_U_)2 + E-2(1JP _ sin 1JS)2 - 1], 
ds 2 1JElLIa 

(5.14) 

which is essentially the numerator of (5.13). While it is clear 
that the parameter dependence in (5.14) is fairly involved, 
one can obtain the result for the direction of the drift in the 
limit oflarge 1J without much difficulty. One first substitutes 
for U andp in (5.14) the results Uo andpo + PI of(5.6), (5.7), 
and (5.10). The function PI must be considered (in contrast 
with U d because the average of [sin(1JS + CPo) - sin(1JS W is 
1 - cos(cpo) = 1 _1J(1J2 + U6)-1I2, which goes to 1/(4a1J4) in 
the limit oflarge 1J and the first factor of PI' (5.10), can make 
a similar contribution. There are in fact two such terms 
which contribute 

~ 1JD~IDla [1JDII cos(CPo - rPo) - cos(2cpo + rPo)], 

and their net contribution decreases as 1J-6
, and hence can 

be neglected. The conclusion is that the sign of the drift ve
locity Px' is given by the sign of 

1 + (2/lLI~) - 4aC1J4 = 1 + (2/lLI~) + 4a(E/lLI~Td. 
(5.15) 

Recall that the wave velocity is positive and the case of inter
est is when qEo <0, or E/lLI~ <0. The parameters in (5.15) are 
defined in (1.1) and (2.20). If lLIa = qA /mclLI is small, then the 
sign of the drift velocity is given by the sign of 

1 + 2a(EoiA )(mc/qATo)' 

which is now independent of the frequency. Since 
To = 6.2X 10-24 s (for an electron), it is clear that the drift 

P 

1.0 / 
// 

0.5 ,// 
,,'/ 

I 

" I U , 
1.0 , , , 

\ 
\ , , 
\ , -0.5 , , 

\ 

'\\ 
, 

-1.0 '\\ 

FIG. 4. The limit cycle (global attractor) for a smaller value of 11 ( = 0.5318). 
indicating both the larger range of u and the distorted figure eight shape. 
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velocity is negative unless Eo is very small compared to the 
wave amplitude. 

We next turn to the case of very large values of EoA 2/ lLI2. 

VI. VERY STRONG FIELDS, LOW FREQUENCIES 

In the last section it was shown that if 

1J = - (A /Eo)(mc/qA )3(lLI2/To) (6.1) 

is large, then the asymptotic dynamics is a limit cycle in the 
velocity phase space (p,u > 0) which has a figure eight struc
ture (Figs. 2 and 3). As 1J is decreased, it is found numerically 
that this limit cycle persists, with the only change being that 
the figure eight is distorted, as illustrated in Fig. 4. An essen
tial point to note is that this limit cycle remains in the region 
defined in Theorem III, and hence, is still a global attractor 
of all solutions of (2.26). The analytic method of the last 
section may in fact be convergent even in this case, but it does 
not really shed light on the limiting form of this limit cycle, 
so a new approach will now be taken. 

To see the nature of this structure, consider the equa-
tions 

. C' 2 + 2 P = - up - , U = - au P , (6.2) 

which are the same as the basic Eqs. (2.26) except that the 
function cos(1JS ) has been replaced by a constant C. Shortly 
we will consider what happens if C varies adiabatically with 
S [corresponding to a small1J in cos(1JS )]. For a fixed C, the 
solutions of (6.2) tend to the fixed point 

(6.3) 

Note that C may be positive or negative. That is, the charac
teristic exponents associated with the fixed point always has 
a negative real part, - (a + 1/2)uo. Indeed a simple phase 
plane analysis shows that the fixed point is a global attractor. 

0.5 

-0.5 

-1.0 

FIG. 5. The structure of the limit cycle for 11 = 0.0178. The degenerat~ 
straight line portion corresponds to the adiabatically varying "fixed potnt" 
(6.3). 
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If the fractional rate of change in the fixed point is small 
compared with the decay rate, (a + 1!2)uo, then the solution 
of (6.2) with variable C (s ) will closely follow the variable 
fixed point. Thus the condition for uo(s ) and Po(S ) to be the 
solution is, e.g., 

2. duo «a + 2.)uo, 
Uo ds 2 

and reintroducing C (S) = COS(17S ), this yields the condition 

a l/4 

(COS(17S ))3/2 > 17. (6.4) 
(2a+ 1) 

Therefore, the limit cycle reduces to a V-shaped curve, ex
cept where the inequality (6.4) is not satisfied. In the region 
near the origin, where the inequality (6.4) fails, numerical 
solutions show that the "crossover" from positive to nega
tive values of p has the character shown in Fig. 5. Unfortu
nately, no analytic expression for this crossover region has 
yet been obtained. The limit cycle, however, clearly remains 
in the region of Theorem III. 

VII. CONCLUSION 

The very unexpected and beautiful effect found in this 
study is the radiation reaction which occurs, in the presence 
of the combined influence of an electromagentic wave and a 
constant force (any force will do) opposing the "radiation 
pressure," such that it always establishes an equality 
between the average energy gained (from both fields) and 
that lost to radiation. The surprise is not so much that the 
constant force controls the energy input due to the wave 
(Sec. III), for the wave alone only causes r to increase as t 1/3. 

What is quite surprising is that this constant force cannot 
increase the particle's energy indefinitely, apparently be
cause the wave produces just enough deflections to cause the 
particle to "shed" its excess energy through radiation. 

It is believed9
,10 that one important application of this 

effect is in the structure of pulsar atmospheres (rotating, 
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highly magnetized neutron stars), where the dipole radiation 
"pressure" is opposed by the charging of the inner region 
caused precisely by this pressure acting only on charges with 
one sign (because they are the only particles locally avail
able). In the course of our research concerning radiative dy
namics in spatially inhomogeneous fields, Richard Martin II 

found numerical evidence that the parameter TlliJ! plays an 
important role in determining the asymptotic (t- IX) ) behav
ior of the particle. In contrast to the present governing pa
rameter 17 = - ET IliJ!, the influence of E in the inhomogen
eous case has not yet been established. We hope in the near 
future to be able to find a relationship between the spatial 
limit cycles found numerically in certain spatially inhomo
geneous cases by Martin, and the present velocity. limit cy
cles, which generally represent spatial drift motion. This re
search is presently in progress. 
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Scalar wave fields satisfying the Helmholtz equation in two dimensions are represented by means 
of a complex variable associated with the two-dimensional physical plane. This characterizes the 
wave functions as generalizations of analytic functions, which allows the existence of a 
generalized Cauchy integral formula constituting the nucleus of well-known theorems of optics 
such as the theorem of Helmholtz and Kirchhoff and the Ewald-Oseen extinction theorem. It 
also seems useful in the interpretation of inverse diffraction and scattering problems. 

PACS numbers: 42.1O.Hc, 02.30.Dk 

1. INTRODUCTION 

The representation of scalar wave fields by means of 
functions of a complex variable has an interpretative value in 
optics. 1.2 Also, in the interaction of electromagnetic fields 
with cylindrical scatterers, there is a useful representation of 
the wave function in the complex plane which permits the 
location of singularities and analytic continuation of the 
fields. 3.4 

As in the case of some elliptic equations5
•
6 and, in parti

cular, electrostatic problems, solutions of the two-dimen
sional Helmholtz equation may be studied in the context of 
complex variable theory. It will be shown that functions of a 
complex variable, associated with two-dimensional scalar 
wave fields, are generalizations of analytic functions. They 
have a similarity to the generalized analytic functions (in 
Vekua's terminology7), or pseudoanalytic functions (as in
troduced by BersS

). In fact, there exists a generalized Cauchy 
integralformula for those functions, which constitutes the 
central equation for dealing with boundary-value problems 
(in the generalized sense of Hilbert).7.9 As will be seen, this 
formula yields a Poisson representation theorem and consti
tutes the complex variable formulation from which the 
theorem of Helmholtz and KirchhofflO

•
ll for scalar wave 

fields is obtained. It also provides a framework for the inter
pretation of inverse diffraction problems and other subjects 
of recent active research such as the extinction theorem of 
Ewald and Oseen. This theorem, which was initially a result 
of molecular optics, describing the extinction of an incident 
wave inside a medium, and its replacement by another wave 
with different wave number, has recently received a great 
deal ofattention (see, e.g., Refs. 12-14 and references there
in). It has been generalized to different media and to quan
tum potential scattering and has been interpreted by Wolf 
and Pattanayak as a nonlocal boundary condition for deter
mining fields in the interior of the medium. It will be seen in 
this paper that the mathematical aspect of the extinction 
theorem is given by the form adopted by the generalized 
Cauchy integral formula evaluated at a point exterior to a 
doubly connected domain. 

In the next section we shall establish properties charac
terizing scalar wave fields in the complex plane associated to 
the R2 physical plane. This will allow the derivation of the 

Cauchy formula (Sec. 3) and its consequences for diffraction 
and scattering problems (Sees. 4 and 5). The two-dimension
al treatment presented here is enough to show the essentials 
of the ideas that we try to put forward. We believe that a full 
3-D treatment, although important from a strict formal 
point of view when dealing with wave fields in three dimen
sions, would be much more complicated as it should require 
the use of quaternionic analysis, 15 but would not add many 
more qualitative results, at least up to the scope pursued 
here. 

2. MATHEMATICAL PRELIMINARIES 

Let us consider a two-dimensional monochromatic sca
lar field u(x, y) satisfying the Helmholtz equation in a do
main g} , free of sources, of the R 2 plane: 

V 2u(x,y) + k 2u{x,y) = 0, (I) 

k being the field propagation constant. 
Let us associate with the R2 plane the complex E plane 

by introducing the new variables 

z = x + iy, z = x - iy 

with the operators 

(2) 

a 1 ( a . a) a I ( a . a) (3) az=""2 ax+lay' az=""2 ax-lay' 
The partial derivatives (3) in a domain g} CE must be 

taken in the generalized sense of Sob ole v 7 or, equivalently, in 
the areal sense of Pompeiu. 9 If a continuous function u{z) has 
these derivatives in g} , then that function belongs, respec
tively, to the manifolds Dz (g}) and D z (g}). Also such a func
tion satisfies 7 

(4) 

The function u(x, y) satisfying Eq. (I) in g} C R2 will 
satisfy, as a function u{z) = u I (x, y) + iu2(x, y) in g} C E the 
following equation: 

a2
u(z) + ~ u{z) = O. (5) 

azifi 4 

That is, u(z) will belong to the class Dz (g}) and D z(g})· Let us 
consider u(z) as a function of the manifold Dz(g}); then, evi-
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dently, Eq. (5) is equivalent to the pair of equations 

au(z) = +!5.... vIz) (6a) az - 2 ' 

av(z) = +!5.... u(z) , (6b) 
az 2 

which are the complex form of the generalized Cauchy-Rie
mann systems: 

aU I _aU2 = +kv 
ax ay - I' 

aV I + aV2 -k --=+ul , 
ax ay 

(7a) 

(7b) 

When k = 0, then auf az = 0, i.e., u(z) becomes analytic in 
fiJ and u(x, y) is harmonic. 

We shall denote by ~ (fiJ) the class off unctions u satis
fying Eqs. (6) in fiJ CEo [We could develop a parallel formal
ism for the function vIz), but we shall be only interested in the 
function u(z) as the descriptor of the scalar wave field.] Func
tions of the class ~(fiJ) have a close relationship with the 
class of generalized analytic functions in the sense of Vekua 7 

or pseudoanalytic functions as defined by Bers.8 In fact, as 
will be seen, functions of the manifold ~(fiJ) satisfy some 
theorems that are similar to those established by Vekua and 
Bers. 

Theorem 1: The function UE~(fiJ) may be expressed as 

U(Z)=CP(Z)+~J r ~dSdTJ, 
21T J.fzJ ;-z (8) 

;=s +iTJ, 

cP being an analytic function. 
Proof Since u(z)EDz(fiJ), Dz(fiJ) it satisfies the well

known Green formulas 7 

~ { U(Z)dz=J { ~dxdy, 
2l Jr J.EV az (9a) 

- ~ ( u(z) dZ = J ( au dx dy , 
2l Jr J.fi! az (9b) 

r being the boundary of fiJ. 
Let z be a fixed point of fiJ. Applying Eq. (9a) to the 

domain fiJ €' which is the intersection of fiJ and the domain 
Iz - ; I > E, where E is a sufficiently small positive number, 
one easily obtains 

u(z) = - _1 (u(; ) d; _ ~ J ( au!f) ds dTJ . 
21T;)r ;-z 1T J.fi! a; ;-z 

(10) 

The first term of the right-hand side ofEq. (10) does not 
depend on z; hence it satisfies the ordinary Cauchy-Rie
mann equations, and thus it is an analytic function. Substi
tuting the value of au/a{; given by Eq. (6a) into the second 
term of Eq. (10), one obtains Eq. (8). 

The following theorem is analogous to the reciprocal 
theorem of Vekua 7 or the similarity principle of Bers8

: 

Theorem 2: The function U(Z)E~(fiJ) may be written as 

u(z) = cP (z)ew(z) , (11) 

where cP (z) is an analytic function of w(z) is a continuous 
function in fiJ of the class Dz(fiJ). Moreover, w(z) is given by 
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the expression 

w(z) = =+= ~ J ( vI; )/u(;) ds dTJ . 
21T J.fi! ;-z 

(12) 

Proof From Eq. (11) one has 

~ = u(z) aw . 
az az (13) 

Comparing Eqs. (6a) and (13) 

aw = ±!5.... vIz) . 
az 2 u(z) 

(14) 

If z = Zo is a zero of order k of u(z), then u(z) may be written 

u(z) = A (z)(z - zo)k , 

A (zo) #0 . (15) 

But, according to Eq. (6a), from Eq. (15) is obtained 

() 2 aA ( k 
V Z = ± k az z - zo) . (16) 

And from Eq. (16) one has by virtue ofEq. (6a) and (6b) 

aA [ az A (z) k 2 ] k-= - --+-A(z) (z-zo). az azaz 4 
(17) 

The right-hand side of Eq. (17) is a function that vanishes at 
z = zo, therefore the quotient 

vIz) = +~_1_ aA 
u(z) - k A (z) az 

will vanish at z = ZO [A (z) # 0 at z = zo]. 

(18) 

We conclude, thus, that the right-hand sideofEq. (14) is 
zero at those points where u(z) is zero. Moreover, we infer 
from Eq. (14) and Theorem 1 that w(z) satisfies Eq. (12). 

The representation (11) permits associating to every 
analyticfunction cP (z) of fiJ C E a function U(Z)E ~ (fiJ). Since 
e"'lz) is regular and has no zeros, the singularities and zeros of 
u(z) coincide with the singularities and zeros of cP (z). Hence, 
it follows that if u(z) does not vanish identically, its poles and 
zeros are isolated and the multiplicity of a zero and the order 
of a pole are positive integers. 

However, unlike analytic and generalized analytic 
functions, u(z) of the class ~(fiJ) does not satisfy the maxi
mum modulus principle (see also Ref. 16) nor is every uni
formly bounded function of the class u(E ) a constant, al
though it satisfies the following theorem: 

Theorem 3: Every function u(z)E~(E) continuous and 
uniformly bounded on the whole complex plane E has the 
form 

u(z) = cew(z) , (19) 

c being a constant. 
Proof By virtue of Liouville's theorem for analytic 

functions under the hypotheses of this theorem the function 
cP (z) of Theorem 2 will become a constant C. 

An example of a function u(z) satisfying Theorem 3 is 
the plane wave given by Eq. (19) with 

w(z) =! k [(q + ip)z - (q - ip)Z] , 

(20) 

q and p being, respectively, the cosine directors of the direc-
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tion of propagation. The function w(z) given by (20) satisfies 
the equations of Theorem 2 and the corresponding 
u(z)e~(E). 

Another example of wave functions u(z) satisfying 
Theorem 3 is given by the class of source-free fields studied 
by Sherman 17

, which by virtue of Theorem II of Ref. 17 
satisfy Eqs. (6) on the whole E. 

Analogously to Theorem 3, it is straight-forward to 
prove: 

Theorem 4: A function u(z)e~ (iil') which is zero at a set 
of points of iil' with a limit point will vanish identically in iil' . 

As a consequence of Theorem 4 one obtains the follow
ing corollary: 

Corollary 1: Two functions of the class ~ (iil') that coin
cide at a set of points with a limit point in iil' are identical in 
iil'. 

This corollary establishes, in analogy with the theory of 
analytic functions, that two functions of the class ~ (iil') that 
are identical on an arc of iil' are identical in the whole iil' . In 
fact, as we shall see, there exists a generalized Cauchy inte
gral formula that connects the values of a function ue ~ (iil') 
inside a domain with the values of u on its contour. This 
leads to the Poisson representation for the Helmholtz equa
tion and constitutes the formulation of the Huygens descrip
tion of wave field propagation. 

3. THE FUNDAMENTAL KERNELS AND THE 
GENERALIZED CAUCHY FORMULA 

Letnl(z,t )andn2(z,t )be solutions ofEqs. (6). i.e.,nl(z,t) 
and n 2(z,t) [complex conjugate of n 2(z,t )], satisfy 

ani = + !5... n az - 2 2' 
(20a) 

an2 - k n 
az =+"2 I 

(20b) 

and correspond, respectively, to the analytic functions 
cPI(z) = 1/t - z and cP2(z) = 0, t being a fixed point of E. By 
virtue of Theorem 1, n l and n2 satisfy the representations 

Evidently, n l and n2 hold the following conditions: 

lim (t - z)nl(z,t) = 1 , (22a) 
z~t 

lim (t - z)n2(z,t ) = 0 . (22b) 
z~t 

The functions n I (z,t ) and n 2(z,t ) are called thefundamental 
kernels of the class ~(iil'). 

Now, let us establish the following theorem: 
Theorem 5: The function u(z)e(iil') is given at points zeE 

from its values at a contour r enclosing the domain iil' by 
means of the generalized Cauchy integral 
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when zeiil', 
when zer, 
when Zf!iil' + r . 

(23) 

Proof Let rbe a contour of a domain iil'. It is the union 
of a finite number of simply smooth closed Jordan curves in 
which the function u(z) andnl(z,t ), n 2(z,t ) satisfy, respective
ly, Eqs. (6) and (20) and iil' + r does not contain the point 
z = t; both u(z)n I (z,t ) and v(z)n2(z,t ) are continuous and be
long, respectively, to the manifolds D:z(iil') and Dz(iil'). 
Hence, the Green formulas, Eqs. (9), may be applied: 

~ r u(z)n I (z,t )dz = Ii!... [u(z)n I (z,t )] dx dy 
21 Jr Ii! az 

= Ii [nl(z,t).!!!.... + u(z) ani] dxdy. 
Ii! az az 

And by means ofEqs. (6a) and (20a) one obtains 

~ r u(z)nl(z,t )dz 
21 Jr 

= ± ~ I Ig [U(Z)n2(Z,t) + n 1(z,t )v(z)]dx dy. (24) 

In a similar fashion, one obtains from Eq. (9b), and by using 
Eqs. (6b) and (20b) 

Ii -- ---:- v(z)n2(z,t )dZ 
21 r 

= + !5... I i. [v(z)nl(z,t) + n 2(z,t )u(z)]dx dy . (25) 
2 fiJ 

Then, summing (24) and (25) we obtain 

L [u(z)n I (z,t )dz - v(z)n2(z,t )dZ] = 0 . (26) 

If teiil', applying Eq. (26) to the domain iil' E bounded by r 
and the circle r E -Iz - t I = E, we get 

L [u(z)n 1(z,t )dz - v(z)n2(z,t )dZ] 

- r [u(z)n I (z,t ) - v(z)n2(z,t )dZ] = 0 . 
Jr. 

Therefore, when E-D we obtain by virtue of the conditions 
(22) 

L [u(z)nl(z,t )dz - v(z)n2(z,t )dZ] = - 21Tiu(t) . (27) 

When ter we obtain an analogous expression in the right
hand side of which appear 1Tiu(t). In other words, we have 
derived the generalized Cauchy formula of Eq. (23). 

Evidently, when k = 0 then n I (b",zj = 1/(z - (; ) and 
n2(z,{;) = 0, so that Eq. (23) becomes the classical Cauchy 
formula for analytic functions. 

As can be guessed and will be seen later, the fundamen
tal kernels n I and n2 are closely related with the Green's 
function of the Helmholtz equation. As such, we shall look 
for solutions to Eqs. (20) that satisfy conditions (22), and 
besides for z:;;z1:0, t-+oo, 

nl(z,t) = O(lt 1- 1
/

2
), (28a) 
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(28b) 

which coincide with the behavior at infinity of cylindrical 
waves. The solutions to Eqs. (20) subject to the conditions 
(22) and (28) are 

k I I (II 
!11(Z,t) = ±1Ti-~H\21(klt-zlJ, (29a) 

2 t-z 
k (21 

!12(Z,t) = 1Ti - Hb'I(k It - zl) , 
2 

(29b) 
It-zl = [(t-z)(t-Z)]lf2. 

H~I and H~I are respectively, the first and second Hankel 
functions of order v, whose limiting forms arels 

kr-D: 

- iHb'I(kr)-iH~I(kr)-(2/1T) In(kr) , 

- iH~I(kr)-iH~I(kr)- - (1I1T)r(v)(!kr)-V 

(Re v>O), (30) 

kr~oo: 

H ~I(kr) _ _2_e ± i(kr - v1T/2 - 1T141 . (II [f 
1Tkr 

(31) 

The two signs in front of the right-hand side of expres
sion (29a) as well as in Eqs. (20) and (6) must be understood in 
the following way: the upper sign is associated to H\II and 
H~I whereas the lower sign is chosen with H\21 and Hb'I. As 
will be seen, H~I and H~I are, respectively, associated to 
outgoing and incoming waves. 

It can easily be verified that Eq. (23) can be also applied 
to an unbounded domain if we impose upon u(z) the addi
tional condition 

It -zl ~ ± i.!::.. u = 0(lzl-I/2) 
t-z az 2 

(32) 

for t fixed and z~ 00 • 

This condition implies the following asymptotic law for 
u(z): 

uz-- e . () 1Tik~ 2 ±i[klt-zl-1T14] 
2 1Tklt-zl 

(33) 

That is, u(z) vanishes at infinity as fast as a diverging (upper 
sign) or converging (lower sign) cylindrical wave. Equation 
(32) is the counterpart in the E-complex plane of Sommerfeld 
radiation condition. 

With condition (32), and providing that u(z) satisfies 
Eqs. (6) in the upper half plane (uhp),y> 0, Eq. (23) yields a 
representation for u(z) for y > 0, in terms of the generalized 
Cauchy integral on the real axis: 

-. [v(s)fl2(S",z) - u(s)!1M,z)]ds 1 J'" 
217'1 _ '" 

{

U(Z) , y>O, 

= !u(z) , y = ° , 
0, y<O, 

(34) 

; = s + i1/, 

where the contour r ofEq. (23) has been chosen to be the real 
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axis and a semicircle iny > 0 centered at the origin and whose 
radius R is taken in the limit R~oo. 

Equation (34) constitutes the Poisson representation for 
u(z)eo//(9J),9J being now the upper half of the plane E. As 
such, it can be regarded as an equivalent representation to 
that of Heins 19 (see also Ref. 20). 

When only u(s ) is specified on 1/ = 0, subtracting from 
Eq. (34) the same integral but now evaluated at z instead of at 
z yields 

1 J'" - 1Ti _'" u(S)[!1I(s,z)-!1I(s,Z)]ds=u(z), y>O, 

(35) 

which is another Poisson representation equivalent to the 
Rayleigh-Sommerfeld diffraction integral in the R2-plane 
since evidently one may obtain from Eq. (29a) 

!11(S,z) - !11(S.z) =.!.. aG , (36) 
4an 

n being the unit normal to Ox along the positive Oy-axis, and 
G being Sommerfeld's Green function21 

(II (II 
G(k Iz -; I) = ± 1T;[H~I(k Iz -; I) - H~I(k Iz -; I)J. 

(37) 
(II 

Let us denote the left-hand side ofEq. (23) by l:~I(z): 

(II 1 1 - -I(21(Z) = -. [vI; )!12(;,z)d; - u(; )!11(;,z)d;] . (38) 
r 217'1 r 

The first of Eqs. (23), corresponding to ze9J, is analogous to 
the theorem of Helmholtz and Kirchhoff in R2 for scalar 
wave fields. 10,11 Hence, the generalized Cauchy integral rep
resents for points inside 9J the formulation in the E-plane of 

(II 
the Huygens-Fresnel description. In fact, l:~I(z) given by Eq. 
(38) may be written as 

(II 1 1 [ (II au -I(21(Z) = + - H~I(k I; - zl)-=- d; 
r 2 r a; 

+ U(;)~Hg: (k I; - zlJd;] . a; 
By making use of Eqs. (2) and (3), the above takes the form 

(II 1 1 [(II (II I(21(Z) = +- u(VH~I. ds + ilVH~IXdsl) 
r 4 r 

(II 
+ H~I(Vu. ds - ilVuXdsllJ, 

ds being the arc element vector of r taken counterclockwise. 
Then, V f· dsand IV fXdsl represent,respectively, the com
ponents of V falong the tangent t and the normal n to r22. 
Therefore we have 

(II 1 1 (II I(21(Z) = + - V(H~lu) . ds 
r 4 r 

'1 (II (II 
+..!.-. (uVH~I. n ds - H~IVu. n ds). (39) 

4 r 

The first integral ofEq. (39) is evidently zero since r is 
closed. Thus we are left with 
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( 

(I)~ (I) (I) (2) 

L(2)(Z) = _1_ f G (2)!!!:... - u~ s, 
r 41T Jr an an 

(40) 

II) 

where G (2) denotes the Green's function, respectively, for 
outgoing and incoming waves, 

(I) II) 

G(2)(k I; - zl) = ± 1TiH~)(k I; - zl)· (41) 

Equation (40) is the Helmholtz-Kirchhoff integral in R2. 

4. BOUNDARY VALUES. THE EXTINCTION THEOREM 

Let us consider a domain !iJI-I of the E-plane contain
ing a wave-field source distribution, and bounded by a con
tour r. !iJ1-I is included in a larger domain !iJ of boundary 
r'. We shall denote by Z < a point zE!iJ I - I and by Z > a point 
zE!iJ I+) = !iJ - !iJ1-) (Fig. 1). Evidently u(z) satisfies Eqs. (6) 
outside !iJI-), i.e., U(Z)E~(!iJI+)). 

For zE!iJI-), the generalized Cauchy formulas, Eqs. (23) 
applied to the doubly connected domain !iJI+I yield 

(42) 

where the notation of Eq. (38) has been used. 
Analogously, for zE!iJ I+ I, Eqs. (23) applied to the do

main !iJ1+) give us 
II) II) 

u(z» = L(2) (z» - L(2)(Z». 
r' r 

(43) 

II) II) 

Note that in (42) and (43) the integrals ~~), (and ~~)) involve 
the values of u(; ) and au/a; on r' (and r). 

In a direct diffraction or scattering problem the values 
u(z> ) are to be determined from ~~) by means ofEq. (43). In 
fact, by writing the total field as 

u(z) = uli)(z) + uIS)(z) , 

where U(IJ(Z) is a field wave function of the class ~ (E), i.e., a 
function that satisfies Eqs. (6) everywhere in E. It is usual to 
identify uli)(z) either with an incident field or zero according 
to whether there are in !iJI-) secondary or primary sources. 
On the other hand, uIS)(z) represents the field generated by the 
sources of § 1-) and is usually referred to as the scattered 
field or the field radiated by the sources at !iJI-I. uIS)(z) satis
fies the radiation condition for outgoing waves [Eq. (32) with 
the upper sign]. Then, it is evident that ~~), (z> ) is equal to 

r' 

@~, 
d.J .z> 
.z< 

FIG. I. Contours and domains in the E-plane. 
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the value of~~:~" i.e., to the integral (38) with the upper sign 
over a circle of radius that is taken in the limit tending to 
infinity. Then we have 

II) 

L = UI11(Z) , 
c(~} 

(44) 

since ul11 satisfies the first of Eqs. (23) everywhere in the E
plane and the component of ~~:~I due to uIS)(z) is zero by 
virtue ofEq. (32) with the upper sign. Equation (44) is inde
pendent of whether zE!iJI-I or zE!iJ I+). 

Thus, Eqs. (42) and (43) yield for the direct problem 
II) 

o = uli)(z < ) - L (z < ) , (45) 
r 

(I) 

u(z> ) = uli)(z> ) - L (z». (46) 
r 

Eq. (45) may be recognized as the extinction theorem of 
optics, which constitutes a boundary condition (nonlocal) on 
r for u(z < ).12-14 On the other hand, Eq. (46) represents the 
direct exterior solution. We thus see how both expressions, 
and in particular the extinction theorem of molecular optics, 
ultimately are consequences of the generalized Cauchy inte
gral formulas for functions of the class ~(!iJI+I). More spe
cifically, the extinction theorem constitutes the result ob
tained from the generalized Cauchy formula applied to a 
point exterior to a doubly connected domain !iJ1+). 

In an inverse diffraction or scattering problem either the 
values u(z > ) or even the values u(;) and au/a; on r are to be 
determined from u(;) andau/a;onr', i.e., from~~),. In this 
case the choice of the lower superindex of 11 1, and 112 in Eqs. 
(29) indicates that we are considering convergent cylindrical 
waves and reconstructing the initial values of u(z) from those 
on a surface r' towards which the wave field u(z) has propa
gated. In this case Eqs. (42) and (43) yield 

(2) (2) 

o = L (z < ) - L (z < ) , (47) 
r' r 

(2) (2) 

u(z> ) = L (z» - L (z». (48) 
r' r 

Note that u(z) may be decomposed according to Eq. 
(44), it satisfies the same radiation condition at infinity and, 
thus, now ~~),' does not become u(11. This is a fundamental 
difference between direct and inverse problems. 

Analogously to the extinction theorem, Eq. (45), the 
new equation (47) constitutes a nonlocal boundary condition 
for determining the interior field u(z < ) and in particular its 
value u(; ) and au/a; on the boundary r of !iJ1 - I. The inverse 
exterior solution u(z < ) is then determined from these values 
and ~~), by means ofEq. (48). 

In the case in which u(z > ) represents asourcefreefield 17 

the contribution of~~)(z > ) in Eq. (48) is negligible. This is in 
agreement, on the other hand, with the fact that if u(z > ) is 
source-free it may be extended into the domain !iJI-) (Ref. 
17) to obtain a bounded solution ofEqs. (6) for all theE-plane 
and, thus, the Cauchy formula for u(z) will apply to any sim
ply connected domain !iJI+)CE, without excluding a do
main of sources as in Eq. (48). Hence, the Cauchy integral 
formula yields for a source-free field the following inverse 
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equation instead ofEq. (48): 
(2) 

u(z" ) = L (z,,). 
r' 

(49) 

In particular, when r' is chosen as the real axis and a 
semicircle iny > 0 centered at the origin and whose radius R 
is taken in the limit R~oo, Eq. (49) becomes the 2-D analo
gous to the inverse diffraction equation of Shewell and Wolf 
[Eq. (4.9) of Ref. 23]. 

In fact the boundary values au/a; and u(; ) may be con
sidered as given on the real axis and any parallel to the real 
axis in the uhp, y > 0, by means of a conformal mapping that 
transforms the r-contour into the line y = O. The domain 
fiJI -) thus becoming the lhp which contains the sources, and 
the domain exterior to fiJ<-) being mapped into the uhp free 
of sources. 

5. THE GENERALIZED CAUCHY FORMULA IN A 
DOMAIN CONTAINING SOURCES 

We should add to the previous analysis, that it is even 
possible to obtain a generalized Cauchy formula for a func
tion u(z) in a domain fiJ containing sources, such as the do
mains fiJ(-) or fiJ of Fig. 1. 

This is the case for a wave field u(z) satisfying the com
plex form of the inhomogeneous Helmholtz equation, 

a2u(z) k 2 1 
--+-u(z)=-p(z), (50) 
aziJi 4 4 

p(z) denoting the source distribution. 
Equation (50) is equivalent to the pair of equations 
au k 
iJi = ±"'2 v(z) , (51a) 

av _ k 2 
az = +"'2 u(z)±TP(Z)' (51b) 

Of course, the function u(z) satisfying Eqs. (51) is no 
longer a function of the class ~(fiJ). However, in an analo
gous way as Theorem 5 was proven, it is easy to derive the 
following generalized Cauchy formula for u(z): 

~ r [v(; )il2(; ,z)d; - u(; )111 (; ,z)d; ] 
2m Jr 

± _1_ J r dx dy p(z)il2(;,z) 
21Tk J", 

{

U(Z) , 

= !U(z) , 
0, 

zEfiJ , 

zEF, 

zEtfiJ + r, 
r being the boundary of fiJ. 

(52) 

Equations (52), when used together with Eqs. (42) and 
(43), may transform contour integrals into domain integrals 
and, in particular, may be used for solving the inverse interi
or problem, namely, that of finding the source distributions 

(1) 

p(z) from the knowledge of L~), (z). 24.25 

6. SUMMARY AND CONCLUSIONS 

We have established a complex variable characteriza
tion of scalar wave fields that satisfy the Helmholtz equation 
in two dimensions. This permits us to obtain fundamental 
mathematical properties for the wave functions in the com-

1597 J. Math. Phys .. Vol. 25, No.5, May 1984 

plex plane associated to the physical H2-plane. Specifically, 
these functions have been seen to be generalizations of ana
lytic functions with many similar properties; in particular, 
the possibility of establishing a generalized Cauchy integral 
formula which is fundamental for solving boundary-value 
problems. This formula is revealed as the nucleus of classical 
theorems of optics such as the Helmholtz-Kirchhoff 
theorem and the Ewald and Oseen extinction theorem, and 
may also be useful in the formulation of inverse scattering 
and diffraction problems. The analytic nature of the wave 
functions, in the general sense used here, seems therefore to 
be a fundamental characteristic of scattered fields: specifi
cally, it is at the root of the conservation of information in 
wave propagation (Huygens' principle) as stems from the 
Cauchy integral. 
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We consider a gyrostat in its simplest form, namely, a rigid body with a flywheel attached. It is 
well known that, although the motions are coupled, when the rotor is symmetric, the full system is 
completely integrable in terms of elliptic functions. The Euler equations for the angular 
momentum components with respect to the rigid body now depend on the parameter 1 = angular 
momentum of the flywheel (a constant of motion) and the phase portrait of the system undergoes 
several bifurcations. Analytical formulas, in terms of elementary functions, can be given for the 
separatrices. A small imperfection in the flywheel breaks the S 1 symmetry; as a result, the 
separatrices split with transversal intersection, producing horseshoes. We applied the techniques 
of Holmes and Marsden to write down the Melnikov function of the system. The integral is 
computed by the method of residues, in the limit case 1-0-. Somewhat surprisingly, the 
amplitude of the Melnikov function diverges. We propose an explanation for this "paradox." 

PACS numbers: 46.10. + z 

1. INTRODUCTION 

Considerable effort has been devoted in recent years to 
the study of "chaotic behavior in deterministic systems." 1 A 
relatively simple mechanism for the presence of erratic tra
jectories was discovered by Poincare and BirkhoW and set 
into an abstract framework by Smale,3 who called it the 
horseshoe. 

Topologically, the horseshoe is a map! R2_R2100king 
like Fig. l(a). Although the dynamics of/is complicated, it 
can be well understood on a certain subset. 

Horseshoes appear frequently in Poincare maps asso
ciated with differential equations. Consider an autonomous 
system in the plane (x,y) containing a separatrix connecting 
two saddles, as in Fig. lIb). If this system is subjected to a T
periodic time-dependent perturbation, then generically the 
Poincare map between sections t = to and t = to + Twill 
have horseshoes. This phenomenon is due to the transversal 
splitting of the separatrix [Fig. l(c)]. 

The quantitative aspects of the issue were treated by 
Melnikov and Arnold.4 The Melnikov function M = M(to), 

measures, to first approximation on a perturbation param
eter, the gap between the curves C U and C s. Here to is the 
time along the unperturbed separatrix (x(t ), Y(t)). WhenM (to) 
has simple zeros, then C U and C S intersect transversally; so 
M (to) = 0 means that a transversal intersection occurs near 
(x(to), Y(to))· 

In typical examples, the Melnikov function is an oscil
lating trigonometric polynomial, whose amplitude can be 
interpreted as a quantitative measurement of the "observabi-

++ f(51 

FIG. I. (a) The horseshoe; (b) the separatrix (x(t), ji(t)); (e) transversal split
ting: C U = unstable manifold, C' = stable manifold. 

lity" of the horseshoe. See Holmes and Marsden.s In a series 
of papers, Holmes and Marsden further developed the meth
od of Melnikov. 6

•
7 

In this work we apply their techniques to the example 
consisting of a rigid body with an attachment. This example 
was also proposed by Holmes and Marsden. 8 This paper is 
organized as follows: In Sec. 2 we treat the unperturbed sys
tem and sketch its phase portrait; the results are probably 
classical; in Sec. 3 we review the Holmes-Marsden theorem 
and suggest a slight modification in order to simplify compu
tations; in Sec. 4 we write down the Melnikov function and 
establish the existence of horseshoes; finally, conclusions 
and related questions are presented in Sec. 5. 

2. THE UNPERTURBED SYSTEM 

A system of rigid bodies is usually meant as any finite 
number of rigid bodies coupled in arbitrary fashion. In re
cent years the dynamics of multibody systems became a field 
of increasing interest, motivated by such various applica
tions as spacecraft engineering, biodynamics, and molecular 
chemistry. It was realized that even the problem of writing 
down the equations of motion is nontrivial, and several auth
ors have devised ingenious ways to do it.9 Here we deal with 
a very simple multibody system. 

The system studied in this paper is depicted in Fig. 2. 
Here 11,12,13 are the the inertia moments of the main body, 
KI = K2 = K, K3 the inertia moments of the attachment; 
moreover, m is the mass of the rotor and L = IIOP II. This is 
the unperturbed system; in the next section we will consider 
small imperfections of mass f-l/2 added to the points PI' P 2 at 
distance r of P. Then f-l will be the perturbation parameter 
introducing the horseshoes. To simplify the analysis, we neg
lect the gravity (g = 0) which can also be achieved when 
L=O. 

Without loss of generality, we may assume that the at
tachment point P = CM2 belongs to the line OZI' Notice, 
however, that the direction cosines (a,h,c) of the axis of rota-
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K,. KZ 

~I? 2. (a) T~e example to be analyzed: configuration space SO(3) xS '; (b) 
ngId body wIth two flywheels: a mechanical system on SO(3) X T2 
(T2 = S' xS ') whose Lagrangian is a left-invariant metric. 

tion, with respect to the main body frame, can be arbitrary. 
For the time being we do not require that OXI YIZI be the 
principal axis of the rigid body. So letA I be its inertia matrix; 
then the Lagrangian of the unperturbed system is given by 

1 1 
L = To = T(A 10 ,0) + T(K + mL 2)(il i + il ~) 

1 2 • 2 . 
+ TK3il3 + ~KlJ + K3(ail l + bilz + cil3)0, 

(2.1) 

where 0 = (il l ,ilz,il3 ) is the angular velocity vector of the 
main body and e the angular velocity of the flywheel. 

Notice the coupling term between these velocities. To 
save space, we omit the derivation of this formula. It can be 
done, in a straightforward way, using the elementary tech
niques of textbooks such as Arnold's. 10 We remark that To is 
a left-invariant metric on the direct product SO(3) X S I. 

It is convenient to pass to the Hamiltonian formulation. 
For simplicity we assume now that the attachment axis PZ2 

is coincident with a principal axis (say OZd of the rigid body. 
After some manipulations we obtain 

HO 1 [Mi M~ 
= T J, + K + mL 2 + J? + K + mL 2 

1 12 ]-+ -(M3- I )2+ - , 
J3 K3 

where the Legendre transformation is given by 

. (1 1) 1 0= - + - 1- - M 3 , 

J3 K3 J3 

ill = 
JI +K +mL2' 

I M3 +-
J3 J3 

(2.2) 

(2.3) 

It is well known that I is a constant of motion II but 
notice that e = I/K3 - il3, showing that the flywh~el reacts 
to the movement of the rigid body. It is easy to produce a 
modern derivation of several related classical results, using 
the notations of Marsden and Weinstein. 121t follows that the 
solution curves M (t ) lie on the intersection of spheres 

M~ +M~ +M~ =/2 

with the ellipsoids 

M2 M2 
__ I + __ 2 

a f3 

where 
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(2.4) 

(2.5a) 

a=JI +K+mL 2
, P=Jz +K+mL 2

, r=J3,D=K3• 

(2.5b) 

The solution curves satisfy the differential equations 

· ( 1 1) 1M 
M, = M2M 3 r - p - ~, 

· ( 1 1) IMI M z =MIM 3 - - - + --, 
a r r 

(2.6) 

· ( 1 1 ) M3 =MIMz 7i - -;; . 
For I = 0 these are the traditional Euler equations, ex

cept by the fact that a, p, r are no longer geometrically con
strained. 13 We wonder if this remark could be of interest for 
higher dimensions [SO(n), n;;;.4], where the integrability of 
the Euler equations depend on these relations. 14 

In Fig. 3 we sketch the phase portraits of the system on 
the sphere 11M II = [, using I as bifurcation parameter. There 
are two different cases: 

(a)a >p> r,I;;;.O(I <Oand!orr>p> a are analogous); 
(b) a> r > p, 1;;;.0 (I < 0 and/or a < r <P are analogous). 
A remarkable fact is that the separatrices can be quanti-

tatively described in terms of elementary functions! 

3. THE MELNIKOV FUNCTION 

In this section we make some observations on the tech
nique of Holmes and Marsden8 to show the existence of 
chaotic behavior in perturbations of integrable Hamiltonian 
systems. Our aim is to apply their Theorem 6.4 to the rigid 
body with a flywheel. 

Following their notation, the four-dimensional sym
plectic manifold P is here the product S 2(/) X T * S ' of the 
sphere M T + M ~ + M j = [2 with the cylinder 
T*S' = ! (0,1) J. The notations correspond as follows: 

Holmes/Marsden ours 

u M 

t/J 0 
J I 
€ J1 

The Poisson bracket of g,h: P-+R is given by 

[ ,h J = ag ~ 
g ao aI 

ag ah 
- - - M.grad g X grad h, aI ao M M 

(3.1) 

x 

112 

(oi I (oii) (ajj,) 

(bll (biil (biid 

FIG. 3. Phase portraits for M = Mx gradM H. 
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where gradM 1= (allaMI, allaMz, aj laM3 )· 

The Hamiltonian of the system described by Fig. 2(a), 
when the imperfection is present, is of the form 

Hf.J-=Ho+f.lHI+O(pZ), (3.2) 

where HO = HO(M,!) is as in (2.2) and H 1 = H I(M,(},l) is 
found, after some manipulations, to be given by 

H I = I [r cos2 
() + L 2 M 2 rsinze + L 2 M 2 

- 2 I + f32 2 2 a 
2r sin () cos e rI 2 

] 

+ af3 + 7 . (3.3) 

Since we are going to use a slightly different Melnikov 
function, it is perhaps worth reviewing Holmes-Marsden 
Theorem 6.4. In their notation, it is as follows: 

(I) Choose and fix a value of J such that the unperturbed 
system has a separatrix u(t). Compute 

aHo _ 
fl (t) = aJ (u(t ),J), 

(3.4) 

t/J(t) = f fl (t ') dt '. 

Assumefl (t) > 0 and lim, __ + oc t/J(t) = ± 00 (this is im
plicitly assumed by Holmes and Marsden, although not stat
ed explicitly). 

(2) Compute the Melnikov function 

f= { ° HI} M(t/Jo)= _00 H 'n dt, (3.5) 

where IHo, H Ilfl ) is the u-Poisson bracket (J and t/J kept 
frozen) and the integral evaluated along 

u = u(t), J, t/J = t/J(t) - t/Jo· (3.6) 

Suppose that M(t/Jo) changes sign and all zeros are sim
ple. Then, for ~ > 0 sufficiently small, the perturbed system 
H' = HO + ~H 1+ O(c) has transversal splitting of the se
paratrix on the energy surface HE = h = HO(u,J). 

The key idea of the reasoning of Holmes and Marsden is 
to consider the restriction of the system to the energy mani
foldH (u(t), J) = hand to eliminate the time variable, replac
ing it by t/JE ( - 00,00). The reduced system is still Hamilton
ian, and it is given by 

L '(u,t/J) = L o(u) + ~L I(U,t/J) + 0 (~Z), 

where 

L DIu) = the value of J given implicitly by HO(u,J) = h, 

L I(U,t/J) = - H(u,t/J,L O(u))/fl (u,L DIu)). 
(3.7) 

Then Holmes and Marsden apply the results of a pre
vious work,5 by which the Melnikov function for the family 
L ' of 2-degrees-of-freedom systems is given by 

(3.8) 

where the u-Poisson bracket is computed with t/J frozen and 
the integral evaluated along the unperturbed separatrix u(t/J) 
and with t/J-t/J -1/10' Notice that M(t/Jo) is 21T-periodic with 
respect to 1/10' 
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The geometric interpretation is outlined in Fig. 4. The 
homoclinic surface of the suspended unperturbed (E = 0) 
system in (u,t/J) space splits for ~#Ointo stable W S and unsta
ble WU manifolds of hyperbolic fixed points u'± = close to 
uO+ 00 • Fix two sections, say 1/1 = 0 and t/J = 21T. The periodic
ityimplies that the surfaces W S and WU intersect the sec
tions in the same pair of curves C Sand Cu. Under the Poin
care map P ~7T a point in W Sn! 1/1 = 0 J moves to a point in W S 
n! t/J = 21TJ closer to u'+ 00 along the curve CS. By a classical 
result in dynamical systems,3 the Poincare map P ~rr: 
I (u,t/J = O)j __ ! u,t/J = 21T)J will have horseshoes ifCSand CU 
intersect transversally. 

The Melnikov function measures the gap between C S 

and C U along the normal lines of the unperturbed separatrix 
at the points u(t/Jo), - 00 < 1/10 < 00, using the level lines of L ° 
to compute "distance." More precisely, M(t/Jo) is the coeffi
cient of the first term in Taylor expansion by powers of ~ of 
the function L O(utJ- L O(uz)' 

Holmes and Marsden showed that (Proposition 6.3) 

ILo,L I) = IHo,Hllfl J(l/fl) 

so that, when integration is changed from 1/1 to t variable, one 
gets indeed formula (3.5). 

We would like to make the following observations: 
(i) The presence of the factor fl in the denominator in

side the Poisson bracket is a nuisance, both for practical 
computations and for possible extensions to more degrees of 
freedom. On the other hand, using t/Jo as the independent 
variable has the advantage of making M (¢o) a periodic func
tion. Here t/Jo corresponds to the time value to such that 

t/Jo = f'fl (t) dt (3.9) 

so it represents merely a regular reparametrization (fl > 0) of 
the separatrix u(to), - 00 < to < 00. Note that t/J = ¢(t) -1/10 
appearing in (3.5) can also be written 

¢ = Lfl (t )dt. (3.10) 

(=><':~\ f 
)1- p"(X)t ~_ _ ..... -1 : .1: u!.: 

I I I 

,-,_--~~I : 

o 

FIG. 4. Geometric interpretation of the Melnikov function. 
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If(3.5) is evaluated with ifJ given by (3.10), then the Mel
nikov function will appear with the "correct" parametriza
tion M (to), but it will no longer be periodic in to (unless n is 
constant), so we believe this will bring no advantage. 

(ii) In practice, it is often possible to identify the zeros of 
M (ifJo) without having to compute (3.5) explicitly. Then it 
suffices to check whether dM / difJo =1= 0 whenever M = O. We 
remark that the same proof of (3.5) yields 

dM
k 

_ foo {o akH l/aifJk 
} 

k - H , dt, 
difJo ,~ - 00 n (3.11) 

where the integral is evaluated in the same manner as indi
cated before. 

(iii) We suggest a slight modification of the Melnikov 
function, using the level valuesofHO(u,J) instead ofL O(u,h ). 
This is natural because after all H ° is the original Hamilton
ian. Following Holmes and Marsden, the crucial step con
sistsofshowingthat!HO,L °J=Oin!HO,L ° + €L I + 0 (e) J, 
which is indeed the case: 

O=!h,L O(u)J = !HO(u,L O(u)),L O(u)J 

= !HO,L oJ + aHa !L o,L oJ. 
aJ 

4_ EXISTENCE OF HORSESHOES 

Since the second term vanishes, so does the first. Now, 
Proposition (6.3) of Holmes and Marsden produces the equi
valent Melnikov function 

= f: {HO,!!.!...} n dt 
1--00 n 

and 

(3.12) 

It is now a tedious, but straightforward, task to write down the Melnikov integral (3.l2)withHO andH I given by (2.2) and 
(3.3). 

For definiteness, we consider the case a> f3 > r in Fig. 3(a). Choosing the initial point M (0) of the separatrix at P, then the 
functions M,(t) and M3(t) are even, while M2(t) is odd. 

After the simplifications which result from dropping the odd integrands, we get 

N(8°) = ~A sin(280 ), (4.la) 

where 

(4.lb) 

Here 

n(t)=I(~+ ~)_ M3 , 

r {) r 
(4.lc) 

i' ( 1 1 ) 1 il q(t) = n (t /) dt / = I - + - t - - M3(t /) + dt /. 
° r {) r 0 

It would be nice if one could prove without effort that A =1= 0 for all values but an analytical hypersurface on the space of 
parametersJI,J2' J3, K, K 3, m, L, I. Then the very form of expression (4.la) shows that the zeros of the Melnikov function are 
simple, and we would be done. 

At any rate, the numerical calculation of (4.1 b) for given values of the parameters is always possible, since formulas for 
M

" 
M 2, M3 can be given in terms of elementary functions. Moreover, using M3 as variable of integration, we have an 

(improper) integral over a finite interval. 
In principle, the integral could be evaluated by the method of residues, but it seem to us hopeless attempting to do it even 

with the present capabilities of symbolic computer manipulations. 
It would be very disappointing to stop here, so we make a compromise; we are able to show that indeed A =1=0 in a limit 

case. This is sufficient to guarantee that the analytic function A (J I , J2, J3 , K, K 3, m, L, 1)=1=0 for a generic choice of the 
parameters. It turns out that the computations, although laborious, are possible and elementary in the limit case. We summa
rize the result in the following. 

1602 J. Math. Phys., Vol. 25, No.5, May 1984 Jair Koiller 1602 



                                                                                                                                    

Theorem: Choose a, p, y such that (1 - yiP) 
X(1 - yla) = l. 

Let [~- and t5~ in such a way that 0/ = [115 re-

mains constant. Set lU = 2uJ/ I(~a la3/ ), where a 1 = 

(1/y - 1/P) > 0, a2 = (1/a - 1/y) <0, a3 = (1/P - 1/ 
a»O. Then,aslU/~-,A-klsinh(lU1T12)~- 00 wherek 
= (S1T164)/2(1 - yIP)/ap. 

The proof, as we said, is a lengthy calculation. We just 
indicate here the key features. 

First, as[~O ,the phase portrait approaches the usual 
rigid body system, and we can, in the limit, use the well
known formulas for the separatrices, 

MI(t) = / )al/( - a2) sech( - ~ala3/t), 

M2 = I tanh( - ~ala3/t), M3 = ~a3IaIMI' 

Secondly, the function q(t) in (4.1) becomes 

(4.2) 

q(t) = lU't - 1 tan -I(sin h (~a la3lt )). 
)(1 - ylP)(1 - yla) 

(4.3) 

The choice of (1 - ylP)(1 - yla) = 1/4 allows us to 
simplify the expressions sin (2q) and cos(2q) in (4.1) through 
the trigonometrical formulas for arc sums and the identities 

cos(2tan - I(sinh xl) = (1 - sinh2 x)sech2 x , 

sin(2tan -I(sinh xl) = 2sinh x sech2 x . 

The rest of the issue consists in computing the integrals 
by residues. Details will appear elsewhere. 15 

How is the result to be interpreted? Physically, one al
ways has 15 = K 3 =fO, and so, as[~O-, thenlU~-. SinceA 
gives, roughly, the "size" of the horseshoe (in the sense of 
Ref. 5, Appendix B), then the smaller I eol is taken, e < 0, the 
more visible would become the horseshoe. One could be 
tempted to call these objects "wild" horseshoes. 

But this runs against our intuition, since as [~ the 
influence of the flywheel disappears. 

We believe that the explanation for this "paradox" lies 
in the fact that, as lU~, the time needed for a complete turn 
of the flywheel becomes bigger and bigger, and one would 
have to be very patient to observe the chaotic motions. (In 
other words, either the horses are wild, but do not have 
shoes, or they have horseshoes, but are tame ... ). The mathe
matician, using the angle 00 as a clock, is fooled by his own 
trick. 

5. CONCLUSIONS 

We have applied the technique of Holmes and Marsden 
to the example of the rigid body with an attachment. A small 
imperfection in the flywheel destroys the integrability of the 
system, as indicated by the presence of horseshoes in its dy
namics. 

It is convenient to place the flywheel along a principal 
axis of the rigid body, so that the separatrices of the unper
turbed system are still symmetric with respect to a plane. 
Then the Melnikov function has the simple form M (00 ) 

= A sin(200 ). We were able to compute A, exactly, in a limit 
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case. In general, A can be evaluated numerically for each set 
of values of the parameters. 

To finalize, we would like to formulate some related 
questions that one could try to pursue. 

(1) Is it possible to guarantee the splitting of separatrices 
by a general "abstract non-sense" argument? In that case the 
form of M (00 ) shows automatically thatA =f0, and therefore 
the splitting is transversal. An indication is the fact that the 
stable and unstable manifolds always have points in com
mon, by Weinstein's transversal Lagrange manifolds the
ory.16 

(2) What is the role played by the symmetry of the separ
atrix in the process of splitting? In this example, the center of 
symmetry of the separatrix is a point of transversal intersec
tion. Is this a general fact? 

(3) What features would be revealed by a detailed nu
merical study of the behavior of the amplitude A as param
eters vary? Particularly interesting should be the bifurcation 
values [erit of the unperturbed system. What happens when [ 
becomes > O? What happens near the values of [where the 
homoclinic orbit is disappearing? 

(4) Is it possible to show the existence of Arnold diffu
sion8 when two flywheels are attached? 

(5) Holmes and Marsden5 derived a relationship 
between the number of iterates of the Poincare map P neces
sary to guarantee that P /II has a horseshoe and the perturba
tion parameter. Are the effects of A---+ 00 and lU---+O compen
sating each other, so that one can observe the chaotic 
motions in reasonable time scale? 

We would like to make three final comments. First, as 
pointed out by Holmes and Marsden,8 the rigid body with a 
flywheel has formally the same equations as Euler's elastica, 
a result due to Kirchhoff. 171t could be interesting to examine 
in more detail the symmetry breaking process for the elas
tica. Secondly, that the model has been used in technological 
applications: Professor Holmes called our attention to the 
work of Hubert. 18 Thirdly, some results in the direction of 
problem (2) were obtained by Carvalho. 19 
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Solutions of the equation t?U(4) + ZU(2) + aut!) + /3IU - /3~zu = 0, where a, /31' /3 ~ are constants, 
t?.( 1, and z is the independent variable, are obtained using the Laplace integral technique. This 
equation describes the propagation of high frequency electrostatic waves near plasma resonance 
in a magnetized plasma with a longitudinal density gradient and is a generalization of an equation 
studied by Wasow and by Rabenstein in the context of boundary layer phenomena. The solutions 
of this fourth-order equation in which the associated second-order equation (i.e., t? = 0) exhibits 
both a singularity (at z = 0) and a turning point (at z = /31//3 ~) fall readily into two classes. One 
class resembles Airy functions and exists only for t? not equal to zero. In the other class, the 
solutions are related to confluent hypergeometric functions and can be viewed as solutions of the 
second-order equation with small corrections proportional to t? Using the integral 
representations of solutions, it is demonstrated that each class of solutions can generate the other 
when the independent variable crosses the singular point. This is the physical phenomenon of 
mode conversion. Asymptotic descriptions of both classes of solutions are given and the form of 
the solutions near the singular point is expressed as a power series. 

PACS numbers: 52.35.Fp, 02.30. + g 

1. INTRODUCTION 

This paper investigates the solutions of a fourth-order 
differential equation which arises in the description of high 
frequency electrostatic waves near plasma resonance in a 
magnetized plasma with a zero-order density gradient along 
the magnetic field. The behavior of the electrostatic poten
tial is described by Poisson's equation which can be written 
as 

(1.1) 

where K is the plasma dielectric tensor, ¢ the electric poten
tial, A the vector potential, w the angular frequency of oscil
lation, and c the speed oflight. A harmonic time dependence 
of the form exp( - iwt) is assumed. In (1.1) the term contain
ing the vector potential can be viewed as a driving source 
term, which can be physically identified with an externally 
launched electromagnetic wave, as might be the case in a 
laboratory or ionospheric experiment. From this point of 
view, (1.1) can be solved for interesting physical applications 
by obtaining the appropriate Green's function, a task which 
requires knowledge of the solutions of the associated homo
geneous equation 

(1.2) 

When thermal corrections associated with the motion of 
plasma along the magnetic field are retained, the plasma di
electric tensor becomes a second-order differential operator 
and (1.2) can be written in dimensionless form as l 

(1.3) 

To obtain (1.3), it is assumed that the plasma has a linear 
density gradient with scale length L along the magnetic field 
direction. This assumption is appropriate for many physical 

applications and retains the important physical processes. In 
(1.3), u is the electric potential suitably normalized, and z is 
the distance along the magnetic field normalized to the den
sity scale length L. The small parameter 

(1.4) 

in which kD is the Debye wave number. For typical ionos
pheric plasmas the parameter t? can be less than 10-6• The 
other parameters in the plasma have the values 

a = 1, 

/31 = (k1L )2fl ;/(w2 - fl;), 

/3~ = (w/fle)2/31 , 

(1.5) 

(1.6) 

(1.7) 

where fle is the electron cyclotron angular frequency and kl 
is the fixed wave number perpendicular to the magnetic 
field. In obtaining solutions of (1. 3) we do not restrict our
selves to the parameter values given in (1.5)-(1.7). We do, 
however, assume that all parameters are real and that t?, /31' 
and /32 are positive. These assumptions apply to a plasma in 
which the wave frequency is larger than the electron gyrofre
quency (i.e., w > fle)' 

Equation (1.3) supports two distinct classes of solutions: 
thermal modes and cold modes. The first of these classes 
represents short wavelength modes in the sense that these 
solutions exist only when t? (and hence k D 2) is not zero. The 
prototype equation for this class is obtained from (1.3) by 
setting /31 and /3 ~ equal to zero, 

(1.8) 

Equation (1.8) approximates (1.3) whenever the term t?U(4) is 
large in comparison with ( /31 u - /3 ~ zu). In this situation the 
solutions of(1.3) can be obtained from the solutions of(1.8) 
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by adding corrections proportional to f31 and f3 ~. In the 
WKB sense the thermal class solutions are short wavelength 
because the term CU(4) in (1.3) can be large in comparison 
with ,8IU and ,8 ~zu. As shown in Sec. 3, the solutionsof(1.8) 
are related to Airy functions since they are proportional to 
the (a - 2) derivative of Airy functions of negative argument 
when a is an integer. 

The second class of solutions associated with (1.3) is 
comprised of cold plasma modes in the sense that these solu
tions exist even when C (and hence k D 2) is equal to zero. 
The prototype equation for the cold mode class is obtained 
from (1.3) by setting c = 0, 

ZU(2) + au(l) + ,8IU -,8 ~zu = 0 . (1.9) 

The solutions of (1.9) are related to confluent hypergeome
tric functions. When the term CU(4) is small, solutions of (1.3) 
can be obtained from solutions of(1.9) by adding small cor
rections proportional to C. In the WKB sense the solutions 
in the cold mode class are long wavelength in that CU(4) is 
small in comparison with the other terms in (1.3). 

Solutions in the two classes are generally distinguished 
by the disparity in their wavelengths. However, near plasma 
resonance (z = 0), the WKB wavelengths of the two modes 
become comparable and mode conversion occurs. That is, 
solutions of one class generate solutions of the other class. 
This mode conversion process is clearly exhibited by solu
tions obtained in this study. 

The second-order Eq. (1.9) obtained from (1.3) by set
ting C = 0 exhibits both a singularity at z = 0 and a turning 
point atz = ,81/f3~. The existence of the turning point distin
guishes (1.3) from an equation previously studied by Wasow2 

and by Rabenstein. 3 The results obtained by these authors 
can be recovered in the limit ,82~' In the plasma applica
tion the singularity corresponds to plasma resonance and the 
turning point to upper hybrid resonance. As shown in Sec. 5, 
the existence of the turning point profoundly affects the 
structure of the cold plasma modes and allows for the exis
tence of solutions which exhibit no mode conversion for cer
tain restricted parameter values. 

The paper is organized as follows. In Sec. 2 we intro
duce integral representations for the solutions of(1.3) and 
describe the contours associated with the solution set. In Sec. 
3 the solutions corresponding to the thermal modes are ob
tained. In Sec. 4 expressions for the solutions corresponding 
to the cold plasma modes are derived. In Sec. 5, the mode 
conversion process and the linear independence of the solu
tions is discussed. Finally, in Sec. 6 the principal findings are 
summarized. 

2. GENERAL PROPERTIES OF SOLUTIONS 

Since all of the coefficients of u, and its derivatives in 
(1.3) are linear in the independent variable z, general solu
tions may be found in the form of Laplace integrals. Follow
ing Coddington and Levinson,4 but using the kernel 
exp( - sz) in the Laplace integral instead of exp(sz), we obtain 
solutions of(1.3) in the form 

u(a,{3I,{32,c,z) = r e - sz exp [ _ JS Q (t) dt] ds, 
Jc PIs) PIt) 

(2.1) 

where 
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P(t)=t2_,8~ , 

Q(t)=ct 4 -at+,8I' 

(2.2) 

(2.3) 

The contours C in (2.1) are chosen such that, at the end 
points of the contours, the following condition is satisfied: 

e - sz exp [ - IS Q (t) dt] = 0 . 
PIt) 

Using (2.2) and (2.3), we obtain 

Is g dt = IS [Ct4 - at + ,81] dt 
P t2_,8~ 

where 

+ ,8 In [ (s - ,82) ] , 
(s + ,82) 

,8 = (c2,8~ + ,81/,82)12. 

(2.4) 

(2.5) 

(2.6) 

Inserting (2.5) into (2.1), the solutions can be written as 

r [ - cs
3 

] U = Jc (s + ,82)u+(S - ,82)u. exp -3- - sz ds, 

where 

z = z + c2,8~ , 

a + = a/2 - I +,8 , 

a_ = a!2 - 1 -,8. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The end points of the contours C are chosen to satisfy the 
condition 

(s + ,82)ul2 + P (s - f32)ul2 - P exp [ - cs3/3 - sz] = 0 . 
(2.11) 

It is worth noting that the basic Eq. (1.3) is invariant 
under the transformation 

(a,{3I,,82,c ,z)---+(a, - ,81,,82' - C, - z) . (2.12) 

Thus another family of solutions of (1.3) is given by 

4> (a,,81,{32'c ,z) 

= uta, - f31,{32, - C, - z) 

= fe, (s + ,82t-(S - ,82t+ exp [ ct + sz] ds, (2.13) 

where the end points of the contours C ' satisfy the condition 

(s + ,82t12 - p(s - ,82)UI2 +P exp[cs3/3 + sz] = 0 . (2.14) 

In the following we investigate the functions u as defined by 
(2.7) in detail and use the transformation (2.12) to obtain the 
functions 4>. 

The condition (2.11) that must be met at the end points 
of the contours can be satisfied at large s by choosing the real 
part of cs3/3 to be positive. Since we have chosen c real, this 
requirement becomes, with} = 1,2,3, 

21T(2 - j)/3 - 1T/6 < arg s < 1T/6 + 217"(2 -1)/3. (2.15) 

Thus, as shown in Fig. I, there are three open sectors in the s
plane of angular width 1T/3 centered about 21T/3, 0, and 
- 21T/3 in which the contour may go to infinity and satisfy 
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the condition (2.11). Since we have stipulated that a, f31,f3z, 
and ~ are real and positive, the quantity al2 + f3 is real and 
positive. Thus the condition (2.11) can also be satisfied at the 
point s = - f3z because the quantity (s + f3ztlZ 

+ {3 is then 
always zero. Since the quantities a+ and a_, while real, are 
not necessarily integers, the points s = ± f3z are, in general, 
branch points. If the s-plane is cut from f3z to positive infin
ity and from - f32 to negative infinity along the real axis as 
shown in Fig. 1, the multivalued function 
(s - (32)a_(s + (32)a+ in the integrand of(2. 7) can be written as 

(s - f3z)a_(s + (32)a+ = (rlei8,t-(r2ei8,)a+ 

= exp[a_ In r l + ia_(OI + 211'n) 

+ a+ In rz + ia+(02 + 211'm)] , (2.16) 

with - 11' < O2 < 11' and ° < 01 < 211'. In (2.16) the various 
branches of the In functions are represented by the integers 
m and n, which denote various sheets of the Riemann sur
face. Each sheet of the Riemann surface can thus be labeled 
by the pair ofintegers (m,n). Thes-plane represented in Fig. 1 
corresponds to the principal branches of the In functions 
m = n = ° and is labeled by (0,0). 

The end points for contours corresponding to solutions 
of(!'3) must be chosen to satisfy the relation given in (2.11). 
This condition can be met by choosing the contours that 
begin and end at infinity in any of the sectors j = 1,2,3 or 
contours that begin at the branch point s = - f3z and end at 
s = - f32 or, alternatively, proceed to infinity within the 
numbered sectors. Contours which correspond to solutions 
in the thermal mode class are shown in Fig. 2. These con
tours begin at infinity in one sector and end at infinity in 
another sector. The solutions obtained from (2.7) by integrat
ing along these contours are labeled Aj , where j refers to the 
sector opposite the contour. For example, the contour begin
ning in sector 2 and ending in sector 1 corresponds to the 
~olution labeled A 3• The contour for the solution A2 begins 
In sector 1 and crosses the branch cut along the negative real 

~I? 1. Contours corresponding to solutions of(1.3) must proceed to infin
Ity m the shaded open sectors labeled I, 2, or 3. The integration plane is cut 
~Ion~ the real axis from P2 to positive infinity and from - P2 to negative 
mfimty. The plane of the paper represents the principal sheet with m = 0, 
n = ° in (2.16). 
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FIG. 2. The contours for the solutions A 11 A 2, and A3 begin and end at 
infinity. The contour for the solution A2 passes onto the adjacent Riemann 
sheet with m = 1, n = ° in (2.16) when crossing the branch cut. 

axis before proceeding to infinity in sector 3. Thus part of the 
contour for the solution Azlies in the (1,0) Riemann sheet 
(i.e., the sheet with m = 1, n = 0) and is thus shown as a 
broken line in Fig. 2. 

Contours corresponding to solutions in the cold plasma 
mode class have at least one end point at s = - f3z and are 
shown in Figs. 3(a) and 3(b). The contour corresponding to 
the solution labeled Bo starts at the point s = - f3z, encircles 
the point s = f32 in the counterclockwise direction, and ends 
again at s = - f32' The contour for Bo crosses the branch line 
along the positive real axis and thus crosses onto the (0,1) 
Riemann sheet (i.e., m = 0, n = 1). The portion of the con
tour lying in the (0,1) sheet is shown as a dashed line. Con
tours corresponding to solutions labeled Bj where j corre
sponds to the sector in which they proceed to infinity are 
illustrated in Fig. 3(a). These contours start at the point 
s = - f32 and proceed to infinity in sector j in such a fashion 
that the radius vector from s = f32 to a point on the contour 
moves in the clockwise direction as the point proceeds to 
infinity. Thus the contour for the solution f32 passes above 
the point s = f32• Contours for solutions labeled B. are shown 
in Fig. 3(b). These contours also start at s = - P2' but the 
radius vector from s = f32 to a point on the contour moves in 
the counterclockwise direction as the point proceeds to infin
ity in sector j. Thus the contour for B2 passes below the point 
s = f32' Note that the contour for B 1 shown in Fig. 3(b) 
crosses the branch cut along the positive real axis and thus 
passes onto the (0,1) Riemann sheet. The portion of the con
tour on the (0,1) sheet is again shown as a dashed line. While 
not illustrated in Fig. 3(a), the contour for the solution B3 
would similarly cross the branch cut along the positive real 
axis but in a clockwise direction and thus would pass onto 
the (0, - 1) Riemann sheet. The contours for the solutions B. _ J 

and Bj (j = 1,2,3) proceed to infinity along the same asymp
totic direction in sector j. 

Although illustrated only for the principal sheet, the 
contours corresponding to solutions Bj , Bj , Bo, and A j may 
begin on any sheet of the Riemann surface. In order to distin-
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guish among functions corresponding to contours on differ
ent sheets of the Riemann surface, we introduce the notation 
X (m,n;p), where X is any of the solutions Aj , Bo, Bj , Bj ; m 
and n are integers specifying the sheet, p denotes depen
dence on the parameters a, .81' .82' c, and z. In this notation 
the values m and n indicate the sheet on which the contour 
begins. As described above, some contours begin on one 
sheet and end on an adjacent sheet. Thus A 2(0,0;p) indicates 
the contour beginning in the sheet with m = 0, n = 0, but, as 
shown in Fig. 2, it ends in the sheet with m = 1, n = 0. For 
brevity of notation we omit the dependence on m and n or 
other parameters unless they are needed to clarify the discus
sion. Furthermore, if the values of m and n are not explicitly 
indicated, the principal values m = 0, n = ° are to be as
sumed. As an illustration, we have drawn in Fig. 3(a) the 
contour corresponding to the function B 3(0, 1). The contour 
begins on the sheet (0,1) (and is thus shown dashed) and 
passes onto the principal sheet when it crosses the branch cut 

CD (8) 

------<r--+---o+-+---=-G) 

CD (b) 

s - plane 

--------~~+r------G) 

FIG. 3. (a) The contours for the solutions Bo and Bj have at least one end 
pointats = - P2' Contours that cross the branch cut pass onto the adjacent 
Riemann sheet on which m = 0 and n = 1 in (2.16) and are shown dashed. 
The contour for the solution B3(0, I) starts on the sheet (0, I) and crosses onto 
the principal sheet. (b) The same as (a) but for the contours corresponding to 
the solutions Br 
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FIG. 4. Contours for all of the solutions shown in Figs. 2 and 3 are combined 
to facilitate the derivation of the relations (2.18)-(2.23). 

extending from .82 to positive infinity. Finally, functions 
corresponding to contours on different sheets are simply re
lated. Employing the notation described above and using 
(2.16), one can write 

(2.17) 

Since the integrand in (2.7) is analytic throughout the 
entire s-plane except at the points s = ± .82' Cauchy's 
theorem can be used to establish relationships among the 
various solutions A j' Bo, Bj , and Bj by using combinations 
of the appropriate contours. In order to facilitate the deriva
tion of relations among the solutions all of the contours in 
Figs. 2 and 3 have been combined into Fig. 4. Referring to 
Fig. 4 and using Cauchy's theorem, the following relation
ships can be established 

B2 =B I -A3 , 

BI = B2 + A3(0,1), 

BI = B3(1,0) - A 2 , 

B3(0,1) =B2(0,1) -AI' 

B3 =B2 -AI' 

Bj - B j (O,I) = Bo (j = 1,2,3). 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

The relations (2.18), (2.20), and (2.22) can be readily verified 
by referring to Fig. 4. To verify the remaining relations, it is 
helpful to picture the contours for B2 or B2(0, 1) as crossing 
the branch cut which extends from .82 to infinity. The rela
tions (2.18)-(2.23) prove useful in obtaining, among other 
things, analytic continuations of the functions Bj and Bj . 

Having determined the set of contours which yield solutions 
of (1.3) in the integral representation (2.7), we next proceed to 
evaluate these solutions in detail. We first examine the solu
tions Aj before proceeding to investigate the solutions Bo, 
Bj , andBj . 

3. THE SOLUTIONS Aj 

The functions Aj(z) are defined by the integral repre
sentation (2.7) in which the paths of integration are given by 
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the contours C ( A j) as illustrated in Fig. 2. In this section we 
first discuss the asymptotic behavior of the functions Aj(z) 

for Izl >C/3 and then derive a power series expansion which 
is particularly useful for small argument, z-o. In both cases 
it is convenient to introduce the transformation 

U = C /3s, 7] = €-2/ 3Z , Uo = u( P2) = C/3P2' (3.1) 

wherez =Z + cP~~ z when c<l. Making use of(3.1) in 
(2.7), we obtain the integral representation 

Aj(7]) = €-2Ia - 11/3 r (u - uo)a_(u + uot+ 
JC'IA,) 

xexp[ - (j ~ + 0"7])] du, (3.2) 

where C '(Aj) is the image of the contour C (Aj) under the 
transformation (3.1). 

To evaluate (3.2) asymptotically, we employ the saddle 
point method ofintegration.5 We note that the derivative of 
the exponent flu) = (j~ + U7]), namely, 
/,(u) = - (~+ 7]), when equated to zero yields two roots, 
or saddle points, at Us = ± i7]1/2. For our purpose we dis
card the minus sign and choose the saddle point 

(3.3) 

from which we deduce that, when () = 0, Us = i7]1/2 with 7] 

real and positive; when () = 1T, Us = ei1T l7] 1 1/2 = - ( - 7])1/2 

with 7] real and negative, and finally, when () = 21T, 
Us = e31Ti/217] 11/2 = - i7] 1/2, with 7] again real and positive. 
These values of Us represent the principal saddle points and 
their location in the u-plane is illustrated in Fig. 5. The prin
cipal saddle points at () = 0, 1T, and 21T correspond, respec
tively, to the contours for A 3, A 2, and A I' The other choice 
of sign, Us = - i7]1/2, yields nothing new. 

The contours C '(Aj ) in (3.2), as shown in Fig. 5, are 
asymptotic to the rays with phase 0, 21T/3, and 41T/3. Ac
cordingly, making use of (3.3), one has the following argu
ment ranges: 

21T(2 - j)l3 + 21T/3 < arg Us < 41T/3 + 21T(2 - j)l3 , 
(3.4) 

41T(2 - j)/3 + 1T/3 < () < 51T/3 + 41T{2 - j)/3 . 

As shown in Fig. 5, we can use (3.4) to trace the path of the 
saddle point with 17] 1 fixed as () varies from - 1T to 31T, or 
arg Us varies from 0 to 21T. It is seen from Fig. 5 that the 
chosen saddle point Us in (3.3) corresponds to the functions 
A 3, A 2, and Al and traces a circle of radius u = 17]1 1/2

. How
ever, we note that Us starts just above the right-hand branch 
cut of Fig. 1 and traces a semicircle in the upper half of the u
plane, at which point Us crosses the left-hand branch cut 
from the principal sheet onto the adjacent sheet of the Rie
mann surface, m = 1, n = 0 in accordance with (2.16), and 
traces a semicircle on the lower half of the (1,0) sheet. 

We observe from (3.4) that the path of steepest descents 
for A3lies entirely on the principal sheet of the Riemann 
surface and therefore the saddle point integration of (3.2) is 
independent of the branch cuts, which is to say that the mul
tivalued factors (u - uot- and (u + uot+ in the integrand 
of(3.2) are assigned their principal values. For A2 the path of 
steepest descents starts at infinity on the principal sheet and 
terminates at infinity on the adjacent m = 1, n = 0 sheet 
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FIG. 5. The position ofthe saddle point used to obtain an asymptotic repre
sentation for the solutions Aj is shown as a function of B = arg(77). The 
saddle point starts just above the right-hand branch cut for B = - rr and 
traces out a circular path, crossing onto the adjacent m = I, n = 0 Riemann 
sheet to end just below the branch cut at B = 3rr. The contour for the solu
tion A I lies in the (1,0) Riemann sheet. 

thus crossing the left-hand branch cut. However, since the 
saddle point also crosses onto the (1,0) sheet, the saddle point 
integration is carried out, assuming that the multi valued fac
tors in (3.2) vary continuously as the saddle point crosses the 
branch cut. Finally, as regards the path of steepest descents 
for AI' we note that it is also independent of the branch but 
now lies entirely on the m = 1, n = 0 sheet and, therefore, 
the saddle point integration of (3.2) evaluates A 1(1,0). The 
multivalued factor is evaluated according to (2.16) with 
m = 1, n =0. 

Next, we wish to determine the direction of traversal 
through the chosen saddle point us' In the vicinity of Us we 
can write - x2 = !f"(us)(u - us)2 + ''', where x is real and 
positive (x > 0) after passing through the saddle point. In the 
present instance - !f"(us) = Us = i7]1/2. Hence, extracting 
the square root and putting w = u - Us, we have 
x = ± [ - !/"(us )] 1I2w = ± (us )

1/2w. Ignoring the plus 
sign, writing - 1 = e - i1T, and putting arg x = 0 yields 

arg w = 1T - arg(us )1/2 = 31T/4 - () /4, (3.5) 

which says that, for A 3 and () = 0, arg w = 31T / 4; for A 2 and 
() = 1T, arg w = 1T/2, and, for A I and () = 21T, arg w = 1T/4. 
We note that (3.5) gives, for A3 and A I' the correct direction 
of traversal through the saddle point in accordance with the 
arrows drawn in Figs. 2 and 5. However, for A2 the direction 
of traversal is opposite to the direction of the arrow, which 
gives a minus sign to be attached to the final result for A 2• 

Asymptotically, Izl>C13 and with c<1 yields 
z = z + cp ~ ~ z and 7]"'C 2/3z. Furthermore, from (2.6), 
P = cP~/2 + Ptl2/32~1/2/32 Po, from which instead of 
the exponents a+ and a_ defined by (2.9) and (2.10) we in
troduce 

a+ = a/2 - 1 +Po, a_ = a/2 - 1 -Po. (3.6) 

After this preamble, we can now apply the familiar leading 
term formula of the method of steepest descents to compute 
an asymptotic representation for the functions Aj(7]) given 
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by the integral representations (3.2). Thus we obtain, for the 
saddle point Us = i1]I/2 and j = 1,2,3, the leading terms: 

A/r,O;1])-.[iT( - )jE-2Ia-I)/3(us - uo)a- (us + uo)a+ 

X {exp[J(us)]/[ - J"(us)/2r/2J {I + 0(us-
3)j 

= .[iT( - )jE - 21a - 1)/3(i1]I/2 - uot - (i1]I/2 + uot + 

x(e-it/U1]I/2] 1/2) {1 +O(1/;)J, (3.7) 

where 

and 

;=j 1]3/2 = jE- Iz3/2 , Y =! [1 - ( - )j]y, (3.8) 

{
O, Im(us ) > 0, 

r= 1, Im(us )<0 . 
(3.9) 

We have introduced the factor y to insure the continuity of 
the function A2 as the saddle point crosses the branch cut 
along the negative real axis. The general solution Aj (m,n;1]) 
can be found from (3.7) by using (2.17). 

From (3.8) we deduce that, for j = 3 and () = 0, 
- i; = - (2/3)i1]3/2 with 1] real and positive; for j = 2 and 

() = 1T, - i; = - (2/3)( - 1])3/2 with 1] real and negative, 
and finally, for j = 1 and () = 21T, - i; = (2/3)i1]3/2 with 1] 
again real and positive. Finally, to conclude our asymptotic 
leading term presentation, we translate (3.7) into a function 
of z. Recalling that U o = C/3P2' we obtain, after some alge
braic manipulations, 

Aj(y,O;Z) = ( - Hizl/2/E - P2t-(iz l /2/€ + f32t+ 

X(.[iTe-i;/[iEZI/2] 1/2) {1 +O(1/;)J, 
(3.10) 

where the multi valued factor is evaluated as discussed 
above. 

In (3.7) we have retained the term Uo even though we 
have assumed Ius I >uo (i.e., Izl >cp ~) in order to preserve 
the topological structure of the cut u-plane. It is useful to 
obtain a form for Ajin which U o is ignored in comparison 
with us, but this procedure will alter the topology of the cut 
u-plane. Ignoring the U o term in (3.7) is formally equivalent 
to setting U o = 0 so that there is a single branch point at the 
origin rather than two branch points. The multi valued factor 
in (3.7) becomes 0';-0';+ = 0': - 2. Taking the branch cut to lie 
along the positive real axis and the principal sheet to have 
argument range 0 < arg Us < 21T, we see that the argument 
range for the multivalued factor (us - uo)a_(us + uot+ in 
(3.7) exactly coincides with that of 0';-0';+ when U o = O. Not
ing from (2.17) that A 1(1,0;1]) = ei21Ta +A I(1]), we can then 
write 

Aj(1]) - ( - )j.[iTPjE - 21a - 1)/3(i1]I/2)a - 5/2e - i; , (3.11) 

where the phase factors Pj are 

P3 = P2 = 1, PI = ei2rra+ . (3.12) 

In (3.11) the argument range of (i1]I/2) is from 0 to 21T. 
As mentioned previously, the functions A j (1]) are close

ly related to Airy functions. This relationship is best eluci
dated if we consider the case U o = 0, which is equivalent to 
setting f32 = PI = 0, with the result that (1.3) reduces to 
(1.8). Putting 1] = c/3z in accordance with (3.1) and writing 
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x (1]) instead of u(z), we obtain from (1.8) the equation 
X (3) + 1]X (I) + (a - I)X = O. When a is an integer, it can be 
shown that X (1]) is proportional to the (a - 2) derivative of 
any Airy function of negative argument, i.e., any solution of 
V<2) + 1]v = O. When (a - 2) is a negative integer, the above 
statement must be interpreted as the la - 21 integralofv(1]). 
The same conclusions follow from the integral representa
tion (3.2) upon setting U o = 0; that is, Aj(1]) in (3.11), when a 
is an integer, is proportional to the (a - 2) derivative of the 
asymptotic leading term of an Airy function of negative ar
gument, and hence is a solution of our basic Eq. (1.3). 

We now proceed to discuss the small argument behav
ior of the function A j (1]). For this purpose we make use again 
of the scale transformation (3.1) and the integral representa
tion (3.2) wherein a + and a _ have their original definitions 
(2.9) and (2.10). To evaluate (3.2), we first construct the pow
er series expansion 

<10 

(u-uo)a_(u+uot+=~-2 L cmwm, 
m=O 

where w = uo/u and the expansion coefficients 

Iwl < 1, 

(3.13) 

(3.14) 

are given in terms of the familiar binomial coefficients. The 
expansion on the right of (3.13) is absolutely convergent for 
Iwl < 1 because it arises from the multiplication ofthe two 
absolutely convergent binomial expansions corresponding 
to the factors (u - uo)a- and (u + uot+ . This result follows 
from Cauchy's theorem on the multiplication of absolutely 
convergent series.6 Since the power series (3.13) is absolutely 
convergent for Iwl = 1 - 8, where 8 is an arbitrarily small 
number, it also follows that the series in question is uniform
ly convergene for Iwl < 1 - 8. Hence, we can replace the 
product (u - uo)a. (u + uot+ in the integrand of (3.2) with 
the uniformly convergent series (3.13) and integrate term by 
term to obtain, for j = 1,2,3, 

<10 

Aj(1]) = PjE - 21a - 1)/3 L cmu;;' gj(1],a - m) , (3.15) 
m=O 

where the phase factors Pj are given by (3.12) and where 

gj(1],a) = r du~-2e-u'/3-f7T/ (3.16) 
JC'IA,) 

are the same functions introduced by Rabenstein. 8 In (3.16) 
the contour C '(Aj ) is chosen such that lui> U o everywhere 
along the contour, which is the condition for the conver
gence ofthe series (3.13). 

A convenient expression for the functions gj(1],a), 
j = 1,2,3 is obtained by expanding the factor exp[ - (71]] 
into a power series 

e-f7T/ = f (- t u"1]k, (3.17) 
k~O k! 

which is uniformly convergent in the finite u plane, lui < 00. 

Introducing (3.17) into (3.16) and integrating term by term, 
we obtain 

gj(1],a) = f (-t 1]k r du~-2+ke-u'/3. (3.18) 
k ~ 0 k. JC'IA,) 

Putting y = ~/3, the integrals in (3.18) become 
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Ij(a,k) = r du crx - 2 + ke -iT'/3 
.ICIA,) 

= 3Ia +k- 4)/3 Ii dye- Yyla+k-4)13, (3.19) 

where the contour ~ is the image of C '(Aj) under the trans
formation. To ascertain the shape of Hj consider, for exam
ple, C '(A3) which begins at infinity with arg u = 0 and pro
ceeds to infinity with arg u = 21T13. Under the 
transformation, y = ~ 13, the contour H3 begins at infinity 
with arg y = 0, encircles the origin in the counterclockwise 
direction, and proceeds to infinity with argy = 21T. There
fore, H3 is simply Hankel's contour, and we can write 

13(a,k) = 31a + k - 4)/3 LO 

+) dy e - Yyla + k - 4)/3, (3.20) 

which can be evaluated in terms of gamma functions. 
Proceeding in an entirely analogous fashion, we ascer

tain that the contour H2 starts at infinity with arg y = 21T, 
encircles the origin, and terminates at infinity with 
argy = 41T, whereas the contour HI begins with argy = 41T 
and ends with arg y = 61T. Thus, introducting the abbrevia
tion 

p = p(a,k ) = (4 - a - k )/3 , (3.21) 

and making use of a generalization of Hankel's integral rep
resentation,9 

Ij(a,k) = 21Ti exp[ 1Ti(1 - p)(7 - 4i))/I3PF (p)j . (3.22) 

Making use of (3.18) and (3.19), we obtain the expansion 

00 (_)k k 
gj(1],a) = 2: -- Ij(a,k)1] , (3.23) 

k~O k! 

where the functions lj (a,k ) are given by (3.22). Finally, using 
(3.15), we obtain the power series expansions 

Aj (1],a) 
00 00 ()k 

= poE - 21a - 1)13 '" '" C ~ -=---- I(a - m k )1]k ) mL.:::ok.t;:o m 0 k! ) ' , 
(3.24) 

where the Pj are the phase factors given in (3.12). These 
functions, for j = 1,2,3, correspond to their asymptotic 
counterparts A j (1]) given by (3.7) and are subject to the same 
argument ranges for 1] as given by (3.4). 

4. THE SOLUTIONS Bi, ~,AND Bo 

The functions Bj , Bj , and Bo are solutions of (1.3) and 
are given by the integral representation (2.7), where the cor
responding paths of integration are shown in Figs. 3(a) or 
3(b). Since we are unable to directly evaluate these integrals, 
we resort to a perturbation expansion based on the fact that 
C..( 1. Thus, expanding (2.7) in a power series in C, we show 
in the Appendix that, to first order in C, 

u(aJ3J32,E2;Z) = u(aJ3I,/32,0;z) + c(aE'u)IE'~o 
=uo -c[h(uo)/4.82) ' (4.1) 

where u(aJ3IJ32'c;Z) is any of the solutions Bo, Bj , or Bj and 
Uo is the corresponding solution evaluated at c = O. The 
expression for h (uo) is given in (A 15) in terms of Uo evaluated 
at shifted values of the parameters a and .81' 

We observe that the functions uo(z) are solutions of the 
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reduced (E2 = 0) second-order differential Eq. (1.9) and are 
given by the integral representation 

(4.2) 

where a+ and a_ are given by (3.6) in terms of a and 
.80 = .81/2fJ2· The contours of integration in (4.2) are those 
associated with Bj'~' and Bo and, respectively, yield func
tions denoted by bj , bj , and boo Finally, if we introduce the 
transformation u(x) = g(x) exp( - x/2) with x = 2fJ~ into 
(1.9), we obtain Kummer's differential equation 10 

xgl2
) + (a - X)gll) - (a12 - .80) g(x) = 0, (4.3) 

which has two independent solutions, which, for our pur
pose, we write as 

gl(x) = M(a12 - .8o,a;x) , 

g2(X) = U(a12 - .8o,a;x) , 

(4.4) 

(4.5) 

where M and U are Kummer functions. Since the properties 
of these functions are well known, we proceed to obtain ex
pressions for bj , bj , and bo in terms of Kummer functions. 

The function bo obtained from (4.2) by integrating along 
the contour associated with Bo is related to the Kummer 
function M (b,c;z). This can be demonstrated by using the 
transformation 

s = 2.82(1 - !) 
in (4.2) to obtain 

(4.6) 

(4.7) 

The contour in (4.7) is the image of C (Bo) under the transfor
mation (4.6). It starts at the origin, circles the point 1 = 1 in 
the positive direction, and returns to the origin. The inte
grand in (4.7) is bounded everywhere along the contour for 
Izl < 00 so that an expression can be obtained for bo that is 
valid for the entire z-plane, as is shown in the following. 

The integral representation for the Kummer function 
M (b,c;Z) for Re(b ) > 0 is 11 

M(b,c;Z) 

= F(c)F(b-c+ 1) rl+)~tlb-I(/_l)C-b-ldt. 
21TiF(b) )0 

(4.8) 

From (3.6) one has a+ = al2 +.80 - 1, where .80 = .81/2f32 
is .8 evaluated at c = 0, and, since a, .81,.82 are taken as real 
and positive, Re(al2 + .80) > 0 so that (4.8) can be used in 
(4.7) to obtain 

b = (2f3 )a-les12 { 21TiF(a - a) M(a - a a' - !-)} (49) 
o 2 F(a)F(1 _ a) "~, . 

where a = al2 - .80 and 5 = 2f3~. Finally, using the Kum
mer transformation 

M(b,c;z) = ~M(c - b,c; - z) 

yields 

(4.10) 

b =(2fJt-le-S/2{ 21TiF(a-a) M(aa.!-)}.(4.11) 
o 2 F(a)F(l _ a) "~ 

An expression for Bo, accurate to order C, can thus be ob
tained by combining (4.1), (4.11), and (A15): 
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B = (2{3 )a-I 211'iF(a - a) e- s12 {[1- (clJ4)J ] 
o 2 F(a)F(1 _ a) 2 /3, 

XM(a,a;s)-~ [M(a+ l,a+4;S) 
12f32 

-M(a+3,a+4;S)] -C~2 + c:2
) 

X [M(a + 2,a + 2;S) - M(a,a + 2;s)]} . (4.12) 

From (4.12), the value of Bo can be found to order c for any z 
with Izl < 00. 

The solutions Bj and lij are related to a linear combina
tion of the KummerfunctionsM (b,c;z) and U (b,c;Z). The con
tours associated with the solutions Bj and lij go to infinity in 
the sector j in accordance with (2.15), and the integrand of Uo 
as given in (4.2) has the asymptotic value sa - 2e - ZS. In order 
to insure that the integrand remains bounded for all a, one 
must require that Izl > IZol > 0 (for some given zo), and 

- 11'12 < arg (sz) < 11'12. (4.13) 

However, the subscript j already implies an argument range 
for the variable of integration s along the contours associated 
with the solutions Bj and lij • As given by (2.15) these ranges 
are, for the solutions Bj , 

211'(2 - j)l3 - 11'16 < arg s < 11'16 + 211'(2 - j)l3. (4.14) 

From (4.13) and (4.14) one finds that the solutions bj are well 
defined only over certain regions of the z-plane, namely, 

211'(j - 2)/3 - 211'13 < arg z < 211'13 + 211'(j - 2)1 
3. (4.15) 

Using (4.2) and the transformation 

s = 2{32(t + ~) (4.16) 

yields 

bj = (2f32t- le- s12 I~~'" t a (t + 1t'e- 5
t dt, (4.17) 

where the angle e lies in the sector j. The paths of integration 
given in (4.17) are the image of the contours corresponding to 
the solutions Bj under the transformation (4.16). Similarly, 
from the definition of the lij contours, we have 

ooe,(8+ 2m 

bj = (2f32)a-l e - 5 /2 I-I ta_(t+ 1t+e- st dt. 

(4.18) 
I 

The integral representation for the Kummer function U 

U (b,c;y) = _1_. F (1 _ b )e - b1Ti 
2m 

f
lo + 1 

X ",e'" tb-l(l+tr-b-le-Ytdt. (4.19) 

In the integral of (4.19) the contour starts at infinity with 
argument e, circles the origin in the positive direction (i.e., 
cuts the negative t-axis), and returns to infinity with argu
ment e + 211'. Since the integrand of (4.19) is analytic in the 
region between the origin and t = - 1 the contour can be 
extended to include the point t = - 1; hence 

f
lO + 1= (- I + foo/le I 2rrl 

ooeiO J ooe
,6 - 1 

Using (4.20) and (4.17)-(4.19) yields 

b
j 

- b
j 

= (2f32)a - I 211'ie
i1Ta 

e - S /2 U (a,a;S ) . 
F(l-a) 

Using (2.23) together with (2.17), one finds that 

Bj = [ei21Ta - 1] - I [(lij - Bj ) - Bo 1 ' 

which, for c = 0, becomes 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

Using (4.21) to replace the combination bj - bj in (4.23) and 
employing the identity F (a)F (1 - a) = 11'lsin(a11') gives 

b
j 

= (2f32)U - IF (a)e - S 12U(a,a;s) - e - i1Tabo/2i sin(11'a) . 

The relation (2.23) for c = 0 gives 

bj = bj (O,l) + bo = ei21Tabj + bo · 

Using (4.25) to replace bj by bj in (4.24) gives 

bj = (2{32)a-l ei21TaF(a)e- s12U(a,a;s) 

(4.24) 

(4.25) 

- e - i1Tabol2i sin(11'a) . (4.26) 

With (4.11) the relations (4.24) and (4.26) can be used to ex
press bj and bj entirely in terms of the Kummer functions U 
andM, 

b(S) = (2{32)a-l e - s12 {F(a)U(a,a;s) _ 11'~Xp( - i11'a)F(a - a) M(a,a;s)} 
J sm(11'a)F(a)F(1 - a) 

(4.27) 

and 

11' exp( - i11'a)F(a - a) M(a,a;s)} , 
sin(11'a)F(a)F(1 - a) 

(4.28) 

where again a = al2 - f30 and S = 2{3~. 
Expressions for Bj and lij valid to order £2 can be ob

tained by using (4.27) and (4.28) in the expansion (4.1) in the 
same fashion that the expression (4.12) for Bo is obtained 
from (4.1) using Uo = boo We do not write out the correspond
ing expressions for Bj and lij here but only note that the 
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I _ 
functions bj and bj deduced from (4.1) are obtained under 
the restriction Izi > IZol > 0 and within the argument range 
(4.15). In other words, Bj and lij cannot be evaluated at the 
point z = 0 using the expansion in C technique. The problem 
of applying (4.1) at the origin for the solutions Bj and lij 
arises because the function U (a,a;s ) in the expressions for bj 
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and bj is singular at the origin (z = 0) for a> 1. However, the 
behaviorofthesolutionsBj and.8j for Izl-Dforall values of 
a can be found by employing the relations (2.18)-(2.23). For 
example, multiplying (2.22) by ei27Ta _ and using (2.9), (2.10), 
and (2.17) yields 

(4.29) 

Using (2.23) with j = 1 in (4.29) and (2.19) and (2.22) in the 
resulting expression gives 

.83 = [e,27Ta - 1] -I [A 2(0,1) + AI + A3(0,1) - Bol . 
(4.30) 

The expression (4.12) can be used to evaluate Bo, for all 
Izl < 00, while the power series expansion (3.24) can be used 
to evaluate the functions Aj for small argument (Izl -( 1). 
Thus, expressions such as (4.30) are particularly useful in 
evaluating Bj and.8j in the neighborhood of the origin. For 
large values of Izl, on the other hand Bj and.8j are more 
conveniently expressed using the E2 expansion of (4.1) in 
terms of bj and bj , respectively. 

Since the solutions related to the Kummer function 
U (a,a;5' ) contain the combination bj - bj [cf. (4.21 )], it is use
ful to construct the combination.83 - B3 in a form that can 
be evaluated as Izl-D. To do this, we multiply (2.23) by 
e - i27Ta_ and use (2.17) to obtain 

(4.31) 

MUltiplying (4.30) by e - i27Ta_ and using (4.31) in the resulting 
relation gives 

B3= [e,27Ta-1]-I[A 2+A I(0,-I)+A 3-Bo(1,0)l· 

(4.32) 

Finally, combining (4.30) and (4.32) yields the desired combi
nation 

.83 - B3 = [e1217
"a - 1] -I [(e127Ta - 1) 

X [A2 +AI(O, - 1) +A31 - (1 - el27Ta+)Bol . 
(4.33) 

Expressions similar to (4.33) involving B2 and B I rather than 
B3 can be found by using (2.18)-(2.22). The expressions (4.33) 
can be evaluated at integer values of a by assuming that 
.83 - B3 is an entire function of a and then using L'Hospi
tal's rule to obtain 

.83 -B3 = [[A 2(0,1) +A3(0,1) +AI + Bo(I,0)]l2 

+ (l/21Ti)(ei27Ta - - 1)[ aaA2 + aaAI(O, - 1) 

+ aaA 3] + (l/21Ti)(e i27Ta+ - l)aa Bol la ~ n , 

(4.34) 

where n = 0, ± 1, ± 2, .... The expressions (4.33) and (4.34) 
show that the combination.83 - B3 is finite and nonsingular 
at the origin for all values of a. On the other hand, the 
expression (4.21) with j = 3 indicates that b3 - b3 is singular 
at the origin for a> 1. Thus the exact solutions of (1.3) are 
rigorously well behaved at the origin, although the restricted 
expressions obtained by using an expansion in C indicate 
otherwise, which is a consequence of the singular perturba
~on character of this problem. Expressions for .82 - B2 and 
BI - BI are readily obtained from (4.33) using (2.18)-(2.23). 
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Finally, it is instructive to consider a special case in 
which the parameters a and /3 have the values 

a = v, /3 = v/2 + ft , (4.35) 

where v is a positive integer and ft = 0,1,2,00' . In this case 

(4.36) 

and 
a_ = - (ft + 1). (4.37) 

In the integral representation (2.7) there is now only an iso
lated pole of order ft + 1 at the point s = /32' The points 
s = ± /32 are no longer branch points, and the s-plane is no 
longer cut by branch lines, so that Bj (0, 1) = Bj and (2.23) 
then gives 

Bj - Bj = Bo . (4.38) 

The contour Bo now encloses the pole at s = /32 and from 
Cauchy's theorem we immediately have 

(4.39) 

where R (/32) is the residue of the pole at s = /32' Using (4.36) 
and (4.37), one obtains from the integrand of(2.7) the expres
sion 

R (/32) = I ~:!...!:... [(s + /32t - I + I'e - E's-'/3e - SZ] I 
ft· di' S ~ (3, 

(4.40) 

Making use of Leibniz's theorem, the expression (4.40) can 
also be written as 

R (/32) = ~ ± ~) Ej d I'=~ [(s + /32)V-1 +I'e- SZ ] I ' 
ft. j~O J di' s~{3, 

(4.41) 

where (1) is the usual binomial coefficient and 

E
j 

= ~ (e -- E's'/3) I . (4.42) 
ds' s = {3, 

By defining the small quantity uo=~/3/32 and letting 
x = (s + /32)Z' (4.41) becomes 

dl'-j I X--_-. [xv
-

I+l'e- x
] , 

dxl' J S~2{32Z 

where the polynomials 1j are given by 

T - "'013 d j ( - t '/3) I j -e -. e 
dt J t ~ 0"0 

(4.43) 

(4.44) 

and To = 1. The expression (4.43) can be further simplified 
by using Rodrigues' formula 13 for the Laguerre polynomials 

Using (4.45) in (4.43), one obtains from (4.39) 

Bj - Bj = Bo = 21Ti(2/32t - Ie - {3,ze - "'013 

X { ± (2uo)j T L v= I +j (2/3zZ)} (4.46) 
j ~ 0 (j)! J I' J 

Maggs, BMos, Jr., and Morales 1613 



                                                                                                                                    

for f-t = 0,1,2, ... , and where z = z + ci6/fJ2' Using (4.44) to 
evaluate terms in (4.46) results in 

Bo = 21Ti(2fJ2r- Ie- f3,z L ;-1(2fJzz) + O(ci6). (4.47) 

Note that ci6 = cfJ ~, so that the correction terms to Bo as 
given by (4.47) are of order c. 

5. APPLICATION TO PHYSICAL PROBLEMS 

In applying the solutions of (1.3) to a physical problem 
one needs to evaluate the solutions A j' Ba, Bj , and Bj in the 
vicinity of the real axis (1m z_ ° + ). However, the expres
sions given in Secs. 3 and 4 for some ofthe solutions are valid 
only in certain sectors of the complex z-plane. Since some of 
these sectors contain only a portion of the real axis, the ex
pressions given must be extended by means of analytic con
tinuation to include the entire region of physical interest. 
The process of analytic continuation leads to a mixing of the 
solutions of the thermal and cold plasma classes. This mix
ing embodies the physical phenomenon of mode conversion. 

In constructing analytic continuations of solutions we 
will take the imaginary part of the independent variable z to 
be small and positive. This assumption leads to exponential 
decay of waves in the direction of propagation and is justified 
on physical grounds because it corresponds to adiabatic 
switch-on of the exciter at frequency UJ. The analytic con
tinuation of the solutions of (1.3) can be accomplished by 
using the relations (2.18)-(2.23) which are derived by apply
ing Cauchy's theorem to the contours defining the various 
solutions. 

The asymptotic expressions for the solutions A j as given 
by (3.7) are valid in sectors of aperture 41T/3 as given by (3.4). 
Since the solution A I is defined in the sector S1T /3 < e < 31T 
(z = Izle iO

), which includes the entire region of physical in
terest, it needs no analytic continuation. Just above the nega
tive real axis e = 31T - .1, where.1 is a positive infinitesimal, 
the term exp( - i; ) in the asymptotic expression (3.7) for A I 
varies as exp I; I· Thus A I is exponentially growing near the 
negative real axis. Along the positive real axis where 
e = 21T +.1 the term exp( - i; ) varies as exp il; I so that A I 
represents an outward propagating wave in the WKB sense. 
The solution A z is defined in the region 1T/3 < e < S1T/3 
which includes the region of physical interest only near the 
negative real axis where e = 1T -.1. The term exp( - i;) in 
(3.4) for j = 2 then varies as exp( - I; IJ so that A z is expon
entially decaying for Re(z) < 0. To analytically continue A z, 
we use the relations (2.18), (2.20), and (2.22) to obtain (see 
Fig. 4) 

(S.I) 

for Re(z) > 0. All of the functions on the right-hand side of 
(S.I) are defined in sectors that include the region just above 
the positive real axis as can be verified by (3.4) and (4.1S). The 
relation (S.I) indicates that the solution A z undergoes mode 
conversion when the Re(z) changes sign. In this paper we use 
the term mode conversion to denote a process wherein a 
solution of one class produces a solution of the other class. 
For example, as indicated by (S.l), a solution of the thermal 
class, A z, near the negative real axis, leads to solutions of the 
cold mode class as well as thermal mode class solutions near 
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the positive real axis. Finally, the domain in which the solu
tionA3 is defined includes the region above the positive real 
axis but not the region above the negative real axis. Near the 
positiverealaxise =.1 for j = 3andA3 variesase-il;l, thus 
representing, in the WKB sense, an inward propagating 
wave. Using (2.18), (2.21), and (2.20) to analytically continue 
A3 we find that (see Fig. 4) 

A3= -A I(0,-I)-B3 +B3(1,0)-A z , (S.2) 

where all of the functions on the right-hand side of (S.2) are 
defined in the region just above the negative real axis. 

The expressions derived for the solutions Bj and Bj are 
also valid only in certain sectors of the z-plane as indicated 
by (4.1S). The solutions B3 and B3 are defined for the entire 
region above the real axis and need no analytic continuation. 
The solutions Bz and Bz are defined only in the region above 
the positive real axis and must be continued by using (2.21) 
and (2.22) from which we obtain 

Bz =B3 +A I (0,-1) (S.3a) 

and 

B2 = B3 + AI' (S.3b) 

Both functions on the right-hand side of(S.3a) and (S.3b) are 
defined in the region just above the negative real axis. Bz and 
B2 both undergo mode conversion when Re(z) changes sign 
as indicated by (S.3a) and (S.3b) because they generate a solu
tion of the thermal mode class in addition to a solution of the 
cold mode class. The solutions B I and B I are defined for the 
region just above the negative real axis and can be continued 
to include the region just above the positive real axis by using 
(2.18) and (2.19) to obtain 

(S.4a) 

and 

(S.4b) 

Again the solutions B) and B) undergo mode conversion 
when Re(z) changes sign. 

In addition to having expressions for the solutions in 
the region above the real axis, a useful set of four linearly 
independent solutions must be selected from the general set 
in order to solve a well posed problem of physical interest. In 
particular, we have in mind applying the solutions of(1.3) to 
the inhomogeneous problem in which a driving source is 
present in the plasma. We thus shall discuss four linearly 
independent solutions that are convenient in constructing a 
Green's function for ( 1. 3). The linear independence of a solu
tion set can be formally established by evaluating the system 
Wronskian. Rather than perform this calculation we defer it 
to a later paper and only present here a heuristic argument 
for linear independence. 

A Green's function must satisfy certain boundary con
ditions, and we impose these beforehand in choosing our 
solution set. The boundary conditions we impose are: (1) 
wavelike solutions must correspond to transport of energy 
away from the source, and (2) solutions must be bounded as 
I Re(z) 1-00 • Since the thermal mode and cold plasma mode 
classes of solutions have vastly different scale sizes away 
from plasma resonance, our strategy for identifying a linear
ly independent set is to select one pair of linearly indepen-
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dent solutions from each class. We are then assured of the 
linear independence of pairs of solutions from different 
classes because of their different scale sizes. From the cold 
mode class of solutions we choose the pair B2, li2 while from 
the thermal class of solutions we choose the pair A I' A 2• 

From the solution pair B2, li2 we next construct a pair of 
linearly independent solutions, one of which is bounded as 
Z-+ 00, while the other is bounded for z-+ - 00. This solution 
pair is 

BR = - [(2P2)I-a/2-1Ti]r( - a_)e- i1Ta -

X (liz(a,{JJ3z,e,s) - Bz(a,{Jl,{Jz,e,s) J, (5.5) 

BL = - [(2Pz)l-a/21Ti]r( - a+)e- i1Ta
+ 

X {liz(a, - {31,(J2' - e, - s) 
(5.6) 

Note that in (5.6) we have used the transformation (2.12) so 
that we are assured BL is a solution to (1.3). The normaliza
tion coefficients in (5.5) and (5.6) have been determined using 
(4.27) and (4.28) and are chosen so that the expressions re
duce, when e = 0, to the simple forms given below, 

BR = e- s12U(a,a;s), 

BL =e+SIZU(a-a,a;-s), 

(5.7) 

(5.8) 

where a = a/2 - {30. In the notation of Slater 14 these two 
solutions are then 

BR =e- S12ys, 

BL = e- s/2Y7' 

(5.9) 

(5.10) 

so that, using (5.9) and (5.10) together with (4.1), we find that 
the Wronskian of BRand B L is 

W(BR,BL) = ei17jaIZ +lIol(S) - a + 0 (c) , (5.11) 

wheres = 2PzZ. In(5.11)wehaveagainassumed that Im(z) is 
positive and have ignored contributions to the Wronskian 
arising from mode conversion. Mode conversion contributes 
terms to the Wronskian that are a product of cold and ther
mal terms and thus are rapidly oscillating. The function B R 

is bounded as z approaches positive real infinity while B L is 
bounded as z approaches negative real infinity. 

The asymptotic form of the two thermal modes A I and 
A z has been discussed before. The functionAz is exponential
ly decaying along the negative real axis while A I is exponen
tially growing. Thus A z and A I are clearly linearly indepen
dent. Near the positive real axis A I represents an outward 
propagating wave while from (5.1) we see thatAz, while un
dergoing mode conversion, contains an A 3 term which repre
sents an inward propagating wave so that A I andAz are again 
linearly independent. 

The solution set B R , B L • A2, A I is convenient for con
structing a Green's function. Ifwe denote the source loca
tion by z', then the solution pair B L , Az can be used exclu
sively for Re(z - z') < 0 because they are the only pair 
bounded at negative real infinity, while the remaining pair 
B R , A I can be used exclusively for Re(z - z') > 0 because 
they are the only pair bounded at positive real infinity. While 
we do not construct a Green's function here, we can use the 
sol ution set B R , A I' B L , A z to illustrate the type of mode 
conversion that may occur in a plasma with a driving source. 
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As an illustration of mode conversion in a physical 
problem, consider the solution B R for Re(z) > O. This cold 
mode solution as given by (5.5) depends upon Bz and li2 
which can be analytically continued to the region just above 
the negative real axis by using (5.3a) and (5.3b) from which 
we obtain, for Re(z) < 0, 

BR = - [(2Pz)l-a/21Ti]r( - a_)e-i,,-a-

X (li3(a,{Jl,{Jz,e,s) - B 3(a,{JI,{J2,e,S) J 

+ [(2{3z)l-a/r(l + a_)]e- i21Ta -

XA I(a,{3I,{Jz,e,s) . (5.12) 

We have already indicated that A I is exponentially decaying 
near the negative real axis while the combination, li3 - B3, is 
defined in the region above the negative real axis and accord
ing to (4.21) is proportional to the hypergeometric function 
U(a,a;s) for e = O. The expression (5.12) illustrates mode 
conversion in that a solution of the cold class on one side of 
plasma resonance consists of a combination of cold and ther
mal modes on the other side of resonance. 

We note that in this particular example the amount of 
mode converted thermal mode is proportional to 
lIr(l + a_), and thus can be zero when 

1 + a_ = a/2 - {3 = -I, (5.13) 

where 1 = 0,1,2,00' . When a is an integer, as is the case for a 
plasma, the condition (5.13) is identical to (4.35). In Sec. 4 we 
found that under these conditions the cold mode solutions 
were everywhere proportional to Bo which in turn could be 
expressed as a sum involving Laguerre polynomials [see 
(4.46)]. Thus at certain special values of the parameter {3 the 
phenomenon of mode conversion does not occur in the sense 
that the amplitude of the thermal mode is zero, and, further
more, at these values of {3 the cold solutions are proportional 
to Laguerre polynomials for e = O. 

The quenching of the mode conversion process does not 
occur for all possible solutions, e.g., the solutions BL for 
Re(z) < 0, corresponding to a source located in the region 
z> O. Using (5.6) and the relations (5.3a) and (5.3b) with the 
proper parameter values. we obtain the analytic continu
ation, for Re(z) > 0, 

BL = - [(2{3z)l-a/21Ti]r( - a+)e- i1Ta
+ 

X {li3(a, -{3I,(JZ' - e, - s) 
- B3(a, - {31,(JZ' - e, - s) J 

+ [(2Pz)l-a/r(l + a+)]e- i21Ta
+ 

XA I(a, - {31,{32' - e, - s) . (5.14) 

Since a and {3 are positive, 11 r (1 + a +) = 11 r (a/2 + {3 ) is 
never zero and mode conversion always occurs in this case. 
Furthermore, the mode conversion process is not restricted 
to the generation of thermal modes by cold modes. The ther
mal modes also undergo the mode conversion process and 
generate cold modes. Although the solution A I does not un
dergo mode conversion when Re(z) changes sign, the solu
tion A2 does as is illustrated by the analytic continuation of 
A2 given in (5.1). 
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6. CONCLUSIONS 

By applying the Laplace integral technique we have ob
tained integral representations of the solutions of the fourth
order differential Eq. (1.3). The solutions are distinguished 
by the contours along which the integral is evaluated. The 
~olutionsAj are obtained by integrating along contours hav
mg both end points at infinity and have been identified as 
belonging to a class of solutions characterized by short scale 
lengths and thus are referred to as thermal modes. The solu
tions Bo, Bj , and Dj are obtained by integrating along con
tours with at least one end point at the branch pomt 
s = - /32 and belong to a class of solutions characterized by 
long scale lengths and are referred to as cold modes. The 
properties of the exact solutionsAj , Bo, Bj , andDj have been 
elucidated by expressing them in terms of more familiar 
functions using power series and asymptotic expansions. 

The solutions Aj have been evaluated for large and 
small values of the independent variable z by using different 
techniques. A power series expansion inz has been derived in 
(3.24) in order to determine the solutionsAj in the neighbor
hood of the origin. The solutionsAj are clearly finite and 
well behaved in the vicinity of the origin. For large values of z 

the functional form of the solutionsAj has been determined 
in (3.11) using the saddle point method of integration to ob
tain the leading term in an asymptotic expansion. For real 
values of the independent variable these asymptotic expres
sions represent either exponentially decaying or growing so
lutions or propagating wave-like solutions. 

Expressions for the solutions Bo, Bj , and Dj have been 
obtained by expanding the integral representation in powers 
of C. This technique allows an expression to be obtained for 
the exact solutio~]$ Bo, Bj' Dj in terms of the corresponding 
solutions bo, bj , bj of the second-order differential equation 
obtained from (1.3) by setting c = O. The expansion (4.12) 
obtained in this manner for the solution Bo involves the 
Kummer function M (b,e;z) and is valid in the entire z-plane 
(Iz I < 00). In particular, the solution Bo can be evaluated in 
the neighborhood of the origin using (4.12) and thus is useful 
in evaluating other members of the cold mode solution class 
near the origin. 

An expansion in powers of e2 can be obtained for the 
solutions Bj and Dj but involves the restriction Izl > Izol > o. 
!he expansion involves the corresponding solutions bj and 
bj which contain the Kummer function U (b,e;z) which is not 
bounded at the origin for Re(e» 1. The c expansion is help
ful in evaluating the s~utions Bj and Dj for large values of z. 
The solutions Bj and Bj can be evaluated in the neighbor
hood of the origin by using Cauchy'S theorem to establish 
relationships among the various solutions as given in (2.18)
\2.23). Thus the solutions Bj and Dj can be expressed entirely 
m terms of various combinations of the solutions A· and Bo _ i 

as shown for B3 in (4.30). Since expressions for the solutions 
Aj and Bo valid in the neighborhood of the origin have been 
obtained, the solutions Bj and Dj can also be, in principle, 
evaluated there. Unlike the associated solutions to the sec
ond-order differential equation, bj and bj , which can have 
divergent behavior at the origin for a> 1, the solutions B _ i 

and Bj are always finite at the origin. The physical interpre
tation of this result is that the inclusion of thermal effects 
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keeps the amplitude of the electric field finite at plasma reso
nance through the production of short scale thermal modes. 
The production of short scale waves near plasma resonance 
involves the process of mode conversion. 

For certain values of the parameters, a and /3, namely, 
a a positive integer and /3 = e2/3 ~ 12 + /3 /2/3 a positive 
h.alf-i~teger, th.e topology of the integrati~n pl~ne is greatly 
slmpltfied. Whlle the sector structure in the integration 
plane remains, there are no branch points but only an isolat
ed pole. The quantities a + and a _ have integer values under 
thes~ conditions so that the phase factors exp(i21Tma+) and 
exp(z2rra _) are unity and as indicated by (2.17) all solutions 
X (m,n) are equivalent to the solution X evaluated on the prin
cipal sheet. The combination of solutions D. - B· is equiva-

i i 

lent to the solution Bo as indicated in (4.38). Furthermore, 
the solution Bo can be expressed as a series of generalized 
Laguerre polynomials as given in (4.46) which is convenient 
for numerically evaluating quantities for physical applica
tions..:.. Finally, we note that as shown in (4.34) the combina
tion B3 - B3 generally contains an admixture of the thermal 
mode solutionsAj • For !!Iese special parameter values, how
ever, the combinations B3 - B3 = Bo; hence it contains no 
thermal mode solutions. Physically, this indicates that mode 
conversion does not occur at these special parameter val
ues. IS 

The asymptotic expressions given for the solutions A· _ i' 

Bj , and Bj are defined in certain sectors of the z-plane as 
given by (3.4) and (4.15). Not all of these sectors contain the 
region just above the real axis which is the region of interest 
in physical applications. The solutions can be analytically 
continued, however, and it is this process which gives rise to 
the phenomenon of mode conversion. A solution of either 
the thermal or cold mode class on one side of plasma reso
nance gives rise to a combination of both classes on the other 
side of resonance. Physically, the mode conversion process 
serves to limit the amplitUde of the solutions at plasma reso
nance. Specifically, the solutions of the purely cold plasma 
(e2 = 0) which exhibit singularities at the origin now corre
spond to solutions which are finite at the origin but produce 
thermal modes through the mode conversion process which 
carry wave energy away from the resonance region. In addi
tion, for special values of the parameters, it is possible to 
construct cold mode class solutions which are finite at the 
origin without generating thermal mode class solutions. 
This quenching of the mode conversion process corresponds 
to a change in the topology of the integration plane in which 
the branch points become an isolated pole. 
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APPENDIX 

1. General expression for the derivatives of u(z) 

The nth derivative of the function u(a,/3),/32'c,z) with 
respect toz, which we denote as u1nl, can be obtained from the 
integral representation (2.7): 
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u1n)(a,/3I,/32'c,z) = ( - r L sn(s - (2)a_(S + (2)a+ exp( - S3C /3 - sz) ds, 

where C is any of the contours discussed in Sec. 2. To find an expression for the first derivative, we note that 

s = (1/ 4(2) [(s + (2)2 - (s - (2)2] , 

together with 

uta + 2,/31 + 2/32,/32'C,z) = L (s + (2)2(S + (2)a+(s - (2)a- exp( - s3c /3 - zs) ds 

and 

uta + 2,/31 - 2f32,/32'C,z) = L (s - (2)2(S + (2)a+(S - (2)a- exp( - S3C /3 - zs) ds . 

Using (AI) with n = 1, the expression (A2) together with (A3) and (A4) gives 

ull )(a,PI,/32,C,z) = ( - 1/4(2)[u(a + 2,/31 + 2f32,/32'C,z) - uta + 2,/31 - 2f32'C ,z)] . 

The second derivative of u can be found in a similar fashion by using the expression 

S2 = (s - (2)(S + (2) + P ~ ; 
we then obtain 

u(2 )(a,/3I,/32'c,z) = uta + 2,/31,/32'C,z) + p~ u(a,/3I,/32'c,z) . 

Repeated use of the expression (A 7) yields 

uI2n )(a,/3I,/32'c,z) = jto C) p~ln -JJ uta + 2j,/3I,/32,C,z), 

where n = 0,1,2,3, ... and (j) = n!/(n - j)'J1, are the binomial coefficients. Application of (A5) to (A8) then yields 

ul2n + 1)(a,/3I,/32'c ,z) = 4
1 ± (~) P ~In - JJ- 1 

J=O J 

X [uta + 2(j + 1),/31 - 2f32,/32'C,Z) - uta + 2(j + 1),/31 + 2f32,/32'C ,z)] . 

2. A series expansion of u in powers of €2 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

In this appendix we outline the procedure for obtaining a series expansion of u(a,/3I,/32'c,z) in powers of c and explicitly 
calculate the first two coefficients of this series. We first assume that the integrand of (2. 7) is an analytic function of c in the vi
cinity of c = 0 and expand a portion of the integrand in a Taylor's series about the point c = O. We will discuss the validity of 
this assumption later. The integrand of (2.7) depends on c indirectly through the parameters a +' a _ and directly as 
exp [ - c(~ /3 + P ~ s) ]. Thus part of the integrand in (2.7) can be written as 

(s + .B2)a+(S - .B2)a- exp [ - c(s3/3 + P ~s)] 

=(s + .B2t+(S - P2t- (1 - c{~/3 + P~s - (PU2) In[(s + (2)/(S - (2)] I} + ... , (AlO) 

where we have explicitly shown only the first two terms of the Taylor series expansion. The parameters a + and a _ are simply 
the values of a + and a _ at c = 0, namely, 

a+ = a+(c = 0) = a/2 - 1 + P1/2/32' (All) 

a_ = a_(c = 0) = a/2 - 1 - P1/2/32' (AI2) 

Using (AlO) in (2.7), we obtain 

u(a,/3I,/32'c ,z) = L(S - P2t-(S + ( 2)a+e - zs ds 

- c{ P~ L s(s - (2)O-(S + P2t+e - ZS ds + + L S3(S - (2)O-(S + P2t+e - ZS ds 

- P2~ LIn [(s + ( 2)1(s - (2)] (s + (2)O+(S - P2t-e - zs dS} + .... (Al3) 

Noting that 

r In [(s + (2)/(S - .B2)] (s + .B2t+(S - P2t-e - zs ds = 2/32 ~ r (s + P2t+(S - P2t-e - zs ds , Jc apl Jc (AI4) 

and, using (AI) together with (A9), we obtain 
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u(a,/31,/32,€2,z) = U(a,/31,/32'0,Z) 

- 4~2 {[ +] u(a + 4,/31 + 2/32,/32'0,z) + [+ + /3 ~ J u(a + 2,/31 - 2/32,/32'0,z) 

- [+] u(a + 4,/31 - 2/32,/32'0,Z) - [+ + /3 ~ ] u(a + 2,/31 + 2/32,/32'0,z) 

- 4/3 ~ ~ U(a,/31,/32'0,z)} + 
a/31 

Writing 

Uo u(a,/3,,/32'0,Z) = L (s - /32t-(S + /32t+e - zs ds , 

we can then express (AI5) as 

(AI5) 

(AI6) 

u(a,/31,/32'C,Z) = u(a,/31,/32'0,Z) + c(a~u)I~=o + ... = Uo - ch (U O)/4/32 + ... , (AI7) 

where h (uo) is a functional of Uo and denotes the term in braces in (AI5). That is, once thefunctions Uo (which are independent 
of the magnitude of c) are known, the behavior of u(a,/3, ,/32,€2,z) can, at least in principle, be determined for any value of c 
provided the Taylor series expansion is valid. 

For the Taylor series to be valid the functions Uo must be analytic functions of c in the neighborhood of c = 0. 
Furthermore, the coefficients in the Taylor series must be bounded for all values of z. The functions Uo are analytic functions of 
c only for the contours corresponding to the solutions Bo, Bj , and Bj because these solutions become solutions of the second 
order differential equation when c = 0. On the other hand, Uo integrated along the contours for Bo, Bj , and Bj can be singular 
for certain values of z and the coefficients of the Taylor series are not bounded as z approaches these points. In the problem 
treated here, for example, singularities in bj and bj ; can occur at the point z = ° for a:> I. In this case the expansion in powers 
of c is valid only forzbounded away from the origin, i.e., Izl > IZol > 0, for agivenzo, and for arg zrestricted to the appropriate 
sectors, as given in the text by (4.15). 
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Exact solution for the discrete end-to-end intrachain memory function of a 
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This article considers the dynamics of polymer chains which are subject to entanglement 
constraints. We give the exact solution for the end-to-end intrachain memory function of a finite, 
N-link bead-rod chain which diffuses in configuration space according to the reptation model 
described by the stochastic earthworm equations of Doi and Edwards. Defining the appropriate 
two-point spatial correlation function, we develop a recursion expression for its Fourier 
transform, the equal-time structure factor, and evaluate this expression using a generating 
function method. The nonuniversal, N-dependent form of the resulting memory function is 
illustrated and compared with the universal form achieved in the continuum limit for N----+oo. 

PACS numbers: 61.40.Km, 66.1O.Cb, 82.35. + t, 02.30. + g 

1. INTRODUCTION 

The Brownian motion of a flexible polymer chain in a 
viscous medium constitutes a fundamental research area in 
polymer physics. Specific aspects of the dynamics of poly
mers are exhibited in the kinetics of reactions involving the 
contact of reactive groups attached at various positions 
along the flexible chain backbone. For example, when reac
tions occur between the two ends of a nonbranched chain, I 
the internal Brownian motion manifests itselfin the frequen
cy of end-to-end encounters. In recent papers2

.
3 we defined 

the first-order rate function which characterizes such an en
semble of self-reacting polymer chains, and showed it to be 
directly related to the intrachain memory junction, the sub
ject of the present paper. 

The end-to-end intrachain memory function, denoted 
S (t ), represents the probability that the ends of a chain are 
closer than an infinitesimal "capture" radius ro at time t, 
given they were in contact at an earlier time t = O. S (t ) is 
determined by the Brownian diffusion of the chain in the 
absence of reactions, which in turn depends on the type of 
polymer system. In polymer melts of high molecular weight, 
different chains interpenetrate and entanglements occur, 
leading to relaxation phenomena completely different from 
those found4 in dilute solutions. Building on Edwards' mean 
field view5 that each chain experiences entanglement con
straints in the form of a confining tube defined by the chain's 
average contour, the reptation model proposed by de 
Gennes6 asserts that the diffusion of such chains is essential
lyone-dimensional. However, all three-dimensional ran
dom-walk conformations are accessible because the chain is 
not confined beyond its ends. 

In this paper we calculate the end-to-end intrachain 
memory function in polymer melts using the reptation mod
el. Because S (t ) is a conditional probability, it can be defined 
as a particular value of the propagator for the relative end-to
end vector of the polymer chain. This propagator is obtained 
from a distribution function defined on the configuration 
space of the polymer chain. The polymer dynamics enters 
when we consider the time evolution of the corresponding 

alTo whom correspondence should be addressed. 

ensemble of polymer chains. The initial ensemble, whose 
chain conformations are consistent with the condition of 
chain closure at t = 0, relaxes to an equilibrium ensemble at 
t----+ 00 • 

In our calculation of S (t) we assume that the polymer 
dynamics is represented at early times by the Rouse bead
spring model4 discussed in Appendix B, which describes 
Brownian motion in the absence of entanglements, and at 
later times by the reptation model as given by the earthworm 
equations ofDoi and Edwards. 7 The crossover time Tt; is the 
time required for chain ends initially in contact to separate 
by a distance equal to the average distance between entangle
ments. Thus for 0 < t < Tt; we assert that the chain is 
unaware of the entanglement network. Since the reptation 
model in its present form only describes the time evolution in 
discrete time steps, this scheme has the advantage that the 
time evolution can be described continuously at short times. 

2. THE MODEL 

The end-to-end intrachain memory function S (t ) is giv
en by 

SIt) = nr(r = Olr' = O;t), O,.;t,.; 00, (2.1) 

where n = ~1Tr6 is an infinitesimal "reaction" volume deter
mined by a "capture radius" roo The propagator r(rlr';t) is 
the conditional probability density that the flexible polymer 
chain has an end-to-end vector r at time t > 0, given a vector 
r' at t = O. Because the polymer chain undergoes Brownian 
motion in a viscous medium, all probability distributions 
relax to their time-independent equilibrium forms. Conse
quently, 

lim r(dr';t) =Peq(r), 'fir', 
t~", 

(2.2) 

where P eq (r) is the equilibrium function (a probability den
sity in r) for the end-to-end vector of the polymer chain (see 
Appendix B). Therefore, S (t ) has the general form 

S(t) = npeq(r = O)[a(t) + 1], (2.3) 

where a(t ) is independent ofthe reaction volume and is called 
the transient part of the intrachain memory function because 
Eq. (2.2) implies 
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lim u(t) = O. (2.4) 
t~oo 

The steady state value of the memory function is 
flPeq ([ = 0), which is the probability that the ends of a chain 
in conformational equilibrium are closer than the capture 
radius. 

Thus the intrachain memory function is determined by 
a particular value of the propagator r ([ I [';t ), which is in turn 
derivable from a distribution function defined on the config
uration space appropriate to a flexible polymer chain. Be
cause it is not necessary to account for all degrees offreedom 
in modeling the dominant aspects of the polymer dynamics, 
the real chain is simulated by a primitive chain consisting of 
N + 1 identical beads connected by N massless links at uni
versal joints. The general configurational distribution func
tion IJI ( I ~ l;t), defined on the full primitive chain configura
tion space, then represents the probability density of finding 
a chain with bead coordinates {R 1 = [RI,Rz,.·.,R N + I} at 
time t. Because the end-to-end vector is gi~en in terms of I ~ I 
by ~N + 1 - ~ I' the propagator is given by 

r(d(;t) = (8(~- [~N+I -~d)'f/({~}I(;t) 

= j d{~}8(~- [~N+I -~d)IJI({~}I(;t), 
(2.5) 

where we use IJI ({ R II r';t ) to denote the conditional configu
rational distribution fiinction determined by the require
ment of an end-to-end vector r' at time t = O. 

In our subsequent calculations we work with the Four, 

where Llt is a microscopic hopping time interval introduced 
in the reptation model. The randomization of the direction 
of the leading bead is provided by the normal distribution in 
three dimensions, 

/l/3(l!) = (.B/1T)3/Zexp( -.BuZ), (2.10) 

which maintains a fixed mean square interbead separation 
(UZ) nrJ,~) = 3/2.B, also denoted aZ, during the hopping pro
cess. Thus Eq. (2.9) gives the distribution function at discrete 
times 

ta = aLlt + to, a = 0,1,2, ... , (2.11) 

given its form at a time to' The choice of to and the form of the 
distribution function for earlier times 0<,t<,10 will be dis
cussed in Sec. SA and Appendix B. 

Equation (2.9) is physically equivalent to the original 
earthworm equations of Doi and Edwards, who treat the 
bead positions as stochastic functions ~n (t). Those equa
tions are 

~n(t +Llt) =! [1 + 1](t)]Rn+ dt) 

1620 

+! [1 -1](t )]Rn _ 1 (t ),n = 1, ... ,N + 1, 
(2.12a) 
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ier transform of the propagator, denotedgl.N + 1 (~ I(;t), and 
defined by 

r(rlr';t) = ~jdk exp(ik·r)gl N+ dk Ir';t). (2.6) 
- - (21T)" - -' - -

This is also called the end-to-end equal time structure factor, 
which is the (l,N + 1) component of the equal-time structure 
factor 

gn,m(~I~';t)= (exp(i~'[~n -~m])'f/({~}I~ti' (2.7) 

defined for n,m = 1,2, ... ,N + 1. Combining Eqs. (2.3), (2.1) 
and (2.6), the intrachain memory function is related to the 
end-to-end equal-time structure factor by 

SIt) = ait) + 1 
flPeq(~ = 0) 

= 1 _l_jdkgIN+l(klr'=o;t). 
Peq (~ = 0) (21T)3 -' - -

(2.8) 
Thus the intrachain memory function is ultimately de

termined by the polymer dynamics via the conditional con
figurational distribution function IJIO R llr';t). In polymer 
melts, the dynamics of the primitive chain is described by the 
earthworm equations ofDoi and Edwards,7 which state that 
the primitive chain undergoes a random walk in which it 
slides along its contour, jumping forward or backward with 
equal likelihood, with only the leading bead free to choose its 
direction, We express this concept in terms of the general 
configurational distribution function of the primitive chain 
by writing the time evolution as 

with the auxiliary definitions 

~o(t) = ~I(t) + ~(t), 
~N+2(t) = ~N+ 1 (t) + ~'(t). 

(2.9) 

(2.12b) 

(2.12c) 

Here, 1](t ) is a stochastic function which has the values + 1 
or - 1 with equal likelihood, and determines whether the 
primitive chain jumps forwards or backwards: q(t ) and q'(t ) 

are stochastic vector functions of magnitude a, but with arbi
trary direction. 

3. RECURSION FOR THE EQUAL-TIME STRUCTURE 
FACTOR 

Our calculation of the intrachain memory function in 
the reptation model is based on recursion to past values of 
the equal-time structure factor defined in Eq. (2.7). Adopting 
the notation t:.~ = g n,m (~ I~' ;ta ), we follow the approach of 
Doi and Edwards,7 who considered the dynamic structure 
factor < exp(i~. [~n (t) - ~m (0)] I), and use Eq. (2.9) to ex
press tn~~ in terms of the earlier values {t:,;;;' I)} n'.m'E[ I,N + 1 J 

of the structure factor. We find 

...(a) = ...(a-I) = 1 nE[l,N + 1], 
~n.n ~n.n , (3.1a) 
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(3.Ic) 

tn~~ + I = Ht: -=-/~ + c (~ltna .;/~ + d, nE[2,N], (3.Id) 

g\~~+ I =![ C(~ lttN I) + C(~ lt~N':)1 ], (3.Ie) 

with 

gnm(k Ir';t) =gnm( - k Ir';t). 
~ - '-

(3.2) 

Randomization of the direction of the leading bead intro
duces the factor 

C(~) = (exp(i~.~)) ~pI!!) = exp( - k 2/41'). (3.3) 

This factor appears in the above equations whenever nor m 
is at an end of the chain. Equations (3.1) are depicted in Fig. I 
for m > n, which shows the t::.;;,.I) that determine g~~ in a 
single recursion step a---#Z - 1. It also indicates that the fac
tor C (~ ) only appears when g~~ is related to tn"'..;;,.I) on a 
different row, r, where rows are defined by constant n - m: 

r = N + I - In - mi. (3.4) 

We now focus on the end-to-end equal-time structure factor g\~~ + I' which determines the propagator and the memory 
function, and apply Eqs. (3.1) recursively. For example, after three steps we find 

tl~~ + I = C (~){( 1I23)gtN 3) + (1I23lt~N}I} (row r = 2) 

+ C (k )2{( 1I23)gla - 3) + 2( 1I23 \..(a - 3) + (1123\..(a - 3) } _ I.N - I 102.N 103.N + I (row r= 3) 

(row r= 4) 

(3.5) 

+ C(k )3{(1I23M~Nlh + (1I23Jt:'N;\}. 

After a' steps, we define b ~~j to be thejth numerical coeffi
cient along row r of tn~';; a') in the expansion of g\~~ + I , where 
n = j and m = j + N + I - r (see Fig. 2). In particular, after 
a steps we have 

tl~~ + I = r~1 C(~ r- ttl b ~'j)g)3)+ N + I - r} 

+ C(~ )N{b~)+ 1.1 + b ~)+ I.N+ I}. (3.6) 

Note that for a>N the recursive process reaches the last row 
r = N + I and terminates at the end element 
b ~)+ 1.1 = b ~)+ I.N + I because of Eq. (3.la). 

Therefore tl~~ + I is expressed in terms of the structure 
factors at time to. {gn.m la=o)}n,mE[I,N+ I]' which are deter
mined by the configurational distribution at time to. This 
initial condition will be discussed in Sec. 5A. 

The row elements b ~) for a = 1,2, ... obey the recursion 
relations 

b\~l = 0, 

elk) 
N+1r-'--'~~~-'--.--r--r-'--' 

, ./ (a) ! f (a-,) () (a-,) I 
N 

2 

2 

~ 9n,N+' .:l 9n-1,N +C k 9n+1.N+' 

. 
O (a) (a-,) 

9n,"'l:9n," -, 

n N+l 

(3.7a) 

FIG. 1. This illustrates the recursion relations, Eqs. (3.1) for the equal time 
structure factor tn~~ = gn .... (~ It;ta ) defined in Eq. (2.7). It shows thet:..;;;'" 
that determine t:.~ in a single recursion step a-..a - 1. 
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I 
b la) =bla)=l[bla-I) +b la - I)] rE[2N l} r,l T,r 2 r-1,1 T,2' , 

b la ). =l[b la- I
) +b la- I

)] J'E[2r-ll ' r.J 2 r.J - I r.J + I' , 

(3.7b) 

and 

b INa) I I = b fa) I - Ib la - I) + b (a - I) +, N+,N+I-2N,1 N+I,I' 

b ~)+ I,j = 0, jE[2,N 1 
r=N+I}. 

(3.8) 

with the initial conditions 

btl=O) = 1 

and 

b (a=O) - 0 1 rJ -, r> . 

(3.9a) 

(3.9b) 

Note that the b ~) do not depend on the number oflinks, N in 
the primitive chain, unless r = N + 1. The evolution of the 
b ~j is depicted in Fig. 3, where for a = 0 an initial value 
b \~)I = 1 at the apex of the triangle diffuses downwards and 
across the rows, until for a- 00 it ends up at the bottom 
corners, in the last row r = N + 1, with a final value 
2b \VlI,1 = 1. 

row: r =1 ----. 

f=2-------

. . . . 
r __ .. ______ .b~~~-------

1=1 • j=2 • • '. • • j='~ . . . . . . . . . . . . . . 
b
ta) _,=N.1_ 
N+,1 

FIG. 2. In the expansion of the end-to-end equal time structure factor 
tl~~+ I using the recursion illustrated in Fig. I, b~J'1 is thejth numerical 
coefficient along row r of t:.;;; ,,'I where n = j and m = j + N + I - r. See 
also Eq. (3.6). 
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a-+-1 
r--" 
I 

a-oo 
r---------------;e % 
I / 

1(1 )0(+1 • h I / 
I 

I / 
I / FIG. 3. The evolution of the row 

elements b ~j for a = 1,2, ... , 00 • 

For a = 0, an initial value 

I // 
I / 
I // 
I / 
I // 

b \~I, = I at the apex of the trian
gle (see Fig. 2) diffuses down
wards and across the rows, until 
it ends up at the bottom comers 
of the last row r = N + I, with 
b!¥!l.l =b!¥!,.N+l =~. 

I / 
I / 
I // 
I / 
I // 
'// 

*'% 

4. EXPRESSIONS FOR ROW ELEMENTS 

The row elements b~, which determine the end-to-end 
equal-time structure factor in Eq. (3.6), can be computed by 
applying a generating function method based on the recur
sion relations, Eqs. (3.7) and (3.8). Since these relations differ 
in structure for r = 1,2, ... , Nand r = N + 1, the analysis is 
given in two parts. 

A. The rows r = 1,2, ... , N 

If we denote the end element of any row r by 

at:1 = b ~~I = b ~~;, (4.1) 

then for r = 1,2, ... , N the recursion relations in Eqs. (3.7) can 
be rewritten 

r 

b la + II - "" U b la) + 1 lal (.I: +.1: ) 
r,i - £..i iJ rJ iQr-l Ui,l Ui,r , 

j=1 

(4.2) 

with the initial condition ofEq. (3.9), and the formal defini
tion alfl = ° Va. For fixed r, the U;j form an rX r matrix U 
given by 

(4.3) 

Defining the column vector b~a) = (b ~I.b ~~d , ... ,b ~;)t and the 
column vector d = (I,O, ... ,O,I)t, Eq. (4.2) becomes 

b~a + I) = U.b~a) + ~a~a~ I d. (4.4) 

Applying this successively, we obtain an expression involv
ing only the end elements: 

b~a + I) = H at:~ I UO + a~a_-II)UI + ... + a~o~ I U a ) ·d, 
(4.5) 

where Us is thesth power ofU. Now the rXrmatrix P with 
elements 

Pij = sin [ij1T/(r + I)], iJE[ l,r], 

diagonalizes U in the form8 

U = [2/(r+ 1)]P·A·P, 

with 

Aij = Dij).r.i> iJE[ l,r], 

and 

).r.i = cos [i1r/(r + 1)], iE [ l,r]. 

Therefore, 
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(4.6) 

(4.7) 

(4.8a) 

(4.8b) 

b~a + I) = [l/(r + 1)]P.[ a~a~ IA 0 + a~a_-IIIA 1+ ... 

+ a~o~ IA a)·p·d, (4.9) 

yielding the row elements 

b la + II = _1_ ~ 'YJ . [ala) ). 0 + ala - I)). I 
rJ r+lk~lrJk r-Ir,k r-I r,k 

where 'YJrjk is 

'YJrjk = sinUk1T/(r + 1)]{sin[k1T/(r + 1)] 

+ sin [rk1T/(r + I)]}. (4.11) 

A generating function method is used to evaluate Eq. 
(4.10). For a general sequence {ala)la = 0,1,00" we define the 
associated generating function A (z) by 

00 

A (z) = 1: ala)~, (4.12) 
a=O 

where z is complex. For future reference, the inversion for
mula is 

alal =_I_i A(z) dz, a =0,1,.··, (4,13) 
21Ti 1;zl =1' ~ + I 

where we assume the radius of the contour circle to bell < 1. 
Defining Brj(z) as the generating function for the sequence 
{b ~I}a =0,1, ... for an element of row r, Ar(z) = Brol (z) as the 
generating function for the end element, and Fr,k (z) as the 
generating function for the sequence {). ~~k } a = 0, I ,"" where 
). ~k =). ~k' Eq. (B13) becomes 

Brj(z) - b ~J = 01 

or 

Brj(z) = 4>rj(z)Ar_ I (z), 2<r<N, 

where 

Z r 

4>rj(z) = -- I 'YJrjkFr,k(Z), 
r+ 1 k=1 

In particular, the end element has the relation 

Ar(z) = 4>r,1 (z)Ar_ I (z), 2<r<N. 

(4.15) 

(4,16) 

(4.17) 

Note that the condition r>2 is required in Eqs. (4.15) and 
(4,17) because b ~ = 01 vanishes only for r>2, 
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Equation (4.17) yields an explicit expression for A, (z) 
becauseEq. (4.16) for <I>'j(z) can be reduced to (see Appendix 
A) 

.(1+W,+1-2j ) 
<I> .(z) = uI , r;;.l, 

rJ (1 + w'+ I) 

where w is defined by 

1-(1-r)1/2 
W= . 

z 

(4.18) 

(4.19) 

Moreover, because Eqs. (3.7a) and (3.9a) imply a\a = DI = 1 
and alfl = 0 for a = 1,2,.··, the generating function for the 
first row is 

AI(z) = 1. (4.20) 

When combined with Eq. (4.17), this yields 
, 

A,(z) = II <1> •• 1 (z), 2<r<N. (4.21) 
.=2 

Inserting Eq. (4.18), we obtain the compact result 

A ( ) - r- I (1 + w)(l + w2
) 1 N z - w , <r<. 

, (1 + wl( 1 + w' + I) 
(4.22) 

[Comparison with Eq. (4.20) shows Eq. (4.22) is valid down 
to r = 1.] This relation can be quickly verified for r = 2 be
cause from Eq. (3.7b) or Fig. 3, the elements of the second 
row evolve geometrically, with a~ = DI = 0 and a~al = 2 - a for 
a = 1,2,···, so that A 2(z) = z/(2 - z). 

We can now obtain the row elements b ~1 for 2<r<N 
from Eq. (4.15) and the inversion formula (4. 13). The integral 
form in the variable w [see Eq. (4.19)] is 

b(al =_l_ 
'J 21Ti 

~ 
(1 - w2)(1 + w2)a(1 + w)uI(l + w'+ 1-2j

) 
X dw, 

C' 2awa-'+3(1 +wr-l)(l +wl(l +wr+l) 
(4.23) 

where C' follows a counterclockwise ellipse enclosing the 
origin and contained in the unit circle. The substitution 
w = 1/y shows that C' can be replaced by C ", a clockwise 
ellipse enclosing the unit circle. Since the integrand has sim
ple poles on the unit circle, it follows by combination and 
deformation of these contours that the integral is the sum of 
the residues of the integrand multiplied by -!. Evaluating 
the residues at the three sets of roots of 
1 + w' - I = 1 + w' = 1 + w' - I = 0 using the identity 

1 

(1 - w2)(1 - w) 

xL +~r-I - Wi1++w~) + 1 +W~'+I}' (4.24) 

we find that the row elements for 2<r<N are exactly 

b (a) = h (a) _ 2h (a) + h (a) 
TJ rel. - TJ. TJ. + , a;;' 0, 2<r<N, 

(4.25) 
where 

1 ,- 2 (f/J ) = -- I cosa f/Jk cot _k 
r-1k=D 2 

'(U 1]) (2k+ 1)1T Xsm - f/Jk, f/Jk = , 
r-1 

(4.26a) 
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(4.26b) 

and 

h (al = _1_ ~ cosa Ok cot (~) sin(jOk)' 
'J+ r + 1 k~D 2 

Ok = (2k + 1)1T. (4.26c) 
r+1 

We note that Eq. (4.25) is also valid for r = 1 provided the 
first term is dropped. This follows because Eq. (4.15) turns 
out to be correct for r = 1 when coupled with the substitu
tion ofEqs. (4.18) and (4.22). More directly, Fig. 3 shows that 
the first row element is 

b (al _ {I, a = 0, 
1.1 - 0, a = 1,2, .... (4.27) 

B. The row r = N + 1 

The end element b ~I+ 1.1 = aN + I = b ~I+ I.N + I for the 
last row requires a separate analysis because its recursion 
formula is different. Rewriting Eq. (3.8) and using the nota
tion ofEq. (4.1), we have 

ala + II - a(al + lalal a ...... O. N+I - N+I 2 N' ,? 

Therefore, 
a 

2a~: tl = I a~'I. 
a' =0 

In terms of generating functions, 

2A N + dz) = A N(Z)z/( 1 - z), 

(4.28) 

(4.29) 

(4.30) 

whereAN(z) is given by Eq. (4.22) andAN + I (z) is the generat
ing function corresponding to the sequence {a~l+ I } a = D.I ..... 
Because Fig. 3 shows that 2a~I+ I grows to unity as a- 00, 

we remove the background level by defining the decaying 
sequence 

d~l+ I = 1 - 2a~l+ I' a;;'O. 

The corresponding generating function is 

DN+ 1 (z) = 1/(1 - z) - 2AN+ dz). 

(4.31) 

(4.32) 

Using Eq. (4.22) and working in the variable w defined in Eq. 
(4.19), we obtain 

(1 + w2)(1 _ wN)(l _ wN+ 1) 
DN+ 1 (z) = (1 _ W)2(1 + wN)(l + wN+ 1)' 

The inversion formula Eq. (4.13) then yields 

d(al 
N+I 

(4.33) 

1 1: (1 - w2)(1 - wN)(l - WN+ 1)(1 + w2t 
= 21Ti JC'orc- 2awa+ 1(1 _ w)2(1 + wN)(l + WN+ I) dw. 

(4.34) 

As discussed for Eq. (4.23), the location of the contours C' 
and C" reduces the integral to 

d (al -N+I- I (integrand). 
2 residues 

onlwl = 1 

D. A. Bernard and J. Noolandi 
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This gives the final result 

1 - 2b (a) - 1 _ 2a(a) - d (a) - h la) h (a) N+I.I- N+I- N+I- N+I- N' 

(4.36) 

where 

_ {~ rII coe[(2k + 1)1T] cosa[(2k + 1)1T], 
- r k~O 2r r 

r-l, a =0. 

a;;' 1, 

(4.37) 

C. Sum rules for the row elements 

According to Eq. (4.12), the sum of the sequence 
{ala)} a ~ 0.1 •... is given by the value at z = 1 of the associated 
generating function A (z). Using the generating functions ob
tained above for the row elements, we find 

00 

I b I:j = 1, l.;;;;r.;;;;N, j = 1,2, ... ,r, (4.38) 
a~O 

and 
00 

I {I - 2b~)+ I.I} = ~N(N + 1). (4.39) 
a=O 

5. THE DISCRETE INTRACHAIN MEMORY FUNCTION 

In the preceding sections we defined the intrachain 
memory function, S (t lin terms of the propagator r (rl r';t ) for 
the end -to-end vector !:: We then reexpressed S (t ) iIi"" terms of 
the Fourier transform of the propagator, the end-to-end time 
structure factor gl.N+ I (~ I(;t) [see Eq. (2.7)]. These were 
then written as expectation values using the conditional dis
tribution function tJI ({ ~ 1 I!:' = O;t ), defined on the full config
uration space of the primitive chain, and determined by the 
polymer dynamics. 

In the case of reptating polymer chains, our recursion 
solution for the strucure factor has the form shown in Eq. 
(3.6). Insertion of this in Eq. (2.8) gives the discrete intrachain 
memory function 

S(ta
) =u(t)+I= I {± b~~KrJ(N,to)} 

flPeq(r: = 0) r~ I j~ I 

+2b~)+1.IKN+l.l(N,to), (5.1) 

which is defined at the hopping times ta = a.:lt + to, 
a = 0,1,2,. ... The row elements b ~~ are determined by the 
dynamics of reptation and were computed in Sec. 4. The 
initial conditions for the recursion solution are contained in 
the ~-space integrals 

1 
K .(N to) = --=---
rJ' Peq (!: = 0) (21T)3 

X f d~C(~r-lgjJ+N+I_r(~I(=O;to), 
(5.2) 

whereC(k )isgiveninEq.(3.3). Fortherowr = N + 1, thek
space-integral containsg l •l , which is unity [see Eq. (3.1a)] for 
all t, so that for the last term in Eq. (5.1) we immediately have 
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(5.3) 

The KrJ for r.;;;;N are discussed in the next subsection. 
By "discrete" we refer to the discrete nature of the 

primitive chain in the reptation model, which consists of N 
links, and which diffuses according to the hopping model for 
chain dynamics, Eq. (2.9). The discrete aspect of the problem 
will be discussed further in Sec. 5B, where we compare the 
actual forms of the memory function for different N with the 
limiting, continuum form for large N. Before this is done, we 
must calculate the initial condition. 

A. The initial condition at t = To for the recursion 
solution 

The ~-space integrals in Eq. (5.2) are the initial condi
tion for the recursion solution, and are determined by the full 
set of structure factors {gn.m la ~ OJ} n.me[ I.N + I I evaluated us
ing the distribution function tJI ({ R llr' = O;to) at some start
ing time t = to' Since this distribJi"tion function is known at 
time t = 0 [see Eq. (BI9)], it would seem natural to set to = O. 
However, physical arguments suggese that the polymer 
chain undergoes Brownian motion in an isotropic medium 
for O.;;;;t.;;;; To, and setto = T{j' The time for crossover to repta
tional dynamics, T{j, is defined by 

(r)rlclt=o;t=To) =a2 
(5.4) 

and represents the time for the ends of the chain to move 
apart the average distance, a, between entanglements. 

We describe the polymer dynamics in the absence of 
entanglements using the Rouse model, which is described in 
Appendix B. We express tJI({R J Ir' = O;t) in terms of the 
known tJI({R J Ir' = O;t = 0), Ji"sing the Green's function in 
Eq. (B 16) for the diffusion equation of a Rouse chain, Eq. 
(B4). Since this gives the time evolution of the distribution 
function, we can calculate the structure factors, the propaga
tor and the intrachain memory function for O.;;;;t.;;;; T{j (see 
Appendix B). 

In particular, the set of equal-time structure factors 
{gn.m la = OJ} n.me[ I.N + I I which define the initial condition for 
the recursion solution at t = to = T{j are given in Eq. (B23). 
Inserting this result into Eq. (5.2) and using Eq. (B32), we 
find that the ~-space integrals for r.;;;;N are 

KrJ(N,to) 

= [1 - (1 - (r - 1 )IN )2pJJ+ N + I _ r (to)] - 3/2, 

r.;;;;N, j = 1,2, ... r, 

where Pn.m (t) is the normalized correlation function 

(5.5) 

() 
([ Rm (0) - Rn (0)] ·r(t ) (5.6) 

Pn.m t = 2' n <m In-mla 
of a free Rouse chain, given in Eq. (B26). 

The crossover time T{j where these initial conditions are 
computed is determined from Eq. (5.4) using the propagator 
r (!: I !:' ;t )Rouse from the Rouse model. From Eqs. (B29) and 
(B30) we obtain 

(5.7) 

Using the continuum limit of the Rouse model and the re
sulting small t form of 1 - PI.N + I (t) in Eq. (B35b), we con
clude that 
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(S.8) 

where 1'1 is the fundamental relaxation time of a Rouse 
chain, given in Eq. (B33). 

As discussed in subsection 3 of Appendix B, it is neces
sary to consider the continuum limit of the Rouse model in 
order to obtain a memory function which is integrable at 
t = O. In this limit, the number oflinks in the primitive chain 
approaches infinity, and the mean square interbead separa
tion approaches zero, so that the primitive chain becomes 
continuously flexible while remaining finite in overall size. 
In the reptation model it is impossible to consider the contin
uum limit in this manner because the mean square interbead 
separation, a2

, is bounded below by (and is generally identi
fied with) the average square separation between entangle
ment junctions along the real chain backbone. Since this is a 
fundamental constant (independent of molecular weight), 
the number oflinks, N, in the reptation model is fixed by the 
molecular weight of the polymer chain being simulated. 
Only when the molecular weight of the actual polymer be
comes very large does the reptation model reach its contin
uum limit (see Sec. SB). 

Thus the primitive chain used when the polymer under
goes reptation differs from the one which applies when the 
Rouse model is in effect. However, because the Rouse model 
determines the initial conditions of the reptation model, we 
must make the two primitive chains commensurate at the 
bead positions R I ,R2, ... ,RN + I of the discrete, reptating 
primitive chain~ TituS the Rouse primitive chain is chosen to 
have the number of links N'(s,N) = sN, where s = 1,2, ... , is 
the mUltiplicity over the reptating primitive chain. The nth 
bead in the reptating chain then corresponds to the Rouse 
bead with index n'(s,n) = 1 + s(n - 1). Denoting the contin
uum limits of the free Rouse chain correlation function at its 
commensurate points by 

P~.m (t) = lim Pn'(s.n).m'(s.m) (t), 
s~oo 

we find, using Eq. (B26), 

1 4 00 

P~.m(t) = -- ~ L {cos vq1T + cos (v - p)Q1T} 
1 - p1T q ~ 1(2) 

1 ( - Q2t) X-exp --, 
Q2 1'1 

where q = 1(2) denotes q = 1,3,. .. , 

v= (n - 1)IN 

and 

p=I-(m-n)lN. 

(S.9a) 

(S.9b) 

(S.9c) 

(S.9d) 

This is the form of the correlation function that we use in 
computing our initial condition, Eq. (S.S), at t = to = To. 

B. The continuum limit N-- 00 

We designate our above solution the discrete intrachain 
memory function because it reflects both the N link structure 
of the primitive chain, and the hopping model, Eq. (2.9), for 
the dynamics of rep tat ion. The discrete character of the solu
tion disappears in the limit of a continuously flexible primi
tive chain, attained by considering polymers oflarge molec-
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ular weight. When N_ 00, we then find that the intrachain 
memory function acquires a universal form. 

To obtain the continuum intrachain memory function 
we consider the various ingredients of the discrete solution 
for large N, beginning with the initial condition, Eq. (S.5). 
When measured in units of the fundamental Rouse relaxa
tion time 1'1' the interval (0, To) for Rouse dynamics becomes 
negligible as N-oo [see Eq. (S.8)]. Consequently, the 
gn,m(~ I!:' = O;To) entering Eq. (S.2) must reduce to 
gn,m (~ Ie = O;t = 0), which are the structure factors for a 
ring Gaussian chain, i.e., a free Gaussian chain subject to the 
condition of end-to-end contact. Under this condition, thej 
dependence must go away, so that 

KrJ(N,To)-Jr.N' To-D. (S.lO) 

Given a Gaussian ring, the Jr•N can be computed directly. 
Alternately, we just use our general formula (S.S). Because 
the correlation functions are normalized, i.e., 

Pn.m(O) = I, (S.l1) 

we immediately obtain 

JrN = [[(r - I)lN] (2 - (r - I)1N)] - 312, 2<r<N. 
(S.12) 

Consequently, Eq. (S.I) becomes 

S~I ~ ~ ~ 
-~-=-- = a(ta ) + 1= L fr Jr.N + 2b N+ 1.1' 
!1PeQ (~ = 0) r ~ 2 

(S.13) 

where a = 1,2, ... , and 
r 

j (a) = ~ b(a) 
r ~ rJ· 

j~1 

(S.14) 

In Eq. (S.13) we have restricted ta to positive definite values 
to avoid the singularity of S (t ) at t = O. 

Equation (4 2S) states b (a) = h (a) _ 2h (a) + h (a.) 
• rJ ytl, - TJ TJ. + ' 

where the h ~~. are given in Eq. (4.26). It is possible to show 
that 

and 

r 

L h ~j, _ = h ~a~ I . 
j~1 

r 
~ h(a) =h(a) 
£. TJ r , 
j~1 

(S.ISa) 

(S.ISb) 

(S.ISc) 

where h ~) is defined in Eq. (4.37). Therefore, h ~a) enters the 
difference formulas for both the intermediate rows and the 
last row, given by 

(S.16a) 

and 

(S.16b) 

where Eq. (S.16b) is just Eq. (4.36) restated. 
We next consider the behavior ofEqs. (S.16) for large N. 

The summand in Eq. (4.37) is COt2(Xk12)·coSaXk' where 
Xk = (2k + 1)1T11'€(0,21T). For x<1 we have 

cosa X = ea logcosx = e - ax'(1 + x'/6 + 2X4/45 + ... )12. (S.17) 
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Therefore, the width of cosa x about x = 0 is Ax=(2/a)I/2. 
If a- 00, this width becomes very small, so for 0 < x < Ax, 
we have 

coe(x/2) cosa x~(4Ix2)e-aX'/2. (S.18) 

If at least one term in the summation ofEq. (4.37) falls in the 
range (O,Ax), as expressed by the condition Xk = oE(O,AX) or 

raI2r<l, (S.19) 

then Eq. (S.18) can be used to reduce Eq. (4.37) to 

8 oo 
h~a)~-r L p-2e - p'",>a/2i', (S.20) 

r p=I(2) 

wherep = 1(2) denotesp = 1,3,.··. Now At = a2/2D, where 
D is the tube diffusion coefficient6 and 'Trep = L 21Dr, 
where'Trep is the tube disengagement time6 for an N-link 
chain of contour length L = Na. Therefore, 
rra/2N 2 = tal'Trep, which expresses time in units of the fun
damental relaxation time of the reptation model. Defining 

t = t h rep ' (S.21) 

andll = rlN, we rewrite h~) = Nllh (t IIl2), where 

- 8 oo ,-
h(t)=- L p-2e - P t. (S.22) 

r p=I(2) 

Converting the differences in Eq. (S.16) to derivatives, we 
find the row coefficients reduce to 

(S.23a) 

and 

1- 2b~)+ 1,1 ~ :r h ~)17=N = ~ [Ilh (;2)] / .. = I' 

(S.23b) 

Additionally, we use the fact that N is large to reduce J 7•N to 
[1l(2 -Il)] -3/2 [see Eq. (S.12b)]. Converting the sum in Eq. 
(S.13) to an integral and using the above equations, we obtain 
the continuum form of the intrachain memory function. In 
terms of the transient part, oit) defined in Eq. (2.3), this is 

l~ oit) = f [1l(2 ~IlJP/2 ~2 [Ilh 82)] 
- ~ [Ilh (;2)]1 .. = I' (5.24) 

The integral in Eq. (5.24) converges because as Il-o, (J 21 
JIl2)[llh (t IIl2)] a: exp( - t IIl 2

). 

This result can also be obtained using a diffusion equa
tion for the equal time structure factor obtained via the con
tinuum limit of the recursion relations in Sec. 3. The diffu
sion equation is 

at:.~ = ~ (~ + ~)2 --ta) aa 2 an am lSn,m' 
(S.25a) 

where a;;;'O, n < mE[O,N], and with boundary conditions 
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Jt:.~ 
--=Kg atn =0, an n,m 

a--ta ) 
~= am 

_K--ta ) 
I5n.m atm=N, 
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(S.25b) 

(5.25c) 

where K =!k 2a
2

• The initial condition is 

t:.:O) = exp[ - Kin - mlO-ln - mI/N»), (S.2Sd) 

which can be inferred from Eqs. (B23), (B24), and (5.11). 
The continuum limit of the intrachain memory func

tion has been given earlier in Fig. 1 of Ref. 2 and is shown 
again in Fig. 4. It is possible to show that the short time form 
is 

SIt) _ t 1 
[}P (r = 0) - oi ) + 

eq-

= 0.676t -3/4[ 1 + 0.477t 1/2 + 0 (t)), 

N-oo, t.(l, (5.26a) 

so that the memory function is integrable at t = 0 in its con
tinuum limit. The asymptotic expansion ofEq. (5.24) at long 
times is 

,.,.{) 8 LOO 1 - p'i {3 1 3 1 -3 } vlt =- -e ------+O(t) 
-2 2 2 2- 2 ( 2-)2 
11 p = 1(2) P P t P t 

e- t 

~1.216 -_-, N-oo, t>1. 
t 

(5.26b) 

By contrast, the discrete form of the memory function, for 
fixed N, has the long-term form 

oit)~1.216e-iIN, t>l, (5.27) 

as can be shown from Eqs. (S.13) and (4,37). 
Figures 4 and 5 show the continuum and discrete forms 

of the intrachain memory function. Figure 4, for 
10 - 1.5 < t < 101.0, illustrates the nonuniversal form of the 
discrete solution for various values of N, even when time 
variable is scaled in terms of the N-dependent reptational 
time scale 'T rep' Figure 5 compares the short time behavior of 
the continuum solution with that of the discrete solution, as 
determined by its initial value, SRouse(t = T/J 

The above discussion suggests conditions for the con
tinuum form of oit) in Eq. (5.24) to be a good approximation 
to the discrete form in Eq. (S.13) [obtained from Eq. (5.1) via 

--; . c.. 

~ 
~ 
(/) 

g 
CI> 
.!! 

0.8 r--r-::-r----r---,------,-----, 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
-1.5 -1.0 

o N .10 Links 

v N ~20 Links 

• N =30 Links 

- Continuum limit N--OO 

-0.5 o 0.5 

109'0 (tiT ••• ) 

1.0 

FIG. 4. The intrachain memory function S (ta ) for the N-link bead-rod 
chain obeying the reptation model. Normalized [see Eq. (2.3)] and defined at 
discrete times ta [see Eq. (2.11)]. it is shown for a chain with 10, 20, and 30 

links. Comparison with the continuum limit for N-+oo (solid line) shows the 
nonuniversal character of the discrete N solution. We have used the funda
mental reptation time T rep to remove the N dependence of the time scale. 
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2.4 ~---.--..--~---.---r-----' 

2.0 

.. 1.6 

• a.. 

~ 

" 1.2 
In 

$I 

~ 0.8 N -10 Links 0 

v N =20 Links . 
0.4 

N =30 Links 

- Continuum Limit N-co 

0 
-5.0 -4.0 -3.0 -2.0 -to 0 

109,0 (tlTr• p ) 

FIG. 5. This extension of Fig. 4 illustrates the short-time behavior of the 
intrachain memory function at a = 0,1,2, .. , for a reptating chain with 10, 
20, and 30 links. The initial value S (ta ~ 0) is the intrachain memory func
tion of a Rouse chain computed at the crossover time To (see Sec. 5A). The 
solid line shows the (t /7,op)-3/4 form of the continuum limit for N-+oo, 
(-+0. 

to = T8 ---+O]. To achieve Eq. (5.18), the widthLlx ~ (2/a)1/2 
mustbesmall,saylessthanO.1. Using~al2N2 = t thiscan 
be expressed by 

t>tmin = (101TINf (5.28) 
An additional constraint is Eq. (5.19), which can be rewritten 
in terms of f.l = rlN as f.l>t 1/2. Although rE[2,N] implies 
f.lE[O, 1], so that this relation seems impossible to satisfy for 
nonzero t, examination of the integrand in the continuum 
form, Eq. (5.24) shows that the dominant contribution in the 
sum over rows (or integral over f.l) occurs atf.lo=.t 1/2. This 
suggests that iff.lo lies within the domain of integration [0,1], 
i.e., if 

t< 1, (5.29) 
I 

then Eq. (5.19) will be satisfied for the dominant terms. Com
bining Eqs. (5.28) and (5.29), we see that the continuum and 
discrete forms of a(t ) should agree with times t such that 

tmin < t < 1. (5.30) 

This relation can only be satisfied when tmin < 1, which by 
Eq. (5.28) is equivalent to a lower limit on the number of 
chain links: 

N>30 (5.31) 
in order for the discrete form of a(t ) to begin to approach the 
continuum form. 
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APPENDIX A: THE GENERATING FUNCTION <P,)z) 

Our earlier analysis shows that the generating function 
BrJ(z) for the row element b ~J) is given by Eq. (4.15) in terms 
of the generating function IPrJ(z) defined in Eq. (4.16). We 
first require the generating function F r•k (z), corresponding to 
the sequence {A ~l } a = 0.1 ..... Because A ~~l = A ~k' we have a 
geometric series: 

00 1 
Fr.k(z) = I A ~kzU = . 

a=O 1 -Ar.kz 
(AI) 

Therefore, Eq. (4.16) becomes 

IPrJ(z) = _z_ ± 'TJrJk . (A2) 
r + 1 k = I 1 - Ar.kz 

The coefficient 'TJrJk is given in Eq. (4.11), which can be re
written 

{
O, k = 0,2, ... , 

'TJrJk = cos[(j - l)k1TI(r + 1)] - cos[(j + l)k1TI(r + 1)], k = 1,3, ... . 
(A3) 

Using Eq. (4.8b) and defining R = r + 1, Eq. (A2) becomes 

IPrJ(z) = i. Ri I cos[(j - l)k1TI(r + 1)] - cos[(j + l)k1TI(r + 1)], 

z R k= 1(2) 1 - z cos(1Tk IR ) 
(A4) 

where k = 1(2) denotes k = 1,3, .... The sum in Eq. (A4) can 
be done explicitly using the following identity due to Mon
tro1l9

: 

i.Ri
l 

exp(21k1TiIR) =PR(I,z), (AS) 
R k= 0 1 - z COS(21Tk I R ) 

where 

PR (l,z) = (Wi + ~ -/)/(1 - ~)(1 - z2)1/2, (A6) 

and 

w = [1 - (1 - z2)I 12]1Z. 

Equation (AS) implies 

1627 

i. 2I I exp(lk1Til R ) = 2P
2R 

(l,z) 
R k= 0 1 - z COS(k1TIR ) 
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(A7) 

(A8) 

and 

i. 2"I2 exp(lk1TiIR) =PR(I,z). 
R k = 0(2) 1 - z COS(k1TIR ) 

Subtracting, we find 

(A9) 

i. 2"I I exp(lk1TiIR) = 2P2R (I,z) _ PR(I,z), (AlO) 
R k = 1(2) 1 - z COS(k1TIR ) 

or 

2 R~ I cos(lk1TIR) E1 exp(l1Ti) 
- £... +----
R k= 1(2) 1 - z COs(k1TIR) R (1 + z) 

= 2P2R (l,z) - P R (l,z), (A 11) 

where E1 = 1 when R is odd and ° otherwise. Using 
1= j - 1 and I = j + 1 in Eq. (A4), we obtain 
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4>rj(Z). . 
--= P2R (j - I,z) - P2R (j + I,z) 

z 

-HPRU-I,z)-PRU+ I,z)]. (AI2) 

After some algebra, Eqs. (A6) and (A 7) yield the key result 

4>rj(z) = uI(I + wr+ 1- 2V(I + wr+ I), (AI3) 

where w = [1 - (1 - Z2)1/2]!Z. 

APPENDIX B: DYNAMICS OF A ROUSE CHAIN 

In order to obtain the initial condition at t = To for the 
recursion solution (see Sec. 5A), we describe the polymer 
dynamics for O,t, To using the Rouse modeV which de
fines a diffusion equation, in the absence of entanglements, 
for the configurational distribution function 4ft ({ R J;t) in the 
full configuration space of the primitive chain (see Sec. 2). 
This enables us to calculate the equal-time structure factor, 
the propagator and the intrachain memory function (see sub
sections 1-3 of this appendix). First, we review the Rouse 
model. 

In the Rouse model, a purely entropic free energy is 
introduced by comparing the distribution function with its 
equilibrium value 4ft eq ({~ }). The free energy is 

Y({~ };t) = kB Tln[ VI({~};t )lVleq({~ })], (BI) 

where kB is Boltzmann's constant and Tis the absolute tem
perature. The equilibrium distribution function for the N
link primitive chain is a product of Gaussians and derives 
from the assumption that the intervening monomers in each 
section or "blob,,6 of the real chain between points R i and 
~i + I obey random walk statistics for any given link vector 
!!.i=~i+I-~;·ltis 

N 

Vleq({~}) = V-I II np(~), (B2a) 
j~1 

where V is the volume and the normal distribution in three 
dimensions is 

np(U) = ({3 hT)3/2 exp( - {3u2
). (B2b) 

The mean squared blob size is (u 2
) ntJ<~) = 3/2/3, also denoted 

a2
• The free energy ofEq. (BI) implies a Brownian force on 

the ith bead, which represents the driving impetus towards 
equilibrium. The force is -E~ = - V ~;Y({~ };t), and is bal
anced during the relaxation towards equilibrium by a Stokes' 
drag force. For a viscous background medium which is at 
rest, the force is Ff = - s (R;), where S is the net friction 
coefficient of the group of monomers being simulated by the 
bead. Neglecting transient effects by dropping the inertial 
term from Newton's second law, leaving a force balance con
dition F ~ + Ff = 0, we can solve for the mean bead velocity 
to give-(R i ) ~ - s -IV RY({R };t). This result enables us 
to substitute for (R; ) in the equ;tion of continuity in config
uration space, 

N+I 
alVl({~};t)+ 2:, V~:(~;)4ft({~};t)) =0, (B3) 

i= 1 

to obtain a diffusion equation for VI. In relative coordinates 
I !!. J this is 10 

at VI-I. V ~.(s -lkB TVI I. A fk V ~k In[~]) = 0, 
J ~ I k ~ I 4fteq 

(B4) 
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where AR is the N XN Rouse matrix with components 

A fk = UJj,k - OJ,k _ I - OJ,k + I' (B5) 

The orthogonal matrix n with components 

n;j = [2/(N + 1)] 1/2 sin [ij1T/(N + 1)], (B6) 

diagonalizes the Rouse matrix in the form 

B = n·AR·n, (B7) 

where the diagonal elements of Bare 

5j = 4 sin2 U1T/2(N + 1)], j = 1,2, ... ,N. (BS) 

The corresponding coordinate transformation of the link 
vectors is 

N 

v· = "" n,kUk -J ~ J, - , (B9) 
k~1 

which reduces the diffusion equation in the Rouse model to 

atqJj - s -lkB Ttj V'li' (qJj V ~j In [qJJ np(!:j l]) = 0, (BIO) 

forj = I,2, ... ,N. In achieving Eq. (BIO), the distribution 
function has the assumed form 

N 

4ft({~};t) = V-I II qJj(~i)' (Bll) 
j~1 

Wilemski and Fixman II have shown that the diffusion 
equation (B 10) has the Green's function 

Gj(!:j IvJ;t) = np)!:j - !!.~Yj(t)), 

where 

and 

{3j(t) = {3 1[1 - Yj(t )2] 

are determined by a relaxation time Tj such that 

T j - 1= (3kB T Isa2)5j' 

(BI2) 

(B13) 

(BI4) 

(BI5) 

Consequently, the full Green's function for the Rouse model 
IS 

N 

GRouse({!!.}I{!!.O};t) = II Gj(!:jl!!.~;t). (BI6) 
j= I 

Therefore, the distribution function 4ft ( l R J Ir';t) which 
evolves from the initial condition 4ft ( I R J I r' ;t-= OJ is 

VI({~ }I!:';t) = f d{!!.O} 

X GRouse ({!!.} I {!!.O};t )VI({~ O}I(;t = 0). 
(BI7) 

The equal-time structure factor, defined in Eq. (2.7), for a 
chain subject to Rouse dynamics, is then given by 

gn,m(~ 1.~';t)Rouse 

= V f d{!!.} f d{!!.O}exp(i~·[!!.n +"·+!!.m-tl) 

X GRouse ({!!.} I {!!.O};t )VI({~ O}I(;t = 0). (BI8) 

To compute the equal-time structure factor 
gn m (k Ir' = O;t )Rouse based on the condition of chain closure 
at't ~ O~ we need the initial distribution 4ft ({ ~ J I( = O;t = 0). 
Because the chain is Gaussian subject only to the require-
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ment !:.' = 0, or ~ N + I - ~ I = Oat t = 0, we have l2 

CJi({~ }I( = O;t = 0) 

CJieq({R })o(r' - [RN+ I - Rd) 
~~~~=-~~~---=~I(~o' 

Peq (() 

(BI9) 

where CJi eq ({~ }) is given by Eq. (B2a) and Peq (!:.) is the equilib
rium distribution of the end-to-end vector 

Peq (!:.) = (o(!:. - [~N+ I - ~d)\beq({~}) = np/N(!:.)' 
(B20) 

Using Eq. (B9) and the relation 
~ N + I - ~ I = ~ I + ~2 + '''~n' the initial condition can be 
rewritten 

( 
13 ) - 3/2 1 

CJi({R }Ir' = O;t = 0) = V-I - -
- - 1TN (21T)3 

X f d~)JI np(!:j) exp(i~.,uj!:j)' 
(B21) 

where 
N 

,uj = I 11j./' (B22) 
/~ I 

,u~n,m) = (N! 1 )112 

1. The equal-time structure factor of a Rouse chain 

Inserting Eq. (B21) in Eq. (BI8) and performing the in
tegrations then yields the desired equal-time structure factor 

gn,m (~ I( = O;t )Rouse = exp( - NVn,m (t)k 2/413), (B23) 

where 

vn,m(t) 

{
O, 

= (In - mI/N){1 - (in - ml/N)p~,m(t)}, 
n=m, 

n#m, 

(B24) 

which is defined in terms of a normalized correlation func
tion of a free Rouse chain 

([ Rm (0) - Rn (0)] .r(t ) 
Pn,m(t) = I I 2 ' n-ma 

n<m, (B25) 

given by 

(t) - 1 ~ (n,m) (t) 
Pn,m - In _ ml q~l,uq ,uqYq , (B26) 

where 
m-I 

,u~n,m) = I I1q,/. (B27) 
/~ n 

Using Eq. (B6), we calculate the coefficients ,u~,m) to be 

X sin(nq1T/(N + 1)) - sin(mq1T/(N + 1)) - sin([n - 1 ]q1T/(N + 1)) + sin([m - 1 ]q1T/(N + 1)) 
2( 1 - cos [q1T/(N + 1)]) , 

(B28a) 

with 

{

(2/(N + 1)) 1/2 sin(q1TIN + 1) , 
,uq =,u~I,N+ I) = 1 - cos(q1TIN + 1) 

0, 

2. The propagator and memory function of a Rouse 
chain 

We can now compute the propagator r(rlr' = O;t). In
serting the end-to-end equal time structure fa~tor 
gl,N + I (~ I( = O;t) from Eq. (B23) into Eq. (2.7), we find 

r(!:.I!:.' = O;t )Rouse = npr4 t ) (!:.), (B29) 

where 

f3r(t) = 13 INvl,N + I (t) =13 IN {I -Pi,N+ I (t)}. (B30) 

The intrachain memory function is then given immediately 
by Eqs. (2.1) and (B2b) as 

S (t )Rouse = 11 {fJ r(t )/1Tf/2 

= I1Peq (!:. = O){ 1 - Pi.N + dt)} -3/2. (B31) 

Here we have used 

Peq (!:. = 0) = ( 13 I N1T)3/2, 

which follows from Eq. (B20). 

3. The continuum limit of the Rouse model 

(B32) 

As in the reptation model, the primitive chain in the 
Rouse model consists of N + 1 identical beads connected by 
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q odd, 
(B28b) 

q even. 
I 
N links at universal joints. The bead positions correspond to 
positions at uniform intervals of Nb monomers along the real 
chain backbone, and, if the overall degree of polymerization 
or monomer number is Nu' then N = Nu I N b • 

In contrast with the reptation model, the choice of 
primitive chain to simulate a given real chain is somewhat 
arbitrary. For fixed Nu , the longest Rouse relaxation time, 
7 1, defined by Eq. (BI5), is independent of the "blobsize," 
Nb , or the number of links, N, in the limit of a continuously 
flexible primitive chain. In this limit, Nb -0 and N- 00 , and 
we have 

(B33) 

where btot = Nb is the net friction coefficient of the real 
chain and (r)eq = Na2 is the mean-square end-to-end se
paration for conformational equilibrium. 

Before taking the continuum limit, we consider the 
short time behavior of the propagator and memory function 
of a discrete Rouse chain with large but finite N. From Eqs. 
(B26) and (B33), we find 

I-p (t)""{.!~ ~ cos2 q1T }~ 
I,N+I - -2 N 1 £., 2(N 1) , 

7T + q~ 1(2) + 71 

t-o, (B34a) 
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where q = 1(2) denotes q = 1,3,.··. Consequently, for fixed 
N, using Eq. (B31), 

S(t)Rouse =nPeq(~=0)AN(thd-3/2, t~, (B34b) 

where AN is an N-dependent coefficient. 
Physical considerations show3 that S (t ) should be inte

grable at t = O. However, S (t )Rouse in Eq. (B34b) is not inte
grable for fixed N. To eliminate this artifact and obtain dyna
mical functions which are valid for t--+O, we consider the 
N--oo limit before the t--+O limit and find 

. ) 8 ~ 1 ( 2 t) hmp1.N+1(t ~ ~ ~ zexp -q - , 
N~oo 1T q= 1(2) q 71 

(B35a) 

which has 13 the following form for small t 

. 4 (t )112 
hm {1-P1.N+1(t)}~ ~/2 - , 

N __ oo 1T 71 
(B35b) 

so that S (t ) is now integrable for t~: 

1630 J. Math. Phys .• Vol. 25. No.5. May 1984 

hm S (t )Rouse ",nPeq (r = 0) -- -. ( 8 ) - 312( t ) - 3/4 
N~oo ",-3/2 71 

(B35c) 
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